Properties

Label 7128.2.a.w.1.5
Level $7128$
Weight $2$
Character 7128.1
Self dual yes
Analytic conductor $56.917$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7128,2,Mod(1,7128)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7128, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7128.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7128 = 2^{3} \cdot 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7128.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-4,0,5,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.9173665608\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.30796308.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 7x^{4} - x^{3} + 10x^{2} + 2x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 792)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.16714\) of defining polynomial
Character \(\chi\) \(=\) 7128.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.69649 q^{5} +1.90201 q^{7} -1.00000 q^{11} -2.08396 q^{13} +0.310342 q^{17} -2.59850 q^{19} -0.226386 q^{23} -2.12192 q^{25} -4.42032 q^{29} -2.98597 q^{31} +3.22674 q^{35} +4.20720 q^{37} -5.62376 q^{41} -2.02393 q^{43} -1.48037 q^{47} -3.38235 q^{49} -3.56433 q^{53} -1.69649 q^{55} -9.87652 q^{59} -8.37392 q^{61} -3.53541 q^{65} +6.33735 q^{67} -0.355974 q^{71} +11.9857 q^{73} -1.90201 q^{77} -4.83688 q^{79} -2.90065 q^{83} +0.526492 q^{85} -3.43554 q^{89} -3.96371 q^{91} -4.40833 q^{95} -17.5014 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{5} + 5 q^{7} - 6 q^{11} + 3 q^{13} - 7 q^{17} + 5 q^{19} - 8 q^{23} - 2 q^{25} - 8 q^{29} + 4 q^{31} - 8 q^{35} + 3 q^{37} + 5 q^{43} - 17 q^{47} + 3 q^{49} - 14 q^{53} + 4 q^{55} - 4 q^{59}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.69649 0.758693 0.379347 0.925255i \(-0.376149\pi\)
0.379347 + 0.925255i \(0.376149\pi\)
\(6\) 0 0
\(7\) 1.90201 0.718893 0.359446 0.933166i \(-0.382966\pi\)
0.359446 + 0.933166i \(0.382966\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −2.08396 −0.577985 −0.288993 0.957331i \(-0.593320\pi\)
−0.288993 + 0.957331i \(0.593320\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.310342 0.0752691 0.0376345 0.999292i \(-0.488018\pi\)
0.0376345 + 0.999292i \(0.488018\pi\)
\(18\) 0 0
\(19\) −2.59850 −0.596137 −0.298069 0.954544i \(-0.596342\pi\)
−0.298069 + 0.954544i \(0.596342\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.226386 −0.0472048 −0.0236024 0.999721i \(-0.507514\pi\)
−0.0236024 + 0.999721i \(0.507514\pi\)
\(24\) 0 0
\(25\) −2.12192 −0.424385
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.42032 −0.820833 −0.410416 0.911898i \(-0.634617\pi\)
−0.410416 + 0.911898i \(0.634617\pi\)
\(30\) 0 0
\(31\) −2.98597 −0.536296 −0.268148 0.963378i \(-0.586412\pi\)
−0.268148 + 0.963378i \(0.586412\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.22674 0.545419
\(36\) 0 0
\(37\) 4.20720 0.691659 0.345830 0.938297i \(-0.387598\pi\)
0.345830 + 0.938297i \(0.387598\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.62376 −0.878283 −0.439142 0.898418i \(-0.644717\pi\)
−0.439142 + 0.898418i \(0.644717\pi\)
\(42\) 0 0
\(43\) −2.02393 −0.308647 −0.154324 0.988020i \(-0.549320\pi\)
−0.154324 + 0.988020i \(0.549320\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.48037 −0.215935 −0.107967 0.994154i \(-0.534434\pi\)
−0.107967 + 0.994154i \(0.534434\pi\)
\(48\) 0 0
\(49\) −3.38235 −0.483193
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.56433 −0.489598 −0.244799 0.969574i \(-0.578722\pi\)
−0.244799 + 0.969574i \(0.578722\pi\)
\(54\) 0 0
\(55\) −1.69649 −0.228755
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −9.87652 −1.28581 −0.642907 0.765945i \(-0.722272\pi\)
−0.642907 + 0.765945i \(0.722272\pi\)
\(60\) 0 0
\(61\) −8.37392 −1.07217 −0.536085 0.844164i \(-0.680097\pi\)
−0.536085 + 0.844164i \(0.680097\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.53541 −0.438514
\(66\) 0 0
\(67\) 6.33735 0.774230 0.387115 0.922031i \(-0.373472\pi\)
