Properties

Label 3168.2.k.a.1871.11
Level $3168$
Weight $2$
Character 3168.1871
Analytic conductor $25.297$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3168,2,Mod(1871,3168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3168.1871"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: no (minimal twist has level 792)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1871.11
Character \(\chi\) \(=\) 3168.1871
Dual form 3168.2.k.a.1871.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.89382 q^{5} +3.03135i q^{7} -1.00000i q^{11} -5.44282i q^{13} +6.40451i q^{17} +5.86923 q^{19} +2.92580 q^{23} -1.41343 q^{25} +0.600643 q^{29} -10.8348i q^{31} -5.74084i q^{35} -1.96238i q^{37} +8.98233i q^{41} -2.80132 q^{43} +0.286711 q^{47} -2.18907 q^{49} -10.9248 q^{53} +1.89382i q^{55} +6.10246i q^{59} +14.1808i q^{61} +10.3078i q^{65} +12.2822 q^{67} +9.74776 q^{71} +7.25976 q^{73} +3.03135 q^{77} +3.48834i q^{79} +9.17926i q^{83} -12.1290i q^{85} -9.80721i q^{89} +16.4991 q^{91} -11.1153 q^{95} +4.90282 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 32 q^{19} + 40 q^{25} - 8 q^{49} + 32 q^{73} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3168\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(991\) \(1189\) \(1729\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.89382 −0.846944 −0.423472 0.905909i \(-0.639189\pi\)
−0.423472 + 0.905909i \(0.639189\pi\)
\(6\) 0 0
\(7\) 3.03135i 1.14574i 0.819646 + 0.572871i \(0.194170\pi\)
−0.819646 + 0.572871i \(0.805830\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 1.00000i − 0.301511i
\(12\) 0 0
\(13\) − 5.44282i − 1.50957i −0.655974 0.754784i \(-0.727742\pi\)
0.655974 0.754784i \(-0.272258\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.40451i 1.55332i 0.629919 + 0.776661i \(0.283088\pi\)
−0.629919 + 0.776661i \(0.716912\pi\)
\(18\) 0 0
\(19\) 5.86923 1.34649 0.673247 0.739418i \(-0.264899\pi\)
0.673247 + 0.739418i \(0.264899\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.92580 0.610072 0.305036 0.952341i \(-0.401332\pi\)
0.305036 + 0.952341i \(0.401332\pi\)
\(24\) 0 0
\(25\) −1.41343 −0.282685
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.600643 0.111537 0.0557683 0.998444i \(-0.482239\pi\)
0.0557683 + 0.998444i \(0.482239\pi\)
\(30\) 0 0
\(31\) − 10.8348i − 1.94599i −0.230823 0.972996i \(-0.574142\pi\)
0.230823 0.972996i \(-0.425858\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 5.74084i − 0.970379i
\(36\) 0 0
\(37\) − 1.96238i − 0.322613i −0.986904 0.161307i \(-0.948429\pi\)
0.986904 0.161307i \(-0.0515708\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.98233i 1.40280i 0.712766 + 0.701402i \(0.247442\pi\)
−0.712766 + 0.701402i \(0.752558\pi\)
\(42\) 0 0
\(43\) −2.80132 −0.427198 −0.213599 0.976921i \(-0.568519\pi\)
−0.213599 + 0.976921i \(0.568519\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.286711 0.0418212 0.0209106 0.999781i \(-0.493343\pi\)
0.0209106 + 0.999781i \(0.493343\pi\)
\(48\) 0 0
\(49\) −2.18907 −0.312724
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.9248 −1.50063 −0.750316 0.661080i \(-0.770098\pi\)
−0.750316 + 0.661080i \(0.770098\pi\)
\(54\) 0 0
\(55\) 1.89382i 0.255363i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.10246i 0.794473i 0.917716 + 0.397237i \(0.130031\pi\)
−0.917716 + 0.397237i \(0.869969\pi\)
\(60\) 0 0
\(61\) 14.1808i 1.81567i 0.419328 + 0.907835i \(0.362266\pi\)
−0.419328 + 0.907835i \(0.637734\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 10.3078i 1.27852i
\(66\) 0 0
\(67\) 12.2822 1.50051 0.750256 0.661147i \(-0.229930\pi\)
0.750256 + 0.661147i \(0.229930\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.74776 1.15685 0.578423 0.815737i \(-0.303668\pi\)
0.578423 + 0.815737i \(0.303668\pi\)
\(72\) 0 0
