Properties

Label 792.2.k.a.683.18
Level $792$
Weight $2$
Character 792.683
Analytic conductor $6.324$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(683,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.683"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 683.18
Character \(\chi\) \(=\) 792.683
Dual form 792.2.k.a.683.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.313193 + 1.37910i) q^{2} +(-1.80382 - 0.863848i) q^{4} -1.89382 q^{5} +3.03135i q^{7} +(1.75627 - 2.21709i) q^{8} +(0.593133 - 2.61177i) q^{10} -1.00000i q^{11} +5.44282i q^{13} +(-4.18052 - 0.949397i) q^{14} +(2.50753 + 3.11645i) q^{16} -6.40451i q^{17} -5.86923 q^{19} +(3.41612 + 1.63598i) q^{20} +(1.37910 + 0.313193i) q^{22} -2.92580 q^{23} -1.41343 q^{25} +(-7.50618 - 1.70465i) q^{26} +(2.61862 - 5.46801i) q^{28} +0.600643 q^{29} -10.8348i q^{31} +(-5.08323 + 2.48208i) q^{32} +(8.83245 + 2.00585i) q^{34} -5.74084i q^{35} +1.96238i q^{37} +(1.83820 - 8.09424i) q^{38} +(-3.32608 + 4.19879i) q^{40} -8.98233i q^{41} +2.80132 q^{43} +(-0.863848 + 1.80382i) q^{44} +(0.916341 - 4.03497i) q^{46} -0.286711 q^{47} -2.18907 q^{49} +(0.442676 - 1.94925i) q^{50} +(4.70177 - 9.81787i) q^{52} -10.9248 q^{53} +1.89382i q^{55} +(6.72078 + 5.32388i) q^{56} +(-0.188117 + 0.828346i) q^{58} +6.10246i q^{59} -14.1808i q^{61} +(14.9423 + 3.39339i) q^{62} +(-1.83100 - 7.78765i) q^{64} -10.3078i q^{65} -12.2822 q^{67} +(-5.53252 + 11.5526i) q^{68} +(7.91718 + 1.79799i) q^{70} -9.74776 q^{71} +7.25976 q^{73} +(-2.70631 - 0.614604i) q^{74} +(10.5870 + 5.07012i) q^{76} +3.03135 q^{77} +3.48834i q^{79} +(-4.74883 - 5.90201i) q^{80} +(12.3875 + 2.81320i) q^{82} +9.17926i q^{83} +12.1290i q^{85} +(-0.877355 + 3.86330i) q^{86} +(-2.21709 - 1.75627i) q^{88} +9.80721i q^{89} -16.4991 q^{91} +(5.27762 + 2.52745i) q^{92} +(0.0897961 - 0.395403i) q^{94} +11.1153 q^{95} +4.90282 q^{97} +(0.685601 - 3.01894i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 8 q^{4} + 8 q^{10} - 8 q^{16} + 32 q^{19} + 40 q^{25} - 32 q^{28} + 32 q^{34} + 16 q^{40} - 24 q^{46} - 8 q^{49} + 40 q^{52} - 8 q^{58} + 16 q^{64} + 72 q^{70} + 32 q^{73} - 8 q^{76} - 64 q^{82}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.313193 + 1.37910i −0.221461 + 0.975169i
\(3\) 0 0
\(4\) −1.80382 0.863848i −0.901910 0.431924i
\(5\) −1.89382 −0.846944 −0.423472 0.905909i \(-0.639189\pi\)
−0.423472 + 0.905909i \(0.639189\pi\)
\(6\) 0 0
\(7\) 3.03135i 1.14574i 0.819646 + 0.572871i \(0.194170\pi\)
−0.819646 + 0.572871i \(0.805830\pi\)
\(8\) 1.75627 2.21709i 0.620937 0.783861i
\(9\) 0 0
\(10\) 0.593133 2.61177i 0.187565 0.825914i
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 5.44282i 1.50957i 0.655974 + 0.754784i \(0.272258\pi\)
−0.655974 + 0.754784i \(0.727742\pi\)
\(14\) −4.18052 0.949397i −1.11729 0.253737i
\(15\) 0 0
\(16\) 2.50753 + 3.11645i 0.626883 + 0.779113i
\(17\) 6.40451i 1.55332i −0.629919 0.776661i \(-0.716912\pi\)
0.629919 0.776661i \(-0.283088\pi\)
\(18\) 0 0
\(19\) −5.86923 −1.34649 −0.673247 0.739418i \(-0.735101\pi\)
−0.673247 + 0.739418i \(0.735101\pi\)
\(20\) 3.41612 + 1.63598i 0.763868 + 0.365815i
\(21\) 0 0
\(22\) 1.37910 + 0.313193i 0.294025 + 0.0667730i
\(23\) −2.92580 −0.610072 −0.305036 0.952341i \(-0.598668\pi\)
−0.305036 + 0.952341i \(0.598668\pi\)
\(24\) 0 0
\(25\) −1.41343 −0.282685
\(26\) −7.50618 1.70465i −1.47208 0.334310i
\(27\) 0 0
\(28\) 2.61862 5.46801i 0.494873 1.03336i
\(29\) 0.600643 0.111537 0.0557683 0.998444i \(-0.482239\pi\)
0.0557683 + 0.998444i \(0.482239\pi\)
\(30\) 0 0
\(31\) 10.8348i 1.94599i −0.230823 0.972996i \(-0.574142\pi\)
0.230823 0.972996i \(-0.425858\pi\)
\(32\) −5.08323 + 2.48208i −0.898597 + 0.438774i
\(33\) 0 0
\(34\) 8.83245 + 2.00585i 1.51475 + 0.344000i
\(35\) 5.74084i 0.970379i
\(36\) 0 0
\(37\) 1.96238i 0.322613i 0.986904 + 0.161307i \(0.0515708\pi\)
−0.986904 + 0.161307i \(0.948429\pi\)
\(38\) 1.83820 8.09424i 0.298196 1.31306i
\(39\) 0 0
\(40\) −3.32608 + 4.19879i −0.525899 + 0.663886i
\(41\) 8.98233i 1.40280i −0.712766 0.701402i \(-0.752558\pi\)
0.712766 0.701402i \(-0.247442\pi\)
\(42\) 0 0
\(43\) 2.80132 0.427198 0.213599 0.976921i \(-0.431481\pi\)
0.213599 + 0.976921i \(0.431481\pi\)
\(44\) −0.863848 + 1.80382i −0.130230 + 0.271936i
\(45\) 0 0
\(46\) 0.916341 4.03497i 0.135107 0.594923i
\(47\) −0.286711 −0.0418212 −0.0209106 0.999781i \(-0.506657\pi\)
−0.0209106 + 0.999781i \(0.506657\pi\)
\(48\) 0 0
\(49\) −2.18907 −0.312724
\(50\) 0.442676 1.94925i 0.0626038 0.275666i
\(51\) 0 0
\(52\) 4.70177 9.81787i 0.652018 1.36149i
\(53\) −10.9248 −1.50063 −0.750316 0.661080i \(-0.770098\pi\)
−0.750316 + 0.661080i \(0.770098\pi\)
\(54\) 0 0
\(55\) 1.89382i 0.255363i
\(56\) 6.72078 + 5.32388i 0.898102 + 0.711433i
\(57\) 0 0
\(58\) −0.188117 + 0.828346i −0.0247010 + 0.108767i
\(59\) 6.10246i 0.794473i 0.917716 + 0.397237i \(0.130031\pi\)
−0.917716 + 0.397237i \(0.869969\pi\)
\(60\) 0 0
\(61\) 14.1808i 1.81567i −0.419328 0.907835i \(-0.637734\pi\)
0.419328 0.907835i \(-0.362266\pi\)
\(62\) 14.9423 + 3.39339i 1.89767 + 0.430961i
\(63\) 0 0
\(64\) −1.83100 7.78765i −0.228875 0.973456i
\(65\) 10.3078i 1.27852i
\(66\) 0 0
\(67\) −12.2822 −1.50051 −0.750256 0.661147i \(-0.770070\pi\)
−0.750256 + 0.661147i \(0.770070\pi\)
\(68\) −5.53252 + 11.5526i −0.670917 + 1.40096i
\(69\) 0 0
\(70\) 7.91718 + 1.79799i 0.946284 + 0.214901i
\(71\) −9.74776 −1.15685 −0.578423 0.815737i \(-0.696332\pi\)
−0.578423 + 0.815737i \(0.696332\pi\)
\(72\) 0 0