0.387115 + 0.922031i \(0.373472\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.355974 −0.0422464 −0.0211232 0.999777i \(-0.506724\pi\)
−0.0211232 + 0.999777i \(0.506724\pi\)
\(72\) 0 0
\(73\) 11.9857 1.40282 0.701412 0.712756i \(-0.252553\pi\)
0.701412 + 0.712756i \(0.252553\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.90201 −0.216754
\(78\) 0 0
\(79\) −4.83688 −0.544191 −0.272096 0.962270i \(-0.587717\pi\)
−0.272096 + 0.962270i \(0.587717\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.90065 −0.318388 −0.159194 0.987247i \(-0.550890\pi\)
−0.159194 + 0.987247i \(0.550890\pi\)
\(84\) 0 0
\(85\) 0.526492 0.0571061
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.43554 −0.364167 −0.182083 0.983283i \(-0.558284\pi\)
−0.182083 + 0.983283i \(0.558284\pi\)
\(90\) 0 0
\(91\) −3.96371 −0.415510
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.40833 −0.452285
\(96\) 0 0
\(97\) −17.5014 −1.77699 −0.888497 0.458883i \(-0.848250\pi\)
−0.888497 + 0.458883i \(0.848250\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −16.0290 −1.59495 −0.797474 0.603353i \(-0.793831\pi\)
−0.797474 + 0.603353i \(0.793831\pi\)
\(102\) 0 0
\(103\) −2.12123 −0.209011 −0.104506 0.994524i \(-0.533326\pi\)
−0.104506 + 0.994524i \(0.533326\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 20.4972 1.98154 0.990771 0.135548i \(-0.0432794\pi\)
0.990771 + 0.135548i \(0.0432794\pi\)
\(108\) 0 0
\(109\) 14.7125 1.40920 0.704599 0.709606i \(-0.251127\pi\)
0.704599 + 0.709606i \(0.251127\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.39367 −0.695538 −0.347769 0.937580i \(-0.613061\pi\)
−0.347769 + 0.937580i \(0.613061\pi\)
\(114\) 0 0
\(115\) −0.384062 −0.0358140
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.590275 0.0541104
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.0823 −1.08067
\(126\) 0 0
\(127\) −9.88973 −0.877572 −0.438786 0.898592i \(-0.644591\pi\)
−0.438786 + 0.898592i \(0.644591\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.34239 −0.728878 −0.364439 0.931227i \(-0.618739\pi\)
−0.364439 + 0.931227i \(0.618739\pi\)
\(132\) 0 0
\(133\) −4.94238 −0.428559
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.77681 −0.493546 −0.246773 0.969073i \(-0.579370\pi\)
−0.246773 + 0.969073i \(0.579370\pi\)
\(138\) 0 0
\(139\) 1.66196 0.140966 0.0704829 0.997513i \(-0.477546\pi\)
0.0704829 + 0.997513i \(0.477546\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.08396 0.174269
\(144\) 0 0
\(145\) −7.49902 −0.622760
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.19330 0.425451 0.212726 0.977112i \(-0.431766\pi\)
0.212726 + 0.977112i \(0.431766\pi\)
\(150\) 0 0
\(151\) 4.17735 0.339948 0.169974 0.985449i \(-0.445632\pi\)
0.169974 + 0.985449i \(0.445632\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.06566 −0.406884
\(156\) 0 0
\(157\) 11.5337 0.920491 0.460246 0.887792i \(-0.347761\pi\)
0.460246 + 0.887792i \(0.347761\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.430589 −0.0339352
\(162\) 0 0
\(163\) 20.5911 1.61282 0.806408 0.591359i \(-0.201408\pi\)
0.806408 + 0.591359i \(0.201408\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −19.3048 −1.49385 −0.746926 0.664907i \(-0.768471\pi\)
−0.746926 + 0.664907i \(0.768471\pi\)
\(168\) 0 0
\(169\) −8.65713 −0.665933
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.43329 0.565143 0.282571 0.959246i \(-0.408813\pi\)
0.282571 + 0.959246i \(0.408813\pi\)
\(174\) 0 0
\(175\) −4.03592 −0.305087
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.12740 0.233752 0.116876 0.993146i \(-0.462712\pi\)
0.116876 + 0.993146i \(0.462712\pi\)
\(180\) 0 0
\(181\) −15.8491 −1.17805 −0.589027 0.808114i \(-0.700489\pi\)
−0.589027 + 0.808114i \(0.700489\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.13747 0.524757
\(186\) 0 0
\(187\) −0.310342 −0.0226945
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.5481 0.980309 0.490155 0.871635i \(-0.336940\pi\)
0.490155 + 0.871635i \(0.336940\pi\)
\(192\) 0 0
\(193\) 15.6375 1.12561 0.562807 0.826588i \(-0.309721\pi\)