\(73\) 7.25976 0.849690 0.424845 0.905266i \(-0.360329\pi\)
0.424845 + 0.905266i \(0.360329\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.03135 0.345454
\(78\) 0 0
\(79\) 3.48834i 0.392469i 0.980557 + 0.196234i \(0.0628713\pi\)
−0.980557 + 0.196234i \(0.937129\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.17926i 1.00755i 0.863834 + 0.503777i \(0.168057\pi\)
−0.863834 + 0.503777i \(0.831943\pi\)
\(84\) 0 0
\(85\) − 12.1290i − 1.31558i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 9.80721i − 1.03956i −0.854299 0.519781i \(-0.826014\pi\)
0.854299 0.519781i \(-0.173986\pi\)
\(90\) 0 0
\(91\) 16.4991 1.72957
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −11.1153 −1.14040
\(96\) 0 0
\(97\) 4.90282 0.497806 0.248903 0.968528i \(-0.419930\pi\)
0.248903 + 0.968528i \(0.419930\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.89361 −0.884947 −0.442474 0.896782i \(-0.645899\pi\)
−0.442474 + 0.896782i \(0.645899\pi\)
\(102\) 0 0
\(103\) 18.9666i 1.86883i 0.356181 + 0.934417i \(0.384079\pi\)
−0.356181 + 0.934417i \(0.615921\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.57243i 0.345360i 0.984978 + 0.172680i \(0.0552427\pi\)
−0.984978 + 0.172680i \(0.944757\pi\)
\(108\) 0 0
\(109\) 7.99636i 0.765912i 0.923767 + 0.382956i \(0.125094\pi\)
−0.923767 + 0.382956i \(0.874906\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.1728i 1.52141i 0.649100 + 0.760703i \(0.275146\pi\)
−0.649100 + 0.760703i \(0.724854\pi\)
\(114\) 0 0
\(115\) −5.54096 −0.516697
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −19.4143 −1.77971
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1459 1.08636
\(126\) 0 0
\(127\) 12.9725i 1.15113i 0.817757 + 0.575563i \(0.195217\pi\)
−0.817757 + 0.575563i \(0.804783\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 2.79197i − 0.243936i −0.992534 0.121968i \(-0.961080\pi\)
0.992534 0.121968i \(-0.0389205\pi\)
\(132\) 0 0
\(133\) 17.7917i 1.54273i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 1.92047i − 0.164077i −0.996629 0.0820386i \(-0.973857\pi\)
0.996629 0.0820386i \(-0.0261431\pi\)
\(138\) 0 0
\(139\) 5.27856 0.447722 0.223861 0.974621i \(-0.428134\pi\)
0.223861 + 0.974621i \(0.428134\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.44282 −0.455152
\(144\) 0 0
\(145\) −1.13751 −0.0944654
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.86168 −0.562131 −0.281065 0.959689i \(-0.590688\pi\)
−0.281065 + 0.959689i \(0.590688\pi\)
\(150\) 0 0
\(151\) − 3.42172i − 0.278456i −0.990260 0.139228i \(-0.955538\pi\)
0.990260 0.139228i \(-0.0444621\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 20.5193i 1.64815i
\(156\) 0 0
\(157\) − 11.0872i − 0.884852i −0.896805 0.442426i \(-0.854118\pi\)
0.896805 0.442426i \(-0.145882\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.86912i 0.698985i
\(162\) 0 0
\(163\) −4.41416 −0.345744 −0.172872 0.984944i \(-0.555305\pi\)
−0.172872 + 0.984944i \(0.555305\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.3233 0.798839 0.399419 0.916768i \(-0.369212\pi\)
0.399419 + 0.916768i \(0.369212\pi\)
\(168\) 0 0
\(169\) −16.6243 −1.27879
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −11.3286 −0.861301 −0.430650 0.902519i \(-0.641716\pi\)
−0.430650 + 0.902519i \(0.641716\pi\)
\(174\) 0 0
\(175\) − 4.28459i − 0.323885i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.71663i 0.427281i 0.976912 + 0.213640i \(0.0685321\pi\)
−0.976912 + 0.213640i \(0.931468\pi\)
\(180\) 0 0
\(181\) − 5.36910i − 0.399082i −0.979889 0.199541i \(-0.936055\pi\)
0.979889 0.199541i \(-0.0639451\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.71640i 0.273235i
\(186\) 0 0
\(187\) 6.40451 0.468344
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.76090 0.706274 0.353137 0.935572i \(-0.385115\pi\)
0.353137 + 0.935572i \(0.385115\pi\)
