Properties

Label 7128.2.a.w
Level $7128$
Weight $2$
Character orbit 7128.a
Self dual yes
Analytic conductor $56.917$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7128,2,Mod(1,7128)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7128, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7128.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7128 = 2^{3} \cdot 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7128.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-4,0,5,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.9173665608\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.30796308.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 7x^{4} - x^{3} + 10x^{2} + 2x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 792)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{5} + ( - \beta_{4} + 1) q^{7} - q^{11} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{13} + ( - \beta_{5} - 1) q^{17} + (\beta_{4} - \beta_1 + 1) q^{19} + (\beta_{5} + \beta_{3} - \beta_{2} + \cdots - 1) q^{23}+ \cdots + (2 \beta_{5} + 4 \beta_{3} - 2 \beta_1 - 1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{5} + 5 q^{7} - 6 q^{11} + 3 q^{13} - 7 q^{17} + 5 q^{19} - 8 q^{23} - 2 q^{25} - 8 q^{29} + 4 q^{31} - 8 q^{35} + 3 q^{37} + 5 q^{43} - 17 q^{47} + 3 q^{49} - 14 q^{53} + 4 q^{55} - 4 q^{59}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 7x^{4} - x^{3} + 10x^{2} + 2x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - 6\nu^{2} + 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{5} + 6\nu^{3} + \nu^{2} - 4\nu - 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - \nu^{4} - 6\nu^{3} + 5\nu^{2} + 6\nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} + \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{5} + 2\beta_{4} + 2\beta_{3} + \beta_{2} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{3} + 6\beta _1 + 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 10\beta_{5} + 9\beta_{4} + 10\beta_{3} + 6\beta_{2} + \beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.379195
−0.645179
−1.22634
1.30831
−2.16714
2.35114
0 0 0 −2.85621 0 3.05369 0 0 0
1.2 0 0 0 −2.58374 0 0.502596 0 0 0
1.3 0 0 0 −1.49610 0 3.88286 0 0 0
1.4 0 0 0 −1.28831 0 −4.08178 0 0 0
1.5 0 0 0 1.69649 0 1.90201 0 0 0
1.6 0 0 0 2.52788 0 −0.259373 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7128.2.a.w 6
3.b odd 2 1 7128.2.a.ba 6
9.c even 3 2 2376.2.q.f 12
9.d odd 6 2 792.2.q.f 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
792.2.q.f 12 9.d odd 6 2
2376.2.q.f 12 9.c even 3 2
7128.2.a.w 6 1.a even 1 1 trivial
7128.2.a.ba 6 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7128))\):

\( T_{5}^{6} + 4T_{5}^{5} - 6T_{5}^{4} - 37T_{5}^{3} - 12T_{5}^{2} + 73T_{5} + 61 \) Copy content Toggle raw display
\( T_{7}^{6} - 5T_{7}^{5} - 10T_{7}^{4} + 83T_{7}^{3} - 110T_{7}^{2} + 12T_{7} + 12 \) Copy content Toggle raw display
\( T_{13}^{6} - 3T_{13}^{5} - 25T_{13}^{4} + 7T_{13}^{3} + 112T_{13}^{2} + 40T_{13} - 68 \) Copy content Toggle raw display
\( T_{17}^{6} + 7T_{17}^{5} + 6T_{17}^{4} - 41T_{17}^{3} - 74T_{17}^{2} - 12T_{17} + 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 4 T^{5} + \cdots + 61 \) Copy content Toggle raw display
$7$ \( T^{6} - 5 T^{5} + \cdots + 12 \) Copy content Toggle raw display
$11$ \( (T + 1)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} - 3 T^{5} + \cdots - 68 \) Copy content Toggle raw display
$17$ \( T^{6} + 7 T^{5} + \cdots + 12 \) Copy content Toggle raw display
$19$ \( T^{6} - 5 T^{5} + \cdots - 72 \) Copy content Toggle raw display
$23$ \( T^{6} + 8 T^{5} + \cdots + 16 \) Copy content Toggle raw display
$29$ \( T^{6} + 8 T^{5} + \cdots + 13012 \) Copy content Toggle raw display
$31$ \( T^{6} - 4 T^{5} + \cdots - 51 \) Copy content Toggle raw display
$37$ \( T^{6} - 3 T^{5} + \cdots + 19819 \) Copy content Toggle raw display
$41$ \( T^{6} - 91 T^{4} + \cdots + 1164 \) Copy content Toggle raw display
$43$ \( T^{6} - 5 T^{5} + \cdots + 628 \) Copy content Toggle raw display
$47$ \( T^{6} + 17 T^{5} + \cdots - 15623 \) Copy content Toggle raw display
$53$ \( T^{6} + 14 T^{5} + \cdots - 36261 \) Copy content Toggle raw display
$59$ \( T^{6} + 4 T^{5} + \cdots - 48021 \) Copy content Toggle raw display
$61$ \( T^{6} - T^{5} + \cdots - 14336 \) Copy content Toggle raw display
$67$ \( T^{6} + 4 T^{5} + \cdots - 101081 \) Copy content Toggle raw display
$71$ \( T^{6} + 7 T^{5} + \cdots + 1161 \) Copy content Toggle raw display
$73$ \( T^{6} + 12 T^{5} + \cdots + 146764 \) Copy content Toggle raw display
$79$ \( T^{6} - T^{5} + \cdots + 155404 \) Copy content Toggle raw display
$83$ \( T^{6} + 22 T^{5} + \cdots + 99552 \) Copy content Toggle raw display
$89$ \( T^{6} + 22 T^{5} + \cdots + 106432 \) Copy content Toggle raw display
$97$ \( T^{6} + 16 T^{5} + \cdots - 45113 \) Copy content Toggle raw display
show more
show less