0.562807 + 0.826588i \(0.309721\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.36469 −0.0972301 −0.0486151 0.998818i \(-0.515481\pi\)
−0.0486151 + 0.998818i \(0.515481\pi\)
\(198\) 0 0
\(199\) −1.35834 −0.0962903 −0.0481451 0.998840i \(-0.515331\pi\)
−0.0481451 + 0.998840i \(0.515331\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.40750 −0.590091
\(204\) 0 0
\(205\) −9.54064 −0.666347
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.59850 0.179742
\(210\) 0 0
\(211\) 14.5575 1.00218 0.501089 0.865396i \(-0.332933\pi\)
0.501089 + 0.865396i \(0.332933\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.43358 −0.234169
\(216\) 0 0
\(217\) −5.67935 −0.385539
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.646740 −0.0435044
\(222\) 0 0
\(223\) 21.2005 1.41969 0.709846 0.704357i \(-0.248765\pi\)
0.709846 + 0.704357i \(0.248765\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.9998 −0.796452 −0.398226 0.917287i \(-0.630374\pi\)
−0.398226 + 0.917287i \(0.630374\pi\)
\(228\) 0 0
\(229\) −8.11625 −0.536337 −0.268168 0.963372i \(-0.586418\pi\)
−0.268168 + 0.963372i \(0.586418\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 27.6506 1.81145 0.905726 0.423863i \(-0.139326\pi\)
0.905726 + 0.423863i \(0.139326\pi\)
\(234\) 0 0
\(235\) −2.51144 −0.163828
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.22955 −0.467640 −0.233820 0.972280i \(-0.575123\pi\)
−0.233820 + 0.972280i \(0.575123\pi\)
\(240\) 0 0
\(241\) −5.21847 −0.336151 −0.168076 0.985774i \(-0.553755\pi\)
−0.168076 + 0.985774i \(0.553755\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −5.73812 −0.366595
\(246\) 0 0
\(247\) 5.41516 0.344559
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0710 −0.761918 −0.380959 0.924592i \(-0.624406\pi\)
−0.380959 + 0.924592i \(0.624406\pi\)
\(252\) 0 0
\(253\) 0.226386 0.0142328
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −19.0542 −1.18857 −0.594283 0.804256i \(-0.702564\pi\)
−0.594283 + 0.804256i \(0.702564\pi\)
\(258\) 0 0
\(259\) 8.00214 0.497229
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 21.8171 1.34530 0.672649 0.739962i \(-0.265156\pi\)
0.672649 + 0.739962i \(0.265156\pi\)
\(264\) 0 0
\(265\) −6.04685 −0.371455
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −11.0157 −0.671640 −0.335820 0.941926i \(-0.609013\pi\)
−0.335820 + 0.941926i \(0.609013\pi\)
\(270\) 0 0
\(271\) 14.7950 0.898733 0.449367 0.893347i \(-0.351650\pi\)
0.449367 + 0.893347i \(0.351650\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.12192 0.127957
\(276\) 0 0
\(277\) 9.78711 0.588050 0.294025 0.955798i \(-0.405005\pi\)
0.294025 + 0.955798i \(0.405005\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −15.6494 −0.933566 −0.466783 0.884372i \(-0.654587\pi\)
−0.466783 + 0.884372i \(0.654587\pi\)
\(282\) 0 0
\(283\) −6.74979 −0.401233 −0.200617 0.979670i \(-0.564295\pi\)
−0.200617 + 0.979670i \(0.564295\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.6964 −0.631391
\(288\) 0 0
\(289\) −16.9037 −0.994335
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.01370 0.234483 0.117241 0.993103i \(-0.462595\pi\)
0.117241 + 0.993103i \(0.462595\pi\)
\(294\) 0 0
\(295\) −16.7554 −0.975538
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.471779 0.0272837
\(300\) 0 0
\(301\) −3.84955 −0.221884
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −14.2063 −0.813449
\(306\) 0 0
\(307\) 25.0796 1.43137 0.715683 0.698425i \(-0.246116\pi\)
0.715683 + 0.698425i \(0.246116\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.1276 −1.36815 −0.684076 0.729411i \(-0.739794\pi\)
−0.684076 + 0.729411i \(0.739794\pi\)
\(312\) 0 0
\(313\) −0.384342 −0.0217243 −0.0108622 0.999941i \(-0.503458\pi\)
−0.0108622 + 0.999941i \(0.503458\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −33.1855 −1.86388 −0.931942 0.362609i \(-0.881886\pi\)
−0.931942 + 0.362609i \(0.881886\pi\)
\(318\) 0 0
\(319\) 4.42032 0.247490
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.806425 −0.0448707
\(324\) 0 0