\(73\) 7.25976 0.849690 0.424845 0.905266i \(-0.360329\pi\)
0.424845 + 0.905266i \(0.360329\pi\)
\(74\) −2.70631 0.614604i −0.314602 0.0714462i
\(75\) 0 0
\(76\) 10.5870 + 5.07012i 1.21442 + 0.581583i
\(77\) 3.03135 0.345454
\(78\) 0 0
\(79\) 3.48834i 0.392469i 0.980557 + 0.196234i \(0.0628713\pi\)
−0.980557 + 0.196234i \(0.937129\pi\)
\(80\) −4.74883 5.90201i −0.530935 0.659865i
\(81\) 0 0
\(82\) 12.3875 + 2.81320i 1.36797 + 0.310666i
\(83\) 9.17926i 1.00755i 0.863834 + 0.503777i \(0.168057\pi\)
−0.863834 + 0.503777i \(0.831943\pi\)
\(84\) 0 0
\(85\) 12.1290i 1.31558i
\(86\) −0.877355 + 3.86330i −0.0946076 + 0.416590i
\(87\) 0 0
\(88\) −2.21709 1.75627i −0.236343 0.187220i
\(89\) 9.80721i 1.03956i 0.854299 + 0.519781i \(0.173986\pi\)
−0.854299 + 0.519781i \(0.826014\pi\)
\(90\) 0 0
\(91\) −16.4991 −1.72957
\(92\) 5.27762 + 2.52745i 0.550230 + 0.263505i
\(93\) 0 0
\(94\) 0.0897961 0.395403i 0.00926176 0.0407827i
\(95\) 11.1153 1.14040
\(96\) 0 0
\(97\) 4.90282 0.497806 0.248903 0.968528i \(-0.419930\pi\)
0.248903 + 0.968528i \(0.419930\pi\)
\(98\) 0.685601 3.01894i 0.0692562 0.304959i
\(99\) 0 0
\(100\) 2.54957 + 1.22099i 0.254957 + 0.122099i
\(101\) −8.89361 −0.884947 −0.442474 0.896782i \(-0.645899\pi\)
−0.442474 + 0.896782i \(0.645899\pi\)
\(102\) 0 0
\(103\) 18.9666i 1.86883i 0.356181 + 0.934417i \(0.384079\pi\)
−0.356181 + 0.934417i \(0.615921\pi\)
\(104\) 12.0672 + 9.55909i 1.18329 + 0.937346i
\(105\) 0 0
\(106\) 3.42156 15.0663i 0.332331 1.46337i
\(107\) 3.57243i 0.345360i 0.984978 + 0.172680i \(0.0552427\pi\)
−0.984978 + 0.172680i \(0.944757\pi\)
\(108\) 0 0
\(109\) 7.99636i 0.765912i −0.923767 0.382956i \(-0.874906\pi\)
0.923767 0.382956i \(-0.125094\pi\)
\(110\) −2.61177 0.593133i −0.249022 0.0565530i
\(111\) 0 0
\(112\) −9.44705 + 7.60121i −0.892662 + 0.718247i
\(113\) 16.1728i 1.52141i −0.649100 0.760703i \(-0.724854\pi\)
0.649100 0.760703i \(-0.275146\pi\)
\(114\) 0 0
\(115\) 5.54096 0.516697
\(116\) −1.08345 0.518865i −0.100596 0.0481754i
\(117\) 0 0
\(118\) −8.41589 1.91125i −0.774746 0.175945i
\(119\) 19.4143 1.77971
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 19.5568 + 4.44134i 1.77059 + 0.402100i
\(123\) 0 0
\(124\) −9.35964 + 19.5441i −0.840520 + 1.75511i
\(125\) 12.1459 1.08636
\(126\) 0 0
\(127\) 12.9725i 1.15113i 0.817757 + 0.575563i \(0.195217\pi\)
−0.817757 + 0.575563i \(0.804783\pi\)
\(128\) 11.3134 0.0860886i 0.999971 0.00760922i
\(129\) 0 0
\(130\) 14.2154 + 3.22832i 1.24677 + 0.283142i
\(131\) 2.79197i 0.243936i −0.992534 0.121968i \(-0.961080\pi\)
0.992534 0.121968i \(-0.0389205\pi\)
\(132\) 0 0
\(133\) 17.7917i 1.54273i
\(134\) 3.84671 16.9384i 0.332305 1.46325i
\(135\) 0 0
\(136\) −14.1994 11.2481i −1.21759 0.964515i
\(137\) 1.92047i 0.164077i 0.996629 + 0.0820386i \(0.0261431\pi\)
−0.996629 + 0.0820386i \(0.973857\pi\)
\(138\) 0 0
\(139\) −5.27856 −0.447722 −0.223861 0.974621i \(-0.571866\pi\)
−0.223861 + 0.974621i \(0.571866\pi\)
\(140\) −4.95921 + 10.3554i −0.419130 + 0.875195i
\(141\) 0 0
\(142\) 3.05293 13.4431i 0.256196 1.12812i
\(143\) 5.44282 0.455152
\(144\) 0 0
\(145\) −1.13751 −0.0944654
\(146\) −2.27371 + 10.0119i −0.188173 + 0.828592i
\(147\) 0 0
\(148\) 1.69520 3.53978i 0.139344 0.290968i
\(149\) −6.86168 −0.562131 −0.281065 0.959689i \(-0.590688\pi\)
−0.281065 + 0.959689i \(0.590688\pi\)
\(150\) 0 0
\(151\) 3.42172i 0.278456i −0.990260 0.139228i \(-0.955538\pi\)
0.990260 0.139228i \(-0.0444621\pi\)
\(152\) −10.3080 + 13.0126i −0.836087 + 1.05546i
\(153\) 0 0
\(154\) −0.949397 + 4.18052i −0.0765046 + 0.336876i
\(155\) 20.5193i 1.64815i
\(156\) 0 0
\(157\) 11.0872i 0.884852i 0.896805 + 0.442426i \(0.145882\pi\)
−0.896805 + 0.442426i \(0.854118\pi\)
\(158\) −4.81076 1.09252i −0.382723 0.0869165i
\(159\) 0 0
\(160\) 9.62676 4.70063i 0.761062 0.371617i
\(161\) 8.86912i 0.698985i
\(162\) 0 0
\(163\) 4.41416 0.345744 0.172872 0.984944i \(-0.444695\pi\)
0.172872 + 0.984944i \(0.444695\pi\)
\(164\) −7.75937 + 16.2025i −0.605905 + 1.26520i
\(165\) 0 0
\(166\) −12.6591 2.87488i −0.982536 0.223134i
\(167\) −10.3233 −0.798839 −0.399419 0.916768i \(-0.630788\pi\)
−0.399419 + 0.916768i \(0.630788\pi\)
\(168\) 0 0
\(169\) −16.6243 −1.27879
\(170\) −16.7271 3.79873i −1.28291 0.291349i
\(171\) 0 0
\(172\) −5.05308 2.41992i −0.385294 0.184517i
\(173\) −11.3286 −0.861301 −0.430650 0.902519i \(-0.641716\pi\)
−0.430650 + 0.902519i \(0.641716\pi\)
\(174\) 0 0
\(175\) 4.28459i 0.323885i
\(176\) 3.11645 2.50753i 0.234911 0.189012i
\(177\) 0 0
\(178\) −13.5251 3.07155i −1.01375 0.230222i
\(179\) 5.71663i 0.427281i 0.976912 + 0.213640i \(0.0685321\pi\)
−0.976912 + 0.213640i \(0.931468\pi\)
\(180\) 0 0
\(181\) 5.36910i 0.399082i 0.979889 + 0.199541i \(0.0639451\pi\)
−0.979889 + 0.199541i \(0.936055\pi\)
\(182\) 5.16740 22.7538i 0.383033 1.68663i
\(183\) 0 0
\(184\) −5.13851 + 6.48677i −0.378816 + 0.478211i
\(185\) 3.71640i 0.273235i
\(186\) 0 0
\(187\) −6.40451 −0.468344
\(188\) 0.517176 + 0.247675i 0.0377189 + 0.0180636i
\(189\) 0 0
\(190\) −3.48123 + 15.3291i −0.252555 + 1.11209i
\(191\) −9.76090 −0.706274 −0.353137 0.935572i \(-0.614885\pi\)
−0.353137 + 0.935572i \(0.614885\pi\)
\(192\) 0 0
\(193\) −13.7187 −0.987492 −0.493746 0.869606i \(-0.664373\pi\)
−0.493746 + 0.869606i \(0.664373\pi\)
\(194\) −1.53553 + 6.76146i −0.110245 + 0.485445i
\(195\) 0 0
\(196\) 3.94869 + 1.89102i 0.282049 + 0.135073i
\(197\) 16.5373 1.17823 0.589116 0.808048i \(-0.299476\pi\)
0.589116 + 0.808048i \(0.299476\pi\)
\(198\) 0 0
