L(s) = 1 | + (−0.215 − 1.71i)3-s + (−0.748 + 1.29i)5-s + (−1.94 − 3.36i)7-s + (−2.90 + 0.739i)9-s + (−0.5 − 0.866i)11-s + (−3.15 + 5.47i)13-s + (2.38 + 1.00i)15-s + 4.19·17-s − 1.38·19-s + (−5.36 + 4.05i)21-s + (−2.06 + 3.57i)23-s + (1.38 + 2.39i)25-s + (1.89 + 4.83i)27-s + (−1.00 − 1.73i)29-s + (−1.71 + 2.97i)31-s + ⋯ |
L(s) = 1 | + (−0.124 − 0.992i)3-s + (−0.334 + 0.579i)5-s + (−0.733 − 1.27i)7-s + (−0.969 + 0.246i)9-s + (−0.150 − 0.261i)11-s + (−0.876 + 1.51i)13-s + (0.616 + 0.259i)15-s + 1.01·17-s − 0.318·19-s + (−1.17 + 0.885i)21-s + (−0.430 + 0.745i)23-s + (0.276 + 0.478i)25-s + (0.364 + 0.931i)27-s + (−0.186 − 0.322i)29-s + (−0.308 + 0.534i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.410 - 0.911i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.410 - 0.911i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.103798 + 0.160655i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.103798 + 0.160655i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.215 + 1.71i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
good | 5 | \( 1 + (0.748 - 1.29i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (1.94 + 3.36i)T + (-3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (3.15 - 5.47i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 4.19T + 17T^{2} \) |
| 19 | \( 1 + 1.38T + 19T^{2} \) |
| 23 | \( 1 + (2.06 - 3.57i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.00 + 1.73i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.71 - 2.97i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 10.0T + 37T^{2} \) |
| 41 | \( 1 + (0.256 - 0.444i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.32 - 4.02i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6.19 + 10.7i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6.07T + 53T^{2} \) |
| 59 | \( 1 + (3.10 - 5.38i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.96 + 3.39i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.17 - 7.23i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 8.65T + 71T^{2} \) |
| 73 | \( 1 + 3.97T + 73T^{2} \) |
| 79 | \( 1 + (-5.79 - 10.0i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.94 + 5.09i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 11.3T + 89T^{2} \) |
| 97 | \( 1 + (-2.33 - 4.04i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.56242493813724741614140812749, −9.835901954000933909492576421568, −8.770379783985830365747690964128, −7.57665342055869122084496276085, −7.12941435868272266702209920366, −6.55791663000270283772666412451, −5.36592814649996752243939247398, −3.96830696957474591337575683764, −3.06283467435387991352633694148, −1.60226807081949280556940204798,
0.093707183848205730859366220907, 2.58790798486773168116208831845, 3.42660813436985093910496294994, 4.74174497271490749251650817760, 5.43688914912543101315131731796, 6.15872437820369107947019677744, 7.66087764878665061143656446193, 8.516373955471389488667345240391, 9.185668206504155659609402959732, 10.06613707867715562176921913102