\(325\) 4.42199 0.245288
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.81569 −0.155234
\(330\) 0 0
\(331\) 29.3043 1.61071 0.805356 0.592791i \(-0.201974\pi\)
0.805356 + 0.592791i \(0.201974\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.7512 0.587403
\(336\) 0 0
\(337\) 2.58405 0.140762 0.0703810 0.997520i \(-0.477579\pi\)
0.0703810 + 0.997520i \(0.477579\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.98597 0.161699
\(342\) 0 0
\(343\) −19.7474 −1.06626
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.05366 0.378660 0.189330 0.981913i \(-0.439368\pi\)
0.189330 + 0.981913i \(0.439368\pi\)
\(348\) 0 0
\(349\) 6.56722 0.351535 0.175768 0.984432i \(-0.443759\pi\)
0.175768 + 0.984432i \(0.443759\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.68561 0.515513 0.257757 0.966210i \(-0.417017\pi\)
0.257757 + 0.966210i \(0.417017\pi\)
\(354\) 0 0
\(355\) −0.603907 −0.0320520
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −37.5152 −1.97998 −0.989990 0.141141i \(-0.954923\pi\)
−0.989990 + 0.141141i \(0.954923\pi\)
\(360\) 0 0
\(361\) −12.2478 −0.644621
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 20.3337 1.06431
\(366\) 0 0
\(367\) 31.0993 1.62337 0.811684 0.584097i \(-0.198551\pi\)
0.811684 + 0.584097i \(0.198551\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −6.77940 −0.351969
\(372\) 0 0
\(373\) −20.7724 −1.07555 −0.537776 0.843088i \(-0.680735\pi\)
−0.537776 + 0.843088i \(0.680735\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.21175 0.474429
\(378\) 0 0
\(379\) 18.8314 0.967303 0.483652 0.875261i \(-0.339310\pi\)
0.483652 + 0.875261i \(0.339310\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 18.9966 0.970679 0.485339 0.874326i \(-0.338696\pi\)
0.485339 + 0.874326i \(0.338696\pi\)
\(384\) 0 0
\(385\) −3.22674 −0.164450
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.22805 −0.163669 −0.0818343 0.996646i \(-0.526078\pi\)
−0.0818343 + 0.996646i \(0.526078\pi\)
\(390\) 0 0
\(391\) −0.0702573 −0.00355306
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.20571 −0.412874
\(396\) 0 0
\(397\) 36.5699 1.83539 0.917694 0.397288i \(-0.130048\pi\)
0.917694 + 0.397288i \(0.130048\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.3974 0.669032 0.334516 0.942390i \(-0.391427\pi\)
0.334516 + 0.942390i \(0.391427\pi\)
\(402\) 0 0
\(403\) 6.22263 0.309971
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.20720 −0.208543
\(408\) 0 0
\(409\) −14.8940 −0.736460 −0.368230 0.929735i \(-0.620036\pi\)
−0.368230 + 0.929735i \(0.620036\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −18.7853 −0.924362
\(414\) 0 0
\(415\) −4.92093 −0.241559
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 37.1542 1.81510 0.907551 0.419941i \(-0.137949\pi\)
0.907551 + 0.419941i \(0.137949\pi\)
\(420\) 0 0
\(421\) 33.5625 1.63574 0.817868 0.575406i \(-0.195156\pi\)
0.817868 + 0.575406i \(0.195156\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.658522 −0.0319430
\(426\) 0 0
\(427\) −15.9273 −0.770776
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.9350 −0.574890 −0.287445 0.957797i \(-0.592806\pi\)
−0.287445 + 0.957797i \(0.592806\pi\)
\(432\) 0 0
\(433\) −18.0875 −0.869230 −0.434615 0.900616i \(-0.643116\pi\)
−0.434615 + 0.900616i \(0.643116\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.588265 0.0281405
\(438\) 0 0
\(439\) 11.9900 0.572253 0.286126 0.958192i \(-0.407632\pi\)
0.286126 + 0.958192i \(0.407632\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −18.6185 −0.884591 −0.442296 0.896869i \(-0.645836\pi\)
−0.442296 + 0.896869i \(0.645836\pi\)
\(444\) 0 0
\(445\) −5.82836 −0.276291
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −33.1000 −1.56208 −0.781042 0.624478i \(-0.785312\pi\)
−0.781042 + 0.624478i \(0.785312\pi\)
\(450\) 0 0
\(451\) 5.62376 0.264812
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.72439 −0.315244
\(456\) 0 0
\(457\) −34.0444 −1.59253 −0.796266 0.604947i \(-0.793194\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −18.1674 −0.846141 −0.423071 0.906097i \(-0.639048\pi\)