\(199\) 16.6620i 1.18114i 0.806986 + 0.590570i \(0.201097\pi\)
−0.806986 + 0.590570i \(0.798903\pi\)
\(200\) −2.48237 + 3.13370i −0.175530 + 0.221586i
\(201\) 0 0
\(202\) 2.78542 12.2652i 0.195981 0.862973i
\(203\) 1.82076i 0.127792i
\(204\) 0 0
\(205\) 17.0110i 1.18810i
\(206\) −26.1568 5.94021i −1.82243 0.413874i
\(207\) 0 0
\(208\) −16.9623 + 13.6481i −1.17612 + 0.946323i
\(209\) 5.86923i 0.405983i
\(210\) 0 0
\(211\) −13.5380 −0.931997 −0.465998 0.884786i \(-0.654305\pi\)
−0.465998 + 0.884786i \(0.654305\pi\)
\(212\) 19.7063 + 9.43733i 1.35343 + 0.648159i
\(213\) 0 0
\(214\) −4.92674 1.11886i −0.336785 0.0764838i
\(215\) −5.30521 −0.361812
\(216\) 0 0
\(217\) 32.8441 2.22960
\(218\) 11.0278 + 2.50441i 0.746894 + 0.169620i
\(219\) 0 0
\(220\) 1.63598 3.41612i 0.110298 0.230315i
\(221\) 34.8586 2.34484
\(222\) 0 0
\(223\) 7.44081i 0.498274i −0.968468 0.249137i \(-0.919853\pi\)
0.968468 0.249137i \(-0.0801469\pi\)
\(224\) −7.52405 15.4090i −0.502722 1.02956i
\(225\) 0 0
\(226\) 22.3038 + 5.06520i 1.48363 + 0.336932i
\(227\) 17.8423i 1.18424i 0.805851 + 0.592118i \(0.201708\pi\)
−0.805851 + 0.592118i \(0.798292\pi\)
\(228\) 0 0
\(229\) 1.69896i 0.112271i −0.998423 0.0561353i \(-0.982122\pi\)
0.998423 0.0561353i \(-0.0178778\pi\)
\(230\) −1.73539 + 7.64152i −0.114428 + 0.503867i
\(231\) 0 0
\(232\) 1.05489 1.33168i 0.0692572 0.0874292i
\(233\) 20.6370i 1.35197i −0.736914 0.675986i \(-0.763718\pi\)
0.736914 0.675986i \(-0.236282\pi\)
\(234\) 0 0
\(235\) 0.542981 0.0354202
\(236\) 5.27160 11.0077i 0.343152 0.716543i
\(237\) 0 0
\(238\) −6.08043 + 26.7742i −0.394135 + 1.73551i
\(239\) −11.1366 −0.720369 −0.360185 0.932881i \(-0.617286\pi\)
−0.360185 + 0.932881i \(0.617286\pi\)
\(240\) 0 0
\(241\) 21.8983 1.41059 0.705297 0.708912i \(-0.250814\pi\)
0.705297 + 0.708912i \(0.250814\pi\)
\(242\) 0.313193 1.37910i 0.0201328 0.0886517i
\(243\) 0 0
\(244\) −12.2501 + 25.5797i −0.784231 + 1.63757i
\(245\) 4.14571 0.264860
\(246\) 0 0
\(247\) 31.9452i 2.03262i
\(248\) −24.0218 19.0289i −1.52539 1.20834i
\(249\) 0 0
\(250\) −3.80402 + 16.7504i −0.240587 + 1.05939i
\(251\) 4.82931i 0.304823i 0.988317 + 0.152412i \(0.0487040\pi\)
−0.988317 + 0.152412i \(0.951296\pi\)
\(252\) 0 0
\(253\) 2.92580i 0.183944i
\(254\) −17.8904 4.06291i −1.12254 0.254930i
\(255\) 0 0
\(256\) −3.42455 + 15.6292i −0.214034 + 0.976826i
\(257\) 4.67491i 0.291613i −0.989313 0.145806i \(-0.953422\pi\)
0.989313 0.145806i \(-0.0465776\pi\)
\(258\) 0 0
\(259\) −5.94865 −0.369631
\(260\) −8.90433 + 18.5933i −0.552223 + 1.15311i
\(261\) 0 0
\(262\) 3.85040 + 0.874426i 0.237879 + 0.0540222i
\(263\) 6.52091 0.402096 0.201048 0.979581i \(-0.435565\pi\)
0.201048 + 0.979581i \(0.435565\pi\)
\(264\) 0 0
\(265\) 20.6896 1.27095
\(266\) 24.5364 + 5.57223i 1.50443 + 0.341655i
\(267\) 0 0
\(268\) 22.1549 + 10.6100i 1.35333 + 0.648107i
\(269\) −4.26314 −0.259928 −0.129964 0.991519i \(-0.541486\pi\)
−0.129964 + 0.991519i \(0.541486\pi\)
\(270\) 0 0
\(271\) 2.03841i 0.123824i −0.998082 0.0619122i \(-0.980280\pi\)
0.998082 0.0619122i \(-0.0197199\pi\)
\(272\) 19.9594 16.0595i 1.21021 0.973752i
\(273\) 0 0
\(274\) −2.64852 0.601479i −0.160003 0.0363367i
\(275\) 1.41343i 0.0852329i
\(276\) 0 0
\(277\) 13.8227i 0.830526i −0.909701 0.415263i \(-0.863690\pi\)
0.909701 0.415263i \(-0.136310\pi\)
\(278\) 1.65321 7.27966i 0.0991530 0.436605i
\(279\) 0 0
\(280\) −12.7280 10.0825i −0.760642 0.602544i
\(281\) 15.3473i 0.915543i 0.889070 + 0.457772i \(0.151352\pi\)
−0.889070 + 0.457772i \(0.848648\pi\)
\(282\) 0 0
\(283\) −6.72089 −0.399516 −0.199758 0.979845i \(-0.564016\pi\)
−0.199758 + 0.979845i \(0.564016\pi\)
\(284\) 17.5832 + 8.42058i 1.04337 + 0.499670i
\(285\) 0 0
\(286\) −1.70465 + 7.50618i −0.100798 + 0.443850i
\(287\) 27.2286 1.60725
\(288\) 0 0
\(289\) −24.0178 −1.41281
\(290\) 0.356261 1.56874i 0.0209204 0.0921197i
\(291\) 0 0
\(292\) −13.0953 6.27133i −0.766344 0.367002i
\(293\) −28.4865 −1.66420 −0.832098 0.554628i \(-0.812861\pi\)
−0.832098 + 0.554628i \(0.812861\pi\)
\(294\) 0 0
\(295\) 11.5570i 0.672874i
\(296\) 4.35078 + 3.44648i 0.252884 + 0.200322i
\(297\) 0 0
\(298\) 2.14903 9.46293i 0.124490 0.548173i
\(299\) 15.9246i 0.920944i
\(300\) 0 0
\(301\) 8.49178i 0.489458i
\(302\) 4.71889 + 1.07166i 0.271542 + 0.0616671i
\(303\) 0 0
\(304\) −14.7173 18.2912i −0.844094 1.04907i
\(305\) 26.8560i 1.53777i
\(306\) 0 0
\(307\) 12.0385 0.687071 0.343536 0.939140i \(-0.388375\pi\)
0.343536 + 0.939140i \(0.388375\pi\)
\(308\) −5.46801 2.61862i −0.311569 0.149210i
\(309\) 0 0
\(310\) −28.2981 6.42649i −1.60722 0.365000i
\(311\) −18.0967 −1.02617 −0.513084 0.858338i \(-0.671497\pi\)
−0.513084 + 0.858338i \(0.671497\pi\)
\(312\) 0 0
\(313\) 29.1782 1.64925 0.824625 0.565680i \(-0.191386\pi\)
0.824625 + 0.565680i \(0.191386\pi\)
\(314\) −15.2903 3.47242i −0.862880 0.195960i
\(315\) 0 0
\(316\) 3.01339 6.29233i 0.169517 0.353971i
\(317\) −5.26052 −0.295460 −0.147730 0.989028i \(-0.547197\pi\)
−0.147730 + 0.989028i \(0.547197\pi\)
\(318\) 0 0
\(319\) 0.600643i 0.0336296i
\(320\) 3.46759 + 14.7484i 0.193844 + 0.824463i
\(321\) 0 0
\(322\) 12.2314 + 2.77775i 0.681628 + 0.154798i
\(323\) 37.5895i 2.09154i
\(324\) 0 0
\(325\) 7.69303i 0.426733i
\(326\) −1.38249 + 6.08756i −0.0765688 + 0.337159i
\(327\) 0 0
\(328\) −19.9147 15.7754i −1.09960 0.871053i
\(329\) 0.869122i 0.0479162i
\(330\) 0 0
\(331\) 24.3562 1.33874 0.669369 0.742930i \(-0.266565\pi\)
0.669369 + 0.742930i \(0.266565\pi\)
\(332\) 7.92948 16.5577i 0.435187 0.908724i