\(192\) 0 0
\(193\) −13.7187 −0.987492 −0.493746 0.869606i \(-0.664373\pi\)
−0.493746 + 0.869606i \(0.664373\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.5373 1.17823 0.589116 0.808048i \(-0.299476\pi\)
0.589116 + 0.808048i \(0.299476\pi\)
\(198\) 0 0
\(199\) 16.6620i 1.18114i 0.806986 + 0.590570i \(0.201097\pi\)
−0.806986 + 0.590570i \(0.798903\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.82076i 0.127792i
\(204\) 0 0
\(205\) − 17.0110i − 1.18810i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 5.86923i − 0.405983i
\(210\) 0 0
\(211\) 13.5380 0.931997 0.465998 0.884786i \(-0.345695\pi\)
0.465998 + 0.884786i \(0.345695\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.30521 0.361812
\(216\) 0 0
\(217\) 32.8441 2.22960
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 34.8586 2.34484
\(222\) 0 0
\(223\) − 7.44081i − 0.498274i −0.968468 0.249137i \(-0.919853\pi\)
0.968468 0.249137i \(-0.0801469\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.8423i 1.18424i 0.805851 + 0.592118i \(0.201708\pi\)
−0.805851 + 0.592118i \(0.798292\pi\)
\(228\) 0 0
\(229\) 1.69896i 0.112271i 0.998423 + 0.0561353i \(0.0178778\pi\)
−0.998423 + 0.0561353i \(0.982122\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.6370i 1.35197i 0.736914 + 0.675986i \(0.236282\pi\)
−0.736914 + 0.675986i \(0.763718\pi\)
\(234\) 0 0
\(235\) −0.542981 −0.0354202
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 11.1366 0.720369 0.360185 0.932881i \(-0.382714\pi\)
0.360185 + 0.932881i \(0.382714\pi\)
\(240\) 0 0
\(241\) 21.8983 1.41059 0.705297 0.708912i \(-0.250814\pi\)
0.705297 + 0.708912i \(0.250814\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.14571 0.264860
\(246\) 0 0
\(247\) − 31.9452i − 2.03262i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.82931i 0.304823i 0.988317 + 0.152412i \(0.0487040\pi\)
−0.988317 + 0.152412i \(0.951296\pi\)
\(252\) 0 0
\(253\) − 2.92580i − 0.183944i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.67491i 0.291613i 0.989313 + 0.145806i \(0.0465776\pi\)
−0.989313 + 0.145806i \(0.953422\pi\)
\(258\) 0 0
\(259\) 5.94865 0.369631
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.52091 −0.402096 −0.201048 0.979581i \(-0.564435\pi\)
−0.201048 + 0.979581i \(0.564435\pi\)
\(264\) 0 0
\(265\) 20.6896 1.27095
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.26314 −0.259928 −0.129964 0.991519i \(-0.541486\pi\)
−0.129964 + 0.991519i \(0.541486\pi\)
\(270\) 0 0
\(271\) − 2.03841i − 0.123824i −0.998082 0.0619122i \(-0.980280\pi\)
0.998082 0.0619122i \(-0.0197199\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.41343i 0.0852329i
\(276\) 0 0
\(277\) 13.8227i 0.830526i 0.909701 + 0.415263i \(0.136310\pi\)
−0.909701 + 0.415263i \(0.863690\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 15.3473i − 0.915543i −0.889070 0.457772i \(-0.848648\pi\)
0.889070 0.457772i \(-0.151352\pi\)
\(282\) 0 0
\(283\) 6.72089 0.399516 0.199758 0.979845i \(-0.435984\pi\)
0.199758 + 0.979845i \(0.435984\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −27.2286 −1.60725
\(288\) 0 0
\(289\) −24.0178 −1.41281
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −28.4865 −1.66420 −0.832098 0.554628i \(-0.812861\pi\)
−0.832098 + 0.554628i \(0.812861\pi\)
\(294\) 0 0
\(295\) − 11.5570i − 0.672874i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 15.9246i − 0.920944i
\(300\) 0 0
\(301\) − 8.49178i − 0.489458i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 26.8560i − 1.53777i
\(306\) 0 0
\(307\) −12.0385 −0.687071 −0.343536 0.939140i \(-0.611625\pi\)
−0.343536 + 0.939140i \(0.611625\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 18.0967 1.02617 0.513084 0.858338i \(-0.328503\pi\)
0.513084 + 0.858338i \(0.328503\pi\)
\(312\) 0 0