−0.423071 + 0.906097i \(0.639048\pi\)
\(462\) 0 0
\(463\) 17.3999 0.808644 0.404322 0.914617i \(-0.367508\pi\)
0.404322 + 0.914617i \(0.367508\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −23.2774 −1.07715 −0.538575 0.842578i \(-0.681037\pi\)
−0.538575 + 0.842578i \(0.681037\pi\)
\(468\) 0 0
\(469\) 12.0537 0.556589
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.02393 0.0930606
\(474\) 0 0
\(475\) 5.51382 0.252991
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −31.9473 −1.45971 −0.729855 0.683602i \(-0.760412\pi\)
−0.729855 + 0.683602i \(0.760412\pi\)
\(480\) 0 0
\(481\) −8.76762 −0.399769
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −29.6909 −1.34819
\(486\) 0 0
\(487\) −29.7548 −1.34832 −0.674159 0.738586i \(-0.735494\pi\)
−0.674159 + 0.738586i \(0.735494\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.76954 0.0798580 0.0399290 0.999203i \(-0.487287\pi\)
0.0399290 + 0.999203i \(0.487287\pi\)
\(492\) 0 0
\(493\) −1.37181 −0.0617833
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.677067 −0.0303706
\(498\) 0 0
\(499\) −15.8916 −0.711404 −0.355702 0.934599i \(-0.615758\pi\)
−0.355702 + 0.934599i \(0.615758\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14.5272 −0.647735 −0.323867 0.946102i \(-0.604983\pi\)
−0.323867 + 0.946102i \(0.604983\pi\)
\(504\) 0 0
\(505\) −27.1931 −1.21008
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −29.9661 −1.32822 −0.664112 0.747633i \(-0.731190\pi\)
−0.664112 + 0.747633i \(0.731190\pi\)
\(510\) 0 0
\(511\) 22.7970 1.00848
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.59865 −0.158575
\(516\) 0 0
\(517\) 1.48037 0.0651068
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11.3725 0.498237 0.249118 0.968473i \(-0.419859\pi\)
0.249118 + 0.968473i \(0.419859\pi\)
\(522\) 0 0
\(523\) 13.1069 0.573124 0.286562 0.958062i \(-0.407488\pi\)
0.286562 + 0.958062i \(0.407488\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.926672 −0.0403665
\(528\) 0 0
\(529\) −22.9487 −0.997772
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.7197 0.507635
\(534\) 0 0
\(535\) 34.7733 1.50338
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.38235 0.145688
\(540\) 0 0
\(541\) −25.4013 −1.09209 −0.546043 0.837757i \(-0.683866\pi\)
−0.546043 + 0.837757i \(0.683866\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 24.9595 1.06915
\(546\) 0 0
\(547\) −4.41718 −0.188865 −0.0944325 0.995531i \(-0.530104\pi\)
−0.0944325 + 0.995531i \(0.530104\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11.4862 0.489329
\(552\) 0 0
\(553\) −9.19979 −0.391215
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.65681 0.197315 0.0986577 0.995121i \(-0.468545\pi\)
0.0986577 + 0.995121i \(0.468545\pi\)
\(558\) 0 0
\(559\) 4.21779 0.178394
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.85475 0.246748 0.123374 0.992360i \(-0.460629\pi\)
0.123374 + 0.992360i \(0.460629\pi\)
\(564\) 0 0
\(565\) −12.5433 −0.527700
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 31.3201 1.31301 0.656504 0.754323i \(-0.272035\pi\)
0.656504 + 0.754323i \(0.272035\pi\)
\(570\) 0 0
\(571\) 5.95396 0.249165 0.124583 0.992209i \(-0.460241\pi\)
0.124583 + 0.992209i \(0.460241\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.480374 0.0200330
\(576\) 0 0
\(577\) −15.4452 −0.642993 −0.321497 0.946911i \(-0.604186\pi\)
−0.321497 + 0.946911i \(0.604186\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −5.51707 −0.228887
\(582\) 0 0
\(583\) 3.56433 0.147619
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −40.0682 −1.65379 −0.826896 0.562355i \(-0.809895\pi\)
−0.826896 + 0.562355i \(0.809895\pi\)
\(588\) 0 0
\(589\) 7.75904 0.319706
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −20.1031 −0.825537 −0.412769 0.910836i \(-0.635438\pi\)
−0.412769 + 0.910836i \(0.635438\pi\)
\(594\) 0 0
\(595\) 1.00139 0.0410532
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −24.2378 −0.990332 −0.495166 0.868799i \(-0.664893\pi\)