\(333\) 0 0
\(334\) 3.23318 14.2368i 0.176912 0.779003i
\(335\) 23.2604 1.27085
\(336\) 0 0
\(337\) −11.1496 −0.607359 −0.303680 0.952774i \(-0.598215\pi\)
−0.303680 + 0.952774i \(0.598215\pi\)
\(338\) 5.20662 22.9265i 0.283203 1.24704i
\(339\) 0 0
\(340\) 10.4776 21.8786i 0.568229 1.18653i
\(341\) −10.8348 −0.586739
\(342\) 0 0
\(343\) 14.5836i 0.787441i
\(344\) 4.91989 6.21079i 0.265263 0.334863i
\(345\) 0 0
\(346\) 3.54805 15.6233i 0.190745 0.839914i
\(347\) 7.87537i 0.422772i −0.977403 0.211386i \(-0.932202\pi\)
0.977403 0.211386i \(-0.0677977\pi\)
\(348\) 0 0
\(349\) 5.06335i 0.271035i −0.990775 0.135517i \(-0.956730\pi\)
0.990775 0.135517i \(-0.0432696\pi\)
\(350\) 5.90887 + 1.34190i 0.315842 + 0.0717278i
\(351\) 0 0
\(352\) 2.48208 + 5.08323i 0.132295 + 0.270937i
\(353\) 24.4608i 1.30192i 0.759114 + 0.650958i \(0.225633\pi\)
−0.759114 + 0.650958i \(0.774367\pi\)
\(354\) 0 0
\(355\) 18.4605 0.979784
\(356\) 8.47194 17.6904i 0.449012 0.937592i
\(357\) 0 0
\(358\) −7.88379 1.79041i −0.416671 0.0946261i
\(359\) −5.36867 −0.283348 −0.141674 0.989913i \(-0.545248\pi\)
−0.141674 + 0.989913i \(0.545248\pi\)
\(360\) 0 0
\(361\) 15.4478 0.813044
\(362\) −7.40451 1.68156i −0.389172 0.0883811i
\(363\) 0 0
\(364\) 29.7614 + 14.2527i 1.55992 + 0.747044i
\(365\) −13.7487 −0.719640
\(366\) 0 0
\(367\) 28.9008i 1.50861i −0.656525 0.754304i \(-0.727974\pi\)
0.656525 0.754304i \(-0.272026\pi\)
\(368\) −7.33655 9.11812i −0.382444 0.475315i
\(369\) 0 0
\(370\) 5.12528 + 1.16395i 0.266451 + 0.0605110i
\(371\) 33.1167i 1.71934i
\(372\) 0 0
\(373\) 32.3825i 1.67670i −0.545130 0.838352i \(-0.683520\pi\)
0.545130 0.838352i \(-0.316480\pi\)
\(374\) 2.00585 8.83245i 0.103720 0.456715i
\(375\) 0 0
\(376\) −0.503544 + 0.635666i −0.0259683 + 0.0327820i
\(377\) 3.26920i 0.168372i
\(378\) 0 0
\(379\) −16.7643 −0.861123 −0.430562 0.902561i \(-0.641685\pi\)
−0.430562 + 0.902561i \(0.641685\pi\)
\(380\) −20.0500 9.60192i −1.02854 0.492568i
\(381\) 0 0
\(382\) 3.05705 13.4612i 0.156412 0.688737i
\(383\) 11.2458 0.574634 0.287317 0.957836i \(-0.407237\pi\)
0.287317 + 0.957836i \(0.407237\pi\)
\(384\) 0 0
\(385\) −5.74084 −0.292580
\(386\) 4.29660 18.9194i 0.218691 0.962972i
\(387\) 0 0
\(388\) −8.84380 4.23529i −0.448976 0.215014i
\(389\) 15.3472 0.778136 0.389068 0.921209i \(-0.372797\pi\)
0.389068 + 0.921209i \(0.372797\pi\)
\(390\) 0 0
\(391\) 18.7383i 0.947638i
\(392\) −3.84461 + 4.85337i −0.194182 + 0.245132i
\(393\) 0 0
\(394\) −5.17937 + 22.8065i −0.260933 + 1.14898i
\(395\) 6.60630i 0.332399i
\(396\) 0 0
\(397\) 13.8736i 0.696297i 0.937439 + 0.348148i \(0.113189\pi\)
−0.937439 + 0.348148i \(0.886811\pi\)
\(398\) −22.9786 5.21843i −1.15181 0.261576i
\(399\) 0 0
\(400\) −3.54422 4.40488i −0.177211 0.220244i
\(401\) 8.36307i 0.417632i −0.977955 0.208816i \(-0.933039\pi\)
0.977955 0.208816i \(-0.0669609\pi\)
\(402\) 0 0
\(403\) 58.9720 2.93761
\(404\) 16.0425 + 7.68273i 0.798143 + 0.382230i
\(405\) 0 0
\(406\) −2.51100 0.570249i −0.124619 0.0283010i
\(407\) 1.96238 0.0972715
\(408\) 0 0
\(409\) 20.6740 1.02226 0.511132 0.859502i \(-0.329226\pi\)
0.511132 + 0.859502i \(0.329226\pi\)
\(410\) −23.4598 5.32772i −1.15860 0.263117i
\(411\) 0 0
\(412\) 16.3843 34.2123i 0.807194 1.68552i
\(413\) −18.4987 −0.910261
\(414\) 0 0
\(415\) 17.3839i 0.853343i
\(416\) −13.5095 27.6671i −0.662359 1.35649i
\(417\) 0 0
\(418\) −8.09424 1.83820i −0.395902 0.0899094i
\(419\) 4.14867i 0.202676i −0.994852 0.101338i \(-0.967688\pi\)
0.994852 0.101338i \(-0.0323123\pi\)
\(420\) 0 0
\(421\) 17.8077i 0.867896i 0.900938 + 0.433948i \(0.142880\pi\)
−0.900938 + 0.433948i \(0.857120\pi\)
\(422\) 4.24002 18.6703i 0.206401 0.908855i
\(423\) 0 0
\(424\) −19.1869 + 24.2212i −0.931797 + 1.17629i
\(425\) 9.05231i 0.439102i
\(426\) 0 0
\(427\) 42.9870 2.08029
\(428\) 3.08604 6.44403i 0.149169 0.311484i
\(429\) 0 0
\(430\) 1.66156 7.31641i 0.0801274 0.352828i
\(431\) −29.5960 −1.42559 −0.712796 0.701372i \(-0.752571\pi\)
−0.712796 + 0.701372i \(0.752571\pi\)
\(432\) 0 0
\(433\) −13.0944 −0.629278 −0.314639 0.949211i \(-0.601883\pi\)
−0.314639 + 0.949211i \(0.601883\pi\)
\(434\) −10.2866 + 45.2952i −0.493770 + 2.17424i
\(435\) 0 0
\(436\) −6.90764 + 14.4240i −0.330816 + 0.690784i
\(437\) 17.1722 0.821457
\(438\) 0 0
\(439\) 2.26583i 0.108142i −0.998537 0.0540710i \(-0.982780\pi\)
0.998537 0.0540710i \(-0.0172197\pi\)
\(440\) 4.19879 + 3.32608i 0.200169 + 0.158564i
\(441\) 0 0
\(442\) −10.9175 + 48.0734i −0.519292 + 2.28662i
\(443\) 0.704612i 0.0334771i −0.999860 0.0167386i \(-0.994672\pi\)
0.999860 0.0167386i \(-0.00532830\pi\)
\(444\) 0 0
\(445\) 18.5731i 0.880451i
\(446\) 10.2616 + 2.33041i 0.485901 + 0.110348i
\(447\) 0 0
\(448\) 23.6071 5.55039i 1.11533 0.262232i
\(449\) 28.1301i 1.32754i −0.747935 0.663771i \(-0.768955\pi\)
0.747935 0.663771i \(-0.231045\pi\)
\(450\) 0 0
\(451\) −8.98233 −0.422961
\(452\) −13.9708 + 29.1728i −0.657132 + 1.37217i
\(453\) 0 0
\(454\) −24.6063 5.58809i −1.15483 0.262262i
\(455\) 31.2464 1.46485
\(456\) 0 0
\(457\) −1.92294 −0.0899512 −0.0449756 0.998988i \(-0.514321\pi\)
−0.0449756 + 0.998988i \(0.514321\pi\)
\(458\) 2.34304 + 0.532104i 0.109483 + 0.0248636i
\(459\) 0 0
\(460\) −9.99489 4.78654i −0.466014 0.223174i
\(461\) −21.1590 −0.985474 −0.492737 0.870178i \(-0.664003\pi\)
−0.492737 + 0.870178i \(0.664003\pi\)
\(462\) 0 0
\(463\) 9.13809i 0.424683i −0.977195 0.212342i \(-0.931891\pi\)
0.977195 0.212342i \(-0.0681090\pi\)