\(313\) 29.1782 1.64925 0.824625 0.565680i \(-0.191386\pi\)
0.824625 + 0.565680i \(0.191386\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.26052 −0.295460 −0.147730 0.989028i \(-0.547197\pi\)
−0.147730 + 0.989028i \(0.547197\pi\)
\(318\) 0 0
\(319\) − 0.600643i − 0.0336296i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 37.5895i 2.09154i
\(324\) 0 0
\(325\) 7.69303i 0.426733i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.869122i 0.0479162i
\(330\) 0 0
\(331\) −24.3562 −1.33874 −0.669369 0.742930i \(-0.733435\pi\)
−0.669369 + 0.742930i \(0.733435\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −23.2604 −1.27085
\(336\) 0 0
\(337\) −11.1496 −0.607359 −0.303680 0.952774i \(-0.598215\pi\)
−0.303680 + 0.952774i \(0.598215\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10.8348 −0.586739
\(342\) 0 0
\(343\) 14.5836i 0.787441i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 7.87537i − 0.422772i −0.977403 0.211386i \(-0.932202\pi\)
0.977403 0.211386i \(-0.0677977\pi\)
\(348\) 0 0
\(349\) 5.06335i 0.271035i 0.990775 + 0.135517i \(0.0432696\pi\)
−0.990775 + 0.135517i \(0.956730\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 24.4608i − 1.30192i −0.759114 0.650958i \(-0.774367\pi\)
0.759114 0.650958i \(-0.225633\pi\)
\(354\) 0 0
\(355\) −18.4605 −0.979784
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.36867 0.283348 0.141674 0.989913i \(-0.454752\pi\)
0.141674 + 0.989913i \(0.454752\pi\)
\(360\) 0 0
\(361\) 15.4478 0.813044
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −13.7487 −0.719640
\(366\) 0 0
\(367\) − 28.9008i − 1.50861i −0.656525 0.754304i \(-0.727974\pi\)
0.656525 0.754304i \(-0.272026\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 33.1167i − 1.71934i
\(372\) 0 0
\(373\) 32.3825i 1.67670i 0.545130 + 0.838352i \(0.316480\pi\)
−0.545130 + 0.838352i \(0.683520\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 3.26920i − 0.168372i
\(378\) 0 0
\(379\) 16.7643 0.861123 0.430562 0.902561i \(-0.358315\pi\)
0.430562 + 0.902561i \(0.358315\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.2458 −0.574634 −0.287317 0.957836i \(-0.592763\pi\)
−0.287317 + 0.957836i \(0.592763\pi\)
\(384\) 0 0
\(385\) −5.74084 −0.292580
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15.3472 0.778136 0.389068 0.921209i \(-0.372797\pi\)
0.389068 + 0.921209i \(0.372797\pi\)
\(390\) 0 0
\(391\) 18.7383i 0.947638i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 6.60630i − 0.332399i
\(396\) 0 0
\(397\) − 13.8736i − 0.696297i −0.937439 0.348148i \(-0.886811\pi\)
0.937439 0.348148i \(-0.113189\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.36307i 0.417632i 0.977955 + 0.208816i \(0.0669609\pi\)
−0.977955 + 0.208816i \(0.933039\pi\)
\(402\) 0 0
\(403\) −58.9720 −2.93761
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.96238 −0.0972715
\(408\) 0 0
\(409\) 20.6740 1.02226 0.511132 0.859502i \(-0.329226\pi\)
0.511132 + 0.859502i \(0.329226\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −18.4987 −0.910261
\(414\) 0 0
\(415\) − 17.3839i − 0.853343i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 4.14867i − 0.202676i −0.994852 0.101338i \(-0.967688\pi\)
0.994852 0.101338i \(-0.0323123\pi\)
\(420\) 0 0
\(421\) − 17.8077i − 0.867896i −0.900938 0.433948i \(-0.857120\pi\)
0.900938 0.433948i \(-0.142880\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 9.05231i − 0.439102i
\(426\) 0 0
\(427\) −42.9870 −2.08029
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 29.5960 1.42559 0.712796 0.701372i \(-0.247429\pi\)
0.712796 + 0.701372i \(0.247429\pi\)
\(432\) 0 0
\(433\) −13.0944 −0.629278 −0.314639 0.949211i \(-0.601883\pi\)
−0.314639 + 0.949211i \(0.601883\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.1722 0.821457
\(438\) 0 0