−0.495166 + 0.868799i \(0.664893\pi\)
\(600\) 0 0
\(601\) 28.1516 1.14833 0.574164 0.818740i \(-0.305327\pi\)
0.574164 + 0.818740i \(0.305327\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.69649 0.0689721
\(606\) 0 0
\(607\) 27.5473 1.11811 0.559056 0.829130i \(-0.311164\pi\)
0.559056 + 0.829130i \(0.311164\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.08504 0.124807
\(612\) 0 0
\(613\) −34.2328 −1.38265 −0.691325 0.722544i \(-0.742973\pi\)
−0.691325 + 0.722544i \(0.742973\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.213745 0.00860507 0.00430253 0.999991i \(-0.498630\pi\)
0.00430253 + 0.999991i \(0.498630\pi\)
\(618\) 0 0
\(619\) 30.4544 1.22406 0.612032 0.790833i \(-0.290352\pi\)
0.612032 + 0.790833i \(0.290352\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.53444 −0.261797
\(624\) 0 0
\(625\) −9.88783 −0.395513
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.30567 0.0520605
\(630\) 0 0
\(631\) −27.6272 −1.09982 −0.549910 0.835224i \(-0.685338\pi\)
−0.549910 + 0.835224i \(0.685338\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −16.7778 −0.665808
\(636\) 0 0
\(637\) 7.04867 0.279279
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.2740 0.919268 0.459634 0.888108i \(-0.347981\pi\)
0.459634 + 0.888108i \(0.347981\pi\)
\(642\) 0 0
\(643\) −14.4221 −0.568754 −0.284377 0.958713i \(-0.591787\pi\)
−0.284377 + 0.958713i \(0.591787\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.518760 −0.0203946 −0.0101973 0.999948i \(-0.503246\pi\)
−0.0101973 + 0.999948i \(0.503246\pi\)
\(648\) 0 0
\(649\) 9.87652 0.387687
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −28.7953 −1.12685 −0.563424 0.826168i \(-0.690516\pi\)
−0.563424 + 0.826168i \(0.690516\pi\)
\(654\) 0 0
\(655\) −14.1528 −0.552995
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 30.1118 1.17299 0.586494 0.809953i \(-0.300508\pi\)
0.586494 + 0.809953i \(0.300508\pi\)
\(660\) 0 0
\(661\) −48.2495 −1.87669 −0.938344 0.345703i \(-0.887640\pi\)
−0.938344 + 0.345703i \(0.887640\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.38470 −0.325145
\(666\) 0 0
\(667\) 1.00070 0.0387472
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.37392 0.323272
\(672\) 0 0
\(673\) 2.59141 0.0998916 0.0499458 0.998752i \(-0.484095\pi\)
0.0499458 + 0.998752i \(0.484095\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −12.0027 −0.461301 −0.230651 0.973037i \(-0.574085\pi\)
−0.230651 + 0.973037i \(0.574085\pi\)
\(678\) 0 0
\(679\) −33.2878 −1.27747
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10.4104 0.398341 0.199171 0.979965i \(-0.436175\pi\)
0.199171 + 0.979965i \(0.436175\pi\)
\(684\) 0 0
\(685\) −9.80030 −0.374450
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.42791 0.282981
\(690\) 0 0
\(691\) −46.0665 −1.75245 −0.876226 0.481900i \(-0.839947\pi\)
−0.876226 + 0.481900i \(0.839947\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.81950 0.106950
\(696\) 0 0
\(697\) −1.74529 −0.0661075
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.3855 0.694410 0.347205 0.937789i \(-0.387131\pi\)
0.347205 + 0.937789i \(0.387131\pi\)
\(702\) 0 0
\(703\) −10.9324 −0.412324
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −30.4874 −1.14660
\(708\) 0 0
\(709\) 22.7877 0.855809 0.427904 0.903824i \(-0.359252\pi\)
0.427904 + 0.903824i \(0.359252\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.675982 0.0253157
\(714\) 0 0
\(715\) 3.53541 0.132217
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8.21384 −0.306325 −0.153162 0.988201i \(-0.548946\pi\)
−0.153162 + 0.988201i \(0.548946\pi\)
\(720\) 0 0
\(721\) −4.03461 −0.150257
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 9.37958 0.348349
\(726\) 0 0
\(727\) −25.8441 −0.958504 −0.479252 0.877677i \(-0.659092\pi\)
−0.479252 + 0.877677i \(0.659092\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.628113 −0.0232316
\(732\) 0 0
\(733\) 34.2198 1.26394 0.631968 0.774994i \(-0.282247\pi\)