\(464\) 1.50613 + 1.87188i 0.0699205 + 0.0868997i
\(465\) 0 0
\(466\) 28.4604 + 6.46335i 1.31840 + 0.299409i
\(467\) 28.4368i 1.31590i 0.753063 + 0.657949i \(0.228576\pi\)
−0.753063 + 0.657949i \(0.771424\pi\)
\(468\) 0 0
\(469\) 37.2317i 1.71920i
\(470\) −0.170058 + 0.748824i −0.00784419 + 0.0345407i
\(471\) 0 0
\(472\) 13.5297 + 10.7176i 0.622756 + 0.493318i
\(473\) 2.80132i 0.128805i
\(474\) 0 0
\(475\) 8.29573 0.380634
\(476\) −35.0199 16.7710i −1.60513 0.768698i
\(477\) 0 0
\(478\) 3.48792 15.3585i 0.159534 0.702482i
\(479\) 30.6250 1.39929 0.699646 0.714490i \(-0.253341\pi\)
0.699646 + 0.714490i \(0.253341\pi\)
\(480\) 0 0
\(481\) −10.6809 −0.487006
\(482\) −6.85840 + 30.1999i −0.312392 + 1.37557i
\(483\) 0 0
\(484\) 1.80382 + 0.863848i 0.0819918 + 0.0392658i
\(485\) −9.28508 −0.421614
\(486\) 0 0
\(487\) 12.3155i 0.558067i −0.960281 0.279033i \(-0.909986\pi\)
0.960281 0.279033i \(-0.0900140\pi\)
\(488\) −31.4402 24.9054i −1.42323 1.12742i
\(489\) 0 0
\(490\) −1.29841 + 5.71734i −0.0586561 + 0.258283i
\(491\) 34.9081i 1.57538i −0.616072 0.787690i \(-0.711277\pi\)
0.616072 0.787690i \(-0.288723\pi\)
\(492\) 0 0
\(493\) 3.84683i 0.173252i
\(494\) 44.0555 + 10.0050i 1.98215 + 0.450147i
\(495\) 0 0
\(496\) 33.7662 27.1687i 1.51615 1.21991i
\(497\) 29.5488i 1.32545i
\(498\) 0 0
\(499\) −3.73964 −0.167409 −0.0837047 0.996491i \(-0.526675\pi\)
−0.0837047 + 0.996491i \(0.526675\pi\)
\(500\) −21.9090 10.4922i −0.979802 0.469226i
\(501\) 0 0
\(502\) −6.66009 1.51251i −0.297254 0.0675065i
\(503\) 8.50418 0.379182 0.189591 0.981863i \(-0.439284\pi\)
0.189591 + 0.981863i \(0.439284\pi\)
\(504\) 0 0
\(505\) 16.8429 0.749501
\(506\) −4.03497 0.916341i −0.179376 0.0407363i
\(507\) 0 0
\(508\) 11.2063 23.4001i 0.497199 1.03821i
\(509\) 13.2510 0.587342 0.293671 0.955907i \(-0.405123\pi\)
0.293671 + 0.955907i \(0.405123\pi\)
\(510\) 0 0
\(511\) 22.0068i 0.973526i
\(512\) −20.4817 9.61775i −0.905171 0.425049i
\(513\) 0 0
\(514\) 6.44715 + 1.46415i 0.284372 + 0.0645808i
\(515\) 35.9194i 1.58280i
\(516\) 0 0
\(517\) 0.286711i 0.0126096i
\(518\) 1.86308 8.20377i 0.0818589 0.360453i
\(519\) 0 0
\(520\) −22.8532 18.1032i −1.00218 0.793880i
\(521\) 37.2904i 1.63372i 0.576836 + 0.816860i \(0.304287\pi\)
−0.576836 + 0.816860i \(0.695713\pi\)
\(522\) 0 0
\(523\) −20.1065 −0.879196 −0.439598 0.898195i \(-0.644879\pi\)
−0.439598 + 0.898195i \(0.644879\pi\)
\(524\) −2.41184 + 5.03621i −0.105362 + 0.220008i
\(525\) 0 0
\(526\) −2.04230 + 8.99297i −0.0890487 + 0.392112i
\(527\) −69.3917 −3.02275
\(528\) 0 0
\(529\) −14.4397 −0.627812
\(530\) −6.47984 + 28.5330i −0.281466 + 1.23939i
\(531\) 0 0
\(532\) −15.3693 + 32.0930i −0.666343 + 1.39141i
\(533\) 48.8892 2.11763
\(534\) 0 0
\(535\) 6.76557i 0.292501i
\(536\) −21.5710 + 27.2308i −0.931723 + 1.17619i
\(537\) 0 0
\(538\) 1.33519 5.87928i 0.0575639 0.253474i
\(539\) 2.18907i 0.0942899i
\(540\) 0 0
\(541\) 2.44647i 0.105182i −0.998616 0.0525911i \(-0.983252\pi\)
0.998616 0.0525911i \(-0.0167480\pi\)
\(542\) 2.81116 + 0.638415i 0.120750 + 0.0274223i
\(543\) 0 0
\(544\) 15.8965 + 32.5556i 0.681558 + 1.39581i
\(545\) 15.1437i 0.648685i
\(546\) 0 0
\(547\) −43.2279 −1.84829 −0.924147 0.382038i \(-0.875223\pi\)
−0.924147 + 0.382038i \(0.875223\pi\)
\(548\) 1.65900 3.46419i 0.0708689 0.147983i
\(549\) 0 0
\(550\) −1.94925 0.442676i −0.0831165 0.0188758i
\(551\) −3.52531 −0.150183
\(552\) 0 0
\(553\) −10.5744 −0.449668
\(554\) 19.0629 + 4.32918i 0.809903 + 0.183929i
\(555\) 0 0
\(556\) 9.52158 + 4.55988i 0.403805 + 0.193382i
\(557\) 42.3302 1.79359 0.896795 0.442447i \(-0.145890\pi\)
0.896795 + 0.442447i \(0.145890\pi\)
\(558\) 0 0
\(559\) 15.2471i 0.644883i
\(560\) 17.8911 14.3954i 0.756035 0.608315i
\(561\) 0 0
\(562\) −21.1654 4.80667i −0.892810 0.202757i
\(563\) 46.1269i 1.94402i −0.234942 0.972009i \(-0.575490\pi\)
0.234942 0.972009i \(-0.424510\pi\)
\(564\) 0 0
\(565\) 30.6284i 1.28855i
\(566\) 2.10494 9.26877i 0.0884772 0.389595i
\(567\) 0 0
\(568\) −17.1197 + 21.6117i −0.718328 + 0.906806i
\(569\) 28.6718i 1.20198i 0.799255 + 0.600992i \(0.205228\pi\)
−0.799255 + 0.600992i \(0.794772\pi\)
\(570\) 0 0
\(571\) 8.59888 0.359852 0.179926 0.983680i \(-0.442414\pi\)
0.179926 + 0.983680i \(0.442414\pi\)
\(572\) −9.81787 4.70177i −0.410506 0.196591i
\(573\) 0 0
\(574\) −8.52780 + 37.5509i −0.355944 + 1.56734i
\(575\) 4.13541 0.172458
\(576\) 0 0
\(577\) 0.581402 0.0242041 0.0121020 0.999927i \(-0.496148\pi\)
0.0121020 + 0.999927i \(0.496148\pi\)
\(578\) 7.52220 33.1228i 0.312882 1.37773i
\(579\) 0 0
\(580\) 2.05187 + 0.982639i 0.0851993 + 0.0408019i
\(581\) −27.8255 −1.15440
\(582\) 0 0
\(583\) 10.9248i 0.452457i
\(584\) 12.7501 16.0956i 0.527604 0.666039i
\(585\) 0 0
\(586\) 8.92177 39.2856i 0.368555 1.62287i
\(587\) 44.5638i 1.83934i 0.392686 + 0.919672i \(0.371546\pi\)
−0.392686 + 0.919672i \(0.628454\pi\)
\(588\) 0 0
\(589\) 63.5920i 2.62026i
\(590\) 15.9382 + 3.61957i 0.656166 + 0.149015i
\(591\) 0 0
\(592\) −6.11566 + 4.92073i −0.251352 + 0.202241i
\(593\) 28.3669i 1.16489i 0.812870 + 0.582445i \(0.197904\pi\)
−0.812870 + 0.582445i \(0.802096\pi\)
\(594\) 0 0
\(595\) −36.7673 −1.50731
\(596\) 12.3772 + 5.92745i 0.506991 + 0.242798i
\(597\) 0 0
\(598\) 21.9616 + 4.98748i 0.898077 + 0.203953i
\(599\) −20.6490 −0.843696 −0.421848 0.906667i \(-0.638618\pi\)
−0.421848 + 0.906667i \(0.638618\pi\)
\(600\) 0 0
\(601\) −38.2236 −1.55917 −0.779587 0.626295i \(-0.784571\pi\)
−0.779587 + 0.626295i \(0.784571\pi\)