\(439\) − 2.26583i − 0.108142i −0.998537 0.0540710i \(-0.982780\pi\)
0.998537 0.0540710i \(-0.0172197\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 0.704612i − 0.0334771i −0.999860 0.0167386i \(-0.994672\pi\)
0.999860 0.0167386i \(-0.00532830\pi\)
\(444\) 0 0
\(445\) 18.5731i 0.880451i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 28.1301i 1.32754i 0.747935 + 0.663771i \(0.231045\pi\)
−0.747935 + 0.663771i \(0.768955\pi\)
\(450\) 0 0
\(451\) 8.98233 0.422961
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −31.2464 −1.46485
\(456\) 0 0
\(457\) −1.92294 −0.0899512 −0.0449756 0.998988i \(-0.514321\pi\)
−0.0449756 + 0.998988i \(0.514321\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −21.1590 −0.985474 −0.492737 0.870178i \(-0.664003\pi\)
−0.492737 + 0.870178i \(0.664003\pi\)
\(462\) 0 0
\(463\) − 9.13809i − 0.424683i −0.977195 0.212342i \(-0.931891\pi\)
0.977195 0.212342i \(-0.0681090\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 28.4368i 1.31590i 0.753063 + 0.657949i \(0.228576\pi\)
−0.753063 + 0.657949i \(0.771424\pi\)
\(468\) 0 0
\(469\) 37.2317i 1.71920i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.80132i 0.128805i
\(474\) 0 0
\(475\) −8.29573 −0.380634
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −30.6250 −1.39929 −0.699646 0.714490i \(-0.746659\pi\)
−0.699646 + 0.714490i \(0.746659\pi\)
\(480\) 0 0
\(481\) −10.6809 −0.487006
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9.28508 −0.421614
\(486\) 0 0
\(487\) − 12.3155i − 0.558067i −0.960281 0.279033i \(-0.909986\pi\)
0.960281 0.279033i \(-0.0900140\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 34.9081i − 1.57538i −0.616072 0.787690i \(-0.711277\pi\)
0.616072 0.787690i \(-0.288723\pi\)
\(492\) 0 0
\(493\) 3.84683i 0.173252i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 29.5488i 1.32545i
\(498\) 0 0
\(499\) 3.73964 0.167409 0.0837047 0.996491i \(-0.473325\pi\)
0.0837047 + 0.996491i \(0.473325\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −8.50418 −0.379182 −0.189591 0.981863i \(-0.560716\pi\)
−0.189591 + 0.981863i \(0.560716\pi\)
\(504\) 0 0
\(505\) 16.8429 0.749501
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 13.2510 0.587342 0.293671 0.955907i \(-0.405123\pi\)
0.293671 + 0.955907i \(0.405123\pi\)
\(510\) 0 0
\(511\) 22.0068i 0.973526i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 35.9194i − 1.58280i
\(516\) 0 0
\(517\) − 0.286711i − 0.0126096i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 37.2904i − 1.63372i −0.576836 0.816860i \(-0.695713\pi\)
0.576836 0.816860i \(-0.304287\pi\)
\(522\) 0 0
\(523\) 20.1065 0.879196 0.439598 0.898195i \(-0.355121\pi\)
0.439598 + 0.898195i \(0.355121\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 69.3917 3.02275
\(528\) 0 0
\(529\) −14.4397 −0.627812
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 48.8892 2.11763
\(534\) 0 0
\(535\) − 6.76557i − 0.292501i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.18907i 0.0942899i
\(540\) 0 0
\(541\) 2.44647i 0.105182i 0.998616 + 0.0525911i \(0.0167480\pi\)
−0.998616 + 0.0525911i \(0.983252\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 15.1437i − 0.648685i
\(546\) 0 0
\(547\) 43.2279 1.84829 0.924147 0.382038i \(-0.124777\pi\)
0.924147 + 0.382038i \(0.124777\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.52531 0.150183
\(552\) 0 0
\(553\) −10.5744 −0.449668
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 42.3302 1.79359 0.896795 0.442447i \(-0.145890\pi\)
0.896795 + 0.442447i \(0.145890\pi\)
\(558\) 0 0
\(559\) 15.2471i 0.644883i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 46.1269i − 1.94402i −0.234942 0.972009i \(-0.575490\pi\)
0.234942 0.972009i \(-0.424510\pi\)
\(564\) 0 0
\(565\) − 30.6284i − 1.28855i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 28.6718i − 1.20198i −0.799255 0.600992i \(-0.794772\pi\)