0.631968 + 0.774994i \(0.282247\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.33735 −0.233439
\(738\) 0 0
\(739\) 38.8028 1.42738 0.713692 0.700460i \(-0.247022\pi\)
0.713692 + 0.700460i \(0.247022\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.35099 −0.0495631 −0.0247816 0.999693i \(-0.507889\pi\)
−0.0247816 + 0.999693i \(0.507889\pi\)
\(744\) 0 0
\(745\) 8.81037 0.322787
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 38.9860 1.42452
\(750\) 0 0
\(751\) 18.5343 0.676326 0.338163 0.941088i \(-0.390194\pi\)
0.338163 + 0.941088i \(0.390194\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7.08683 0.257916
\(756\) 0 0
\(757\) −17.5676 −0.638504 −0.319252 0.947670i \(-0.603432\pi\)
−0.319252 + 0.947670i \(0.603432\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.8030 −0.427857 −0.213928 0.976849i \(-0.568626\pi\)
−0.213928 + 0.976849i \(0.568626\pi\)
\(762\) 0 0
\(763\) 27.9833 1.01306
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 20.5822 0.743181
\(768\) 0 0
\(769\) −9.74474 −0.351404 −0.175702 0.984443i \(-0.556220\pi\)
−0.175702 + 0.984443i \(0.556220\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 31.8568 1.14581 0.572905 0.819622i \(-0.305816\pi\)
0.572905 + 0.819622i \(0.305816\pi\)
\(774\) 0 0
\(775\) 6.33599 0.227596
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14.6133 0.523577
\(780\) 0 0
\(781\) 0.355974 0.0127378
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 19.5668 0.698370
\(786\) 0 0
\(787\) −6.04780 −0.215581 −0.107790 0.994174i \(-0.534378\pi\)
−0.107790 + 0.994174i \(0.534378\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −14.0628 −0.500017
\(792\) 0 0
\(793\) 17.4509 0.619699
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −21.7843 −0.771638 −0.385819 0.922574i \(-0.626081\pi\)
−0.385819 + 0.922574i \(0.626081\pi\)
\(798\) 0 0
\(799\) −0.459423 −0.0162532
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −11.9857 −0.422967
\(804\) 0 0
\(805\) −0.730491 −0.0257464
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.07452 0.0377779 0.0188890 0.999822i \(-0.493987\pi\)
0.0188890 + 0.999822i \(0.493987\pi\)
\(810\) 0 0
\(811\) 6.38538 0.224221 0.112110 0.993696i \(-0.464239\pi\)
0.112110 + 0.993696i \(0.464239\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 34.9325 1.22363
\(816\) 0 0
\(817\) 5.25920 0.183996
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.582948 −0.0203450 −0.0101725 0.999948i \(-0.503238\pi\)
−0.0101725 + 0.999948i \(0.503238\pi\)
\(822\) 0 0
\(823\) 24.9978 0.871369 0.435685 0.900099i \(-0.356506\pi\)
0.435685 + 0.900099i \(0.356506\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −9.64913 −0.335533 −0.167767 0.985827i \(-0.553655\pi\)
−0.167767 + 0.985827i \(0.553655\pi\)
\(828\) 0 0
\(829\) −8.07397 −0.280421 −0.140210 0.990122i \(-0.544778\pi\)
−0.140210 + 0.990122i \(0.544778\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.04969 −0.0363695
\(834\) 0 0
\(835\) −32.7504 −1.13338
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 40.8914 1.41173 0.705864 0.708347i \(-0.250559\pi\)
0.705864 + 0.708347i \(0.250559\pi\)
\(840\) 0 0
\(841\) −9.46079 −0.326234
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −14.6867 −0.505239
\(846\) 0 0
\(847\) 1.90201 0.0653539
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.952452 −0.0326496
\(852\) 0 0
\(853\) −23.1338 −0.792086 −0.396043 0.918232i \(-0.629617\pi\)
−0.396043 + 0.918232i \(0.629617\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −36.1845 −1.23604 −0.618019 0.786163i \(-0.712064\pi\)
−0.618019 + 0.786163i \(0.712064\pi\)
\(858\) 0 0
\(859\) −4.73165 −0.161442 −0.0807208 0.996737i \(-0.525722\pi\)
−0.0807208 + 0.996737i \(0.525722\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 51.6542 1.75833 0.879164 0.476519i \(-0.158102\pi\)
0.879164 + 0.476519i \(0.158102\pi\)
\(864\) 0 0
\(865\) 12.6105 0.428770
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.83688 0.164080
\(870\) 0 0
\(871\) −13.2068 −0.447494
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −22.9806 −0.776887