\(602\) −11.7110 2.65957i −0.477304 0.108396i
\(603\) 0 0
\(604\) −2.95585 + 6.17217i −0.120272 + 0.251142i
\(605\) 1.89382 0.0769949
\(606\) 0 0
\(607\) 40.4873i 1.64333i 0.569971 + 0.821665i \(0.306954\pi\)
−0.569971 + 0.821665i \(0.693046\pi\)
\(608\) 29.8347 14.5679i 1.20996 0.590807i
\(609\) 0 0
\(610\) −37.0371 8.41112i −1.49959 0.340556i
\(611\) 1.56052i 0.0631318i
\(612\) 0 0
\(613\) 3.43337i 0.138673i 0.997593 + 0.0693363i \(0.0220882\pi\)
−0.997593 + 0.0693363i \(0.977912\pi\)
\(614\) −3.77037 + 16.6022i −0.152160 + 0.670011i
\(615\) 0 0
\(616\) 5.32388 6.72078i 0.214505 0.270788i
\(617\) 26.0661i 1.04938i 0.851293 + 0.524690i \(0.175819\pi\)
−0.851293 + 0.524690i \(0.824181\pi\)
\(618\) 0 0
\(619\) 37.0540 1.48933 0.744664 0.667440i \(-0.232610\pi\)
0.744664 + 0.667440i \(0.232610\pi\)
\(620\) 17.7255 37.0130i 0.711874 1.48648i
\(621\) 0 0
\(622\) 5.66775 24.9571i 0.227256 1.00069i
\(623\) −29.7291 −1.19107
\(624\) 0 0
\(625\) −15.9351 −0.637403
\(626\) −9.13842 + 40.2396i −0.365245 + 1.60830i
\(627\) 0 0
\(628\) 9.57762 19.9992i 0.382189 0.798057i
\(629\) 12.5681 0.501122
\(630\) 0 0
\(631\) 19.3001i 0.768325i −0.923266 0.384162i \(-0.874490\pi\)
0.923266 0.384162i \(-0.125510\pi\)
\(632\) 7.73396 + 6.12648i 0.307641 + 0.243698i
\(633\) 0 0
\(634\) 1.64756 7.25477i 0.0654329 0.288124i
\(635\) 24.5677i 0.974940i
\(636\) 0 0
\(637\) 11.9147i 0.472078i
\(638\) 0.828346 + 0.188117i 0.0327945 + 0.00744764i
\(639\) 0 0
\(640\) −21.4256 + 0.163037i −0.846920 + 0.00644459i
\(641\) 26.9766i 1.06551i −0.846269 0.532757i \(-0.821156\pi\)
0.846269 0.532757i \(-0.178844\pi\)
\(642\) 0 0
\(643\) 29.2484 1.15345 0.576723 0.816940i \(-0.304331\pi\)
0.576723 + 0.816940i \(0.304331\pi\)
\(644\) −7.66157 + 15.9983i −0.301908 + 0.630421i
\(645\) 0 0
\(646\) −51.8396 11.7728i −2.03960 0.463194i
\(647\) −27.7125 −1.08949 −0.544746 0.838601i \(-0.683374\pi\)
−0.544746 + 0.838601i \(0.683374\pi\)
\(648\) 0 0
\(649\) 6.10246 0.239543
\(650\) 10.6094 + 2.40941i 0.416137 + 0.0945047i
\(651\) 0 0
\(652\) −7.96235 3.81316i −0.311830 0.149335i
\(653\) −33.4035 −1.30718 −0.653590 0.756849i \(-0.726738\pi\)
−0.653590 + 0.756849i \(0.726738\pi\)
\(654\) 0 0
\(655\) 5.28750i 0.206600i
\(656\) 27.9930 22.5235i 1.09294 0.879395i
\(657\) 0 0
\(658\) 1.19860 + 0.272203i 0.0467264 + 0.0106116i
\(659\) 7.79075i 0.303485i 0.988420 + 0.151742i \(0.0484884\pi\)
−0.988420 + 0.151742i \(0.951512\pi\)
\(660\) 0 0
\(661\) 9.59043i 0.373024i −0.982453 0.186512i \(-0.940282\pi\)
0.982453 0.186512i \(-0.0597184\pi\)
\(662\) −7.62819 + 33.5896i −0.296478 + 1.30550i
\(663\) 0 0
\(664\) 20.3513 + 16.1213i 0.789782 + 0.625628i
\(665\) 33.6943i 1.30661i
\(666\) 0 0
\(667\) −1.75736 −0.0680454
\(668\) 18.6213 + 8.91774i 0.720481 + 0.345038i
\(669\) 0 0
\(670\) −7.28499 + 32.0783i −0.281444 + 1.23929i
\(671\) −14.1808 −0.547445
\(672\) 0 0
\(673\) −17.3398 −0.668399 −0.334199 0.942502i \(-0.608466\pi\)
−0.334199 + 0.942502i \(0.608466\pi\)
\(674\) 3.49199 15.3764i 0.134506 0.592278i
\(675\) 0 0
\(676\) 29.9873 + 14.3609i 1.15336 + 0.552341i
\(677\) 19.5740 0.752290 0.376145 0.926561i \(-0.377249\pi\)
0.376145 + 0.926561i \(0.377249\pi\)
\(678\) 0 0
\(679\) 14.8621i 0.570357i
\(680\) 26.8912 + 21.3019i 1.03123 + 0.816890i
\(681\) 0 0
\(682\) 3.39339 14.9423i 0.129940 0.572169i
\(683\) 29.6643i 1.13507i −0.823348 0.567537i \(-0.807897\pi\)
0.823348 0.567537i \(-0.192103\pi\)
\(684\) 0 0
\(685\) 3.63704i 0.138964i
\(686\) −20.1122 4.56749i −0.767888 0.174387i
\(687\) 0 0
\(688\) 7.02441 + 8.73018i 0.267803 + 0.332835i
\(689\) 59.4615i 2.26530i
\(690\) 0 0
\(691\) 17.6568 0.671695 0.335848 0.941916i \(-0.390977\pi\)
0.335848 + 0.941916i \(0.390977\pi\)
\(692\) 20.4348 + 9.78623i 0.776816 + 0.372016i
\(693\) 0 0
\(694\) 10.8609 + 2.46651i 0.412274 + 0.0936276i
\(695\) 9.99668 0.379196
\(696\) 0 0
\(697\) −57.5274 −2.17901
\(698\) 6.98285 + 1.58581i 0.264305 + 0.0600236i
\(699\) 0 0
\(700\) −3.70123 + 7.72863i −0.139893 + 0.292115i
\(701\) 23.0321 0.869909 0.434955 0.900452i \(-0.356764\pi\)
0.434955 + 0.900452i \(0.356764\pi\)
\(702\) 0 0
\(703\) 11.5177i 0.434396i
\(704\) −7.78765 + 1.83100i −0.293508 + 0.0690084i
\(705\) 0 0
\(706\) −33.7338 7.66095i −1.26959 0.288324i
\(707\) 26.9596i 1.01392i
\(708\) 0 0
\(709\) 34.3471i 1.28993i 0.764211 + 0.644966i \(0.223128\pi\)
−0.764211 + 0.644966i \(0.776872\pi\)
\(710\) −5.78172 + 25.4589i −0.216984 + 0.955455i
\(711\) 0 0
\(712\) 21.7435 + 17.2242i 0.814872 + 0.645502i
\(713\) 31.7005i 1.18719i
\(714\) 0 0
\(715\) −10.3078 −0.385488
\(716\) 4.93830 10.3118i 0.184553 0.385369i
\(717\) 0 0
\(718\) 1.68143 7.40392i 0.0627504 0.276312i
\(719\) 26.4769 0.987422 0.493711 0.869626i \(-0.335640\pi\)
0.493711 + 0.869626i \(0.335640\pi\)
\(720\) 0 0
\(721\) −57.4943 −2.14120
\(722\) −4.83816 + 21.3041i −0.180057 + 0.792855i
\(723\) 0 0
\(724\) 4.63808 9.68489i 0.172373 0.359936i
\(725\) −0.848966 −0.0315298
\(726\) 0 0
\(727\) 40.9300i 1.51801i −0.651085 0.759005i \(-0.725686\pi\)
0.651085 0.759005i \(-0.274314\pi\)
\(728\) −28.9769 + 36.5800i −1.07396 + 1.35575i
\(729\) 0 0
\(730\) 4.30600 18.9608i 0.159372 0.701771i
\(731\) 17.9411i 0.663575i
\(732\) 0 0
\(733\) 22.4662i 0.829808i −0.909865 0.414904i \(-0.863815\pi\)
0.909865 0.414904i \(-0.136185\pi\)
\(734\) 39.8570 + 9.05153i 1.47115 + 0.334098i
\(735\) 0 0
\(736\) 14.8725 7.26208i 0.548209 0.267684i
\(737\) 12.2822i 0.452422i
\(738\) 0 0
\(739\) −27.2642 −1.00293 −0.501465 0.865178i \(-0.667206\pi\)
−0.501465 + 0.865178i \(0.667206\pi\)
\(740\) −3.21041 + 6.70372i −0.118017 + 0.246434i
\(741\) 0 0
\(742\) 45.6712 + 10.3719i 1.67664 + 0.380766i
\(743\) 15.4473 0.566706 0.283353 0.959016i \(-0.408553\pi\)
0.283353 + 0.959016i \(0.408553\pi\)
\(744\) 0 0
\(745\) 12.9948 0.476093
\(746\) 44.6587 + 10.1420i 1.63507 + 0.371324i
\(747\) 0 0
\(748\) 11.5526 + 5.53252i 0.422404 + 0.202289i
\(749\) −10.8293 −0.395694
\(750\) 0 0
\(751\) 44.7392i 1.63256i 0.577658 + 0.816279i \(0.303967\pi\)
−0.577658 + 0.816279i \(0.696033\pi\)
\(752\) −0.718939 0.893522i −0.0262170 0.0325834i
\(753\) 0 0
\(754\) −4.50854 1.02389i −0.164191 0.0372879i
\(755\) 6.48014i 0.235837i
\(756\) 0 0
\(757\) 22.6158i 0.821985i −0.911639 0.410992i \(-0.865182\pi\)
0.911639 0.410992i \(-0.134818\pi\)
\(758\) 5.25046 23.1196i 0.190705 0.839741i
\(759\) 0 0
\(760\) 19.5215 24.6436i 0.708119 0.893918i
\(761\) 4.47443i 0.162198i 0.996706 + 0.0810990i \(0.0258430\pi\)
−0.996706 + 0.0810990i \(0.974157\pi\)
\(762\) 0 0
\(763\) 24.2397 0.877538
\(764\) 17.6069 + 8.43193i 0.636996 + 0.305057i
\(765\) 0 0
\(766\) −3.52211 + 15.5091i −0.127259 + 0.560365i
\(767\) −33.2146 −1.19931
\(768\) 0 0
\(769\) −37.5456 −1.35393 −0.676965 0.736016i \(-0.736705\pi\)
−0.676965 + 0.736016i \(0.736705\pi\)
\(770\) 1.79799 7.91718i 0.0647951 0.285315i
\(771\) 0 0
\(772\) 24.7460 + 11.8509i 0.890629 + 0.426521i
\(773\) −8.97430 −0.322783 −0.161392 0.986890i \(-0.551598\pi\)
−0.161392 + 0.986890i \(0.551598\pi\)
\(774\) 0 0
\(775\) 15.3142i 0.550104i
\(776\) 8.61069 10.8700i 0.309106 0.390210i
\(777\) 0 0
\(778\) −4.80665 + 21.1653i −0.172327 + 0.758814i
\(779\) 52.7193i 1.88887i
\(780\) 0 0
\(781\) 9.74776i 0.348802i
\(782\) −25.8420 5.86872i −0.924107 0.209865i
\(783\) 0 0
\(784\) −5.48916 6.82213i −0.196042 0.243647i
\(785\) 20.9971i 0.749420i
\(786\) 0 0
\(787\) −6.21327 −0.221479 −0.110740 0.993849i \(-0.535322\pi\)
−0.110740 + 0.993849i \(0.535322\pi\)
\(788\) −29.8303 14.2857i −1.06266 0.508907i
\(789\) 0 0
\(790\) 9.11073 + 2.06905i 0.324145 + 0.0736134i
\(791\) 49.0253 1.74314
\(792\) 0 0
\(793\) 77.1838 2.74088
\(794\) −19.1331 4.34512i −0.679007 0.154203i
\(795\) 0 0
\(796\) 14.3935 30.0553i 0.510163 1.06528i
\(797\) −23.4519 −0.830708 −0.415354 0.909660i \(-0.636342\pi\)
−0.415354 + 0.909660i \(0.636342\pi\)
\(798\) 0 0
\(799\) 1.83625i 0.0649617i
\(800\) 7.18478 3.50824i 0.254020 0.124035i
\(801\) 0 0
\(802\) 11.5335 + 2.61926i 0.407262 + 0.0924891i
\(803\) 7.25976i 0.256191i
\(804\) 0 0
\(805\) 16.7966i 0.592001i
\(806\) −18.4696 + 81.3282i −0.650565 + 2.86466i
\(807\) 0 0
\(808\) −15.6196 + 19.7180i −0.549496 + 0.693675i
\(809\) 38.3475i 1.34823i 0.738628 + 0.674113i \(0.235474\pi\)
−0.738628 + 0.674113i \(0.764526\pi\)
\(810\) 0 0
\(811\) −20.3661 −0.715152 −0.357576 0.933884i \(-0.616397\pi\)
−0.357576 + 0.933884i \(0.616397\pi\)
\(812\) 1.57286 3.28432i 0.0551965 0.115257i
\(813\) 0 0
\(814\) −0.614604 + 2.70631i −0.0215419 + 0.0948562i
\(815\) −8.35965 −0.292826
\(816\) 0 0
\(817\) −16.4416 −0.575219
\(818\) −6.47496 + 28.5115i −0.226392 + 0.996880i
\(819\) 0 0
\(820\) 14.6949 30.6847i 0.513168 1.07156i
\(821\) −30.2233 −1.05480 −0.527401 0.849617i \(-0.676833\pi\)
−0.527401 + 0.849617i \(0.676833\pi\)
\(822\) 0 0
\(823\) 6.31287i 0.220053i −0.993929 0.110026i \(-0.964906\pi\)
0.993929 0.110026i \(-0.0350935\pi\)
\(824\) 42.0507 + 33.3105i 1.46491 + 1.16043i
\(825\) 0 0
\(826\) 5.79366 25.5115i 0.201587 0.887659i
\(827\) 39.5499i 1.37528i −0.726050 0.687642i \(-0.758646\pi\)
0.726050 0.687642i \(-0.241354\pi\)
\(828\) 0 0
\(829\) 11.5153i 0.399944i 0.979802 + 0.199972i \(0.0640851\pi\)
−0.979802 + 0.199972i \(0.935915\pi\)
\(830\) 23.9741 + 5.44452i 0.832154 + 0.188982i
\(831\) 0 0
\(832\) 42.3868 9.96580i 1.46950 0.345502i
\(833\) 14.0199i 0.485761i
\(834\) 0 0
\(835\) 19.5505 0.676572
\(836\) 5.07012 10.5870i 0.175354 0.366160i
\(837\) 0 0
\(838\) 5.72142 + 1.29934i 0.197643 + 0.0448848i
\(839\) −13.8630 −0.478603 −0.239301 0.970945i \(-0.576918\pi\)
−0.239301 + 0.970945i \(0.576918\pi\)
\(840\) 0 0
\(841\) −28.6392 −0.987560
\(842\) −24.5586 5.57726i −0.846346 0.192205i
\(843\) 0 0
\(844\) 24.4202 + 11.6948i 0.840577 + 0.402552i
\(845\) 31.4835 1.08307
\(846\) 0 0
\(847\) 3.03135i 0.104158i
\(848\) −27.3942 34.0465i −0.940721 1.16916i
\(849\) 0 0
\(850\) −12.4840 2.83512i −0.428198 0.0972439i
\(851\) 5.74153i 0.196817i
\(852\) 0 0
\(853\) 13.8053i 0.472683i 0.971670 + 0.236341i \(0.0759484\pi\)
−0.971670 + 0.236341i \(0.924052\pi\)
\(854\) −13.4632 + 59.2833i −0.460703 + 2.02863i
\(855\) 0 0
\(856\) 7.92042 + 6.27418i 0.270714 + 0.214447i
\(857\) 14.3186i 0.489114i −0.969635 0.244557i \(-0.921357\pi\)
0.969635 0.244557i \(-0.0786425\pi\)
\(858\) 0 0
\(859\) −50.8997 −1.73667 −0.868337 0.495974i \(-0.834811\pi\)
−0.868337 + 0.495974i \(0.834811\pi\)
\(860\) 9.56965 + 4.58290i 0.326322 + 0.156275i
\(861\) 0 0
\(862\) 9.26928 40.8158i 0.315713 1.39019i
\(863\) 25.0310 0.852066 0.426033 0.904708i \(-0.359911\pi\)
0.426033 + 0.904708i \(0.359911\pi\)
\(864\) 0 0
\(865\) 21.4545 0.729474
\(866\) 4.10108 18.0585i 0.139361 0.613652i
\(867\) 0 0
\(868\) −59.2449 28.3723i −2.01090 0.963019i
\(869\) 3.48834 0.118334
\(870\) 0 0
\(871\) 66.8500i 2.26512i
\(872\) −17.7287 14.0438i −0.600368 0.475583i
\(873\) 0 0
\(874\) −5.37821 + 23.6821i −0.181921 + 0.801060i
\(875\) 36.8185i 1.24469i
\(876\) 0 0
\(877\) 51.9131i 1.75298i −0.481420 0.876490i \(-0.659879\pi\)