\(876\) 0 0
\(877\) 15.2455 0.514805 0.257402 0.966304i \(-0.417133\pi\)
0.257402 + 0.966304i \(0.417133\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 29.7320 1.00170 0.500849 0.865535i \(-0.333021\pi\)
0.500849 + 0.865535i \(0.333021\pi\)
\(882\) 0 0
\(883\) −41.5017 −1.39664 −0.698322 0.715783i \(-0.746070\pi\)
−0.698322 + 0.715783i \(0.746070\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 16.5422 0.555434 0.277717 0.960663i \(-0.410422\pi\)
0.277717 + 0.960663i \(0.410422\pi\)
\(888\) 0 0
\(889\) −18.8104 −0.630880
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.84675 0.128727
\(894\) 0 0
\(895\) 5.30559 0.177346
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.1989 0.440209
\(900\) 0 0
\(901\) −1.10616 −0.0368516
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −26.8878 −0.893781
\(906\) 0 0
\(907\) 30.7025 1.01946 0.509729 0.860335i \(-0.329746\pi\)
0.509729 + 0.860335i \(0.329746\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2.07472 −0.0687387 −0.0343693 0.999409i \(-0.510942\pi\)
−0.0343693 + 0.999409i \(0.510942\pi\)
\(912\) 0 0
\(913\) 2.90065 0.0959976
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.8673 −0.523985
\(918\) 0 0
\(919\) 51.3954 1.69538 0.847688 0.530495i \(-0.177994\pi\)
0.847688 + 0.530495i \(0.177994\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.741835 0.0244178
\(924\) 0 0
\(925\) −8.92735 −0.293529
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 25.9209 0.850437 0.425218 0.905091i \(-0.360197\pi\)
0.425218 + 0.905091i \(0.360197\pi\)
\(930\) 0 0
\(931\) 8.78904 0.288049
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.526492 −0.0172181
\(936\) 0 0
\(937\) −26.1718 −0.854994 −0.427497 0.904017i \(-0.640605\pi\)
−0.427497 + 0.904017i \(0.640605\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 53.3116 1.73791 0.868954 0.494893i \(-0.164793\pi\)
0.868954 + 0.494893i \(0.164793\pi\)
\(942\) 0 0
\(943\) 1.27314 0.0414592
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −19.5995 −0.636897 −0.318448 0.947940i \(-0.603162\pi\)
−0.318448 + 0.947940i \(0.603162\pi\)
\(948\) 0 0
\(949\) −24.9777 −0.810811
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 22.3925 0.725366 0.362683 0.931913i \(-0.381861\pi\)
0.362683 + 0.931913i \(0.381861\pi\)
\(954\) 0 0
\(955\) 22.9843 0.743754
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.9876 −0.354807
\(960\) 0 0
\(961\) −22.0840 −0.712387
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 26.5289 0.853996
\(966\) 0 0
\(967\) 28.8139 0.926593 0.463297 0.886203i \(-0.346666\pi\)
0.463297 + 0.886203i \(0.346666\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.45080 0.271199 0.135599 0.990764i \(-0.456704\pi\)
0.135599 + 0.990764i \(0.456704\pi\)
\(972\) 0 0
\(973\) 3.16107 0.101339
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 36.2572 1.15997 0.579985 0.814627i \(-0.303058\pi\)
0.579985 + 0.814627i \(0.303058\pi\)
\(978\) 0 0
\(979\) 3.43554 0.109800
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −31.5204 −1.00534 −0.502672 0.864477i \(-0.667650\pi\)
−0.502672 + 0.864477i \(0.667650\pi\)
\(984\) 0 0
\(985\) −2.31518 −0.0737678
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.458191 0.0145696
\(990\) 0 0
\(991\) −35.9833 −1.14305 −0.571524 0.820586i \(-0.693647\pi\)
−0.571524 + 0.820586i \(0.693647\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.30441 −0.0730548
\(996\) 0 0
\(997\) 4.84166 0.153337 0.0766684 0.997057i \(-0.475572\pi\)
0.0766684 + 0.997057i \(0.475572\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7128.2.a.w.1.5 6
3.2 odd 2 7128.2.a.ba.1.2 6
9.2 odd 6 792.2.q.f.265.6 12
9.4 even 3 2376.2.q.f.1585.2 12
9.5 odd 6 792.2.q.f.529.6 yes 12
9.7 even 3 2376.2.q.f.793.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.q.f.265.6 12 9.2 odd 6
792.2.q.f.529.6 yes 12 9.5 odd 6
2376.2.q.f.793.2 12 9.7 even 3
2376.2.q.f.1585.2 12 9.4 even 3
7128.2.a.w.1.5 6 1.1 even 1 trivial
7128.2.a.ba.1.2 6 3.2 odd 2