0.481420 0.876490i \(-0.340121\pi\)
\(878\) 3.12480 + 0.709641i 0.105457 + 0.0239492i
\(879\) 0 0
\(880\) −5.90201 + 4.74883i −0.198957 + 0.160083i
\(881\) 40.2674i 1.35664i 0.734765 + 0.678322i \(0.237292\pi\)
−0.734765 + 0.678322i \(0.762708\pi\)
\(882\) 0 0
\(883\) −14.7777 −0.497309 −0.248655 0.968592i \(-0.579988\pi\)
−0.248655 + 0.968592i \(0.579988\pi\)
\(884\) −62.8787 30.1125i −2.11484 1.01279i
\(885\) 0 0
\(886\) 0.971728 + 0.220680i 0.0326459 + 0.00741388i
\(887\) 38.9704 1.30850 0.654249 0.756279i \(-0.272985\pi\)
0.654249 + 0.756279i \(0.272985\pi\)
\(888\) 0 0
\(889\) −39.3243 −1.31889
\(890\) 25.6142 + 5.81698i 0.858589 + 0.194986i
\(891\) 0 0
\(892\) −6.42773 + 13.4219i −0.215216 + 0.449398i
\(893\) 1.68277 0.0563119
\(894\) 0 0
\(895\) 10.8263i 0.361883i
\(896\) 0.260964 + 34.2948i 0.00871821 + 1.14571i
\(897\) 0 0
\(898\) 38.7942 + 8.81016i 1.29458 + 0.293999i
\(899\) 6.50787i 0.217049i
\(900\) 0 0
\(901\) 69.9677i 2.33096i
\(902\) 2.81320 12.3875i 0.0936695 0.412459i
\(903\) 0 0
\(904\) −35.8565 28.4038i −1.19257 0.944697i
\(905\) 10.1681i 0.338000i
\(906\) 0 0
\(907\) −13.4008 −0.444967 −0.222484 0.974936i \(-0.571416\pi\)
−0.222484 + 0.974936i \(0.571416\pi\)
\(908\) 15.4130 32.1843i 0.511500 1.06807i
\(909\) 0 0
\(910\) −9.78615 + 43.0918i −0.324408 + 1.42848i
\(911\) −41.8465 −1.38644 −0.693218 0.720728i \(-0.743808\pi\)
−0.693218 + 0.720728i \(0.743808\pi\)
\(912\) 0 0
\(913\) 9.17926 0.303789
\(914\) 0.602251 2.65192i 0.0199207 0.0877177i
\(915\) 0 0
\(916\) −1.46765 + 3.06462i −0.0484924 + 0.101258i
\(917\) 8.46344 0.279487
\(918\) 0 0
\(919\) 9.95866i 0.328506i −0.986418 0.164253i \(-0.947479\pi\)
0.986418 0.164253i \(-0.0525213\pi\)
\(920\) 9.73144 12.2848i 0.320836 0.405018i
\(921\) 0 0
\(922\) 6.62686 29.1803i 0.218244 0.961003i
\(923\) 53.0553i 1.74634i
\(924\) 0 0
\(925\) 2.77368i 0.0911981i
\(926\) 12.6023 + 2.86199i 0.414138 + 0.0940508i
\(927\) 0 0
\(928\) −3.05321 + 1.49085i −0.100227 + 0.0489394i
\(929\) 2.24932i 0.0737976i 0.999319 + 0.0368988i \(0.0117479\pi\)
−0.999319 + 0.0368988i \(0.988252\pi\)
\(930\) 0 0
\(931\) 12.8481 0.421081
\(932\) −17.8272 + 37.2254i −0.583949 + 1.21936i
\(933\) 0 0
\(934\) −39.2171 8.90620i −1.28322 0.291420i
\(935\) 12.1290 0.396661
\(936\) 0 0
\(937\) 53.8032 1.75767 0.878837 0.477123i \(-0.158320\pi\)
0.878837 + 0.477123i \(0.158320\pi\)
\(938\) 51.3461 + 11.6607i 1.67651 + 0.380736i
\(939\) 0 0
\(940\) −0.979440 0.469053i −0.0319458 0.0152988i
\(941\) 51.7764 1.68786 0.843931 0.536451i \(-0.180235\pi\)
0.843931 + 0.536451i \(0.180235\pi\)
\(942\) 0 0
\(943\) 26.2805i 0.855811i
\(944\) −19.0180 + 15.3021i −0.618984 + 0.498042i
\(945\) 0 0
\(946\) 3.86330 + 0.877355i 0.125607 + 0.0285253i
\(947\) 15.6828i 0.509622i −0.966991 0.254811i \(-0.917987\pi\)
0.966991 0.254811i \(-0.0820132\pi\)
\(948\) 0 0
\(949\) 39.5136i 1.28266i
\(950\) −2.59816 + 11.4406i −0.0842956 + 0.371183i
\(951\) 0 0
\(952\) 34.0968 43.0433i 1.10508 1.39504i
\(953\) 21.4309i 0.694215i −0.937825 0.347107i \(-0.887164\pi\)
0.937825 0.347107i \(-0.112836\pi\)
\(954\) 0 0
\(955\) 18.4854 0.598175
\(956\) 20.0885 + 9.62036i 0.649708 + 0.311145i
\(957\) 0 0
\(958\) −9.59154 + 42.2348i −0.309889 + 1.36455i
\(959\) −5.82162 −0.187990
\(960\) 0 0
\(961\) −86.3934 −2.78688
\(962\) 3.34518 14.7300i 0.107853 0.474914i
\(963\) 0 0
\(964\) −39.5006 18.9168i −1.27223 0.609269i
\(965\) 25.9808 0.836351
\(966\) 0 0
\(967\) 20.8025i 0.668963i 0.942402 + 0.334481i \(0.108561\pi\)
−0.942402 + 0.334481i \(0.891439\pi\)
\(968\) −1.75627 + 2.21709i −0.0564488 + 0.0712601i
\(969\) 0 0
\(970\) 2.90802 12.8050i 0.0933710 0.411145i
\(971\) 10.5120i 0.337346i 0.985672 + 0.168673i \(0.0539481\pi\)
−0.985672 + 0.168673i \(0.946052\pi\)
\(972\) 0 0
\(973\) 16.0012i 0.512974i
\(974\) 16.9842 + 3.85712i 0.544209 + 0.123590i
\(975\) 0 0
\(976\) 44.1939 35.5589i 1.41461 1.13821i
\(977\) 57.0894i 1.82645i −0.407453 0.913226i \(-0.633583\pi\)
0.407453 0.913226i \(-0.366417\pi\)
\(978\) 0 0
\(979\) 9.80721 0.313440
\(980\) −7.47812 3.58127i −0.238880 0.114399i
\(981\) 0 0
\(982\) 48.1417 + 10.9330i 1.53626 + 0.348885i
\(983\) −17.1034 −0.545514 −0.272757 0.962083i \(-0.587936\pi\)
−0.272757 + 0.962083i \(0.587936\pi\)
\(984\) 0 0
\(985\) −31.3187 −0.997898
\(986\) 5.30515 + 1.20480i 0.168950 + 0.0383687i
\(987\) 0 0
\(988\) −27.5958 + 57.6233i −0.877938 + 1.83324i
\(989\) −8.19611 −0.260621
\(990\) 0 0
\(991\) 40.9703i 1.30147i 0.759307 + 0.650733i \(0.225538\pi\)
−0.759307 + 0.650733i \(0.774462\pi\)
\(992\) 26.8929 + 55.0759i 0.853851 + 1.74866i
\(993\) 0 0
\(994\) 40.7507 + 9.25450i 1.29254 + 0.293535i
\(995\) 31.5550i 1.00036i
\(996\) 0 0
\(997\) 21.1608i 0.670168i 0.942188 + 0.335084i \(0.108765\pi\)
−0.942188 + 0.335084i \(0.891235\pi\)
\(998\) 1.17123 5.15733i 0.0370747 0.163253i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.k.a.683.18 yes 40
3.2 odd 2 inner 792.2.k.a.683.23 yes 40
4.3 odd 2 3168.2.k.a.1871.12 40
8.3 odd 2 inner 792.2.k.a.683.24 yes 40
8.5 even 2 3168.2.k.a.1871.29 40
12.11 even 2 3168.2.k.a.1871.30 40
24.5 odd 2 3168.2.k.a.1871.11 40
24.11 even 2 inner 792.2.k.a.683.17 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.k.a.683.17 40 24.11 even 2 inner
792.2.k.a.683.18 yes 40 1.1 even 1 trivial
792.2.k.a.683.23 yes 40 3.2 odd 2 inner
792.2.k.a.683.24 yes 40 8.3 odd 2 inner
3168.2.k.a.1871.11 40 24.5 odd 2
3168.2.k.a.1871.12 40 4.3 odd 2
3168.2.k.a.1871.29 40 8.5 even 2
3168.2.k.a.1871.30 40 12.11 even 2