0.799255 0.600992i \(-0.205228\pi\)
\(570\) 0 0
\(571\) −8.59888 −0.359852 −0.179926 0.983680i \(-0.557586\pi\)
−0.179926 + 0.983680i \(0.557586\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.13541 −0.172458
\(576\) 0 0
\(577\) 0.581402 0.0242041 0.0121020 0.999927i \(-0.496148\pi\)
0.0121020 + 0.999927i \(0.496148\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −27.8255 −1.15440
\(582\) 0 0
\(583\) 10.9248i 0.452457i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 44.5638i 1.83934i 0.392686 + 0.919672i \(0.371546\pi\)
−0.392686 + 0.919672i \(0.628454\pi\)
\(588\) 0 0
\(589\) − 63.5920i − 2.62026i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 28.3669i − 1.16489i −0.812870 0.582445i \(-0.802096\pi\)
0.812870 0.582445i \(-0.197904\pi\)
\(594\) 0 0
\(595\) 36.7673 1.50731
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 20.6490 0.843696 0.421848 0.906667i \(-0.361382\pi\)
0.421848 + 0.906667i \(0.361382\pi\)
\(600\) 0 0
\(601\) −38.2236 −1.55917 −0.779587 0.626295i \(-0.784571\pi\)
−0.779587 + 0.626295i \(0.784571\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.89382 0.0769949
\(606\) 0 0
\(607\) 40.4873i 1.64333i 0.569971 + 0.821665i \(0.306954\pi\)
−0.569971 + 0.821665i \(0.693046\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 1.56052i − 0.0631318i
\(612\) 0 0
\(613\) − 3.43337i − 0.138673i −0.997593 0.0693363i \(-0.977912\pi\)
0.997593 0.0693363i \(-0.0220882\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 26.0661i − 1.04938i −0.851293 0.524690i \(-0.824181\pi\)
0.851293 0.524690i \(-0.175819\pi\)
\(618\) 0 0
\(619\) −37.0540 −1.48933 −0.744664 0.667440i \(-0.767390\pi\)
−0.744664 + 0.667440i \(0.767390\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 29.7291 1.19107
\(624\) 0 0
\(625\) −15.9351 −0.637403
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.5681 0.501122
\(630\) 0 0
\(631\) − 19.3001i − 0.768325i −0.923266 0.384162i \(-0.874490\pi\)
0.923266 0.384162i \(-0.125510\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 24.5677i − 0.974940i
\(636\) 0 0
\(637\) 11.9147i 0.472078i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 26.9766i 1.06551i 0.846269 + 0.532757i \(0.178844\pi\)
−0.846269 + 0.532757i \(0.821156\pi\)
\(642\) 0 0
\(643\) −29.2484 −1.15345 −0.576723 0.816940i \(-0.695669\pi\)
−0.576723 + 0.816940i \(0.695669\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 27.7125 1.08949 0.544746 0.838601i \(-0.316626\pi\)
0.544746 + 0.838601i \(0.316626\pi\)
\(648\) 0 0
\(649\) 6.10246 0.239543
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −33.4035 −1.30718 −0.653590 0.756849i \(-0.726738\pi\)
−0.653590 + 0.756849i \(0.726738\pi\)
\(654\) 0 0
\(655\) 5.28750i 0.206600i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.79075i 0.303485i 0.988420 + 0.151742i \(0.0484884\pi\)
−0.988420 + 0.151742i \(0.951512\pi\)
\(660\) 0 0
\(661\) 9.59043i 0.373024i 0.982453 + 0.186512i \(0.0597184\pi\)
−0.982453 + 0.186512i \(0.940282\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 33.6943i − 1.30661i
\(666\) 0 0
\(667\) 1.75736 0.0680454
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14.1808 0.547445
\(672\) 0 0
\(673\) −17.3398 −0.668399 −0.334199 0.942502i \(-0.608466\pi\)
−0.334199 + 0.942502i \(0.608466\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 19.5740 0.752290 0.376145 0.926561i \(-0.377249\pi\)
0.376145 + 0.926561i \(0.377249\pi\)
\(678\) 0 0
\(679\) 14.8621i 0.570357i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 29.6643i − 1.13507i −0.823348 0.567537i \(-0.807897\pi\)
0.823348 0.567537i \(-0.192103\pi\)
\(684\) 0 0
\(685\) 3.63704i 0.138964i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 59.4615i 2.26530i
\(690\) 0 0
\(691\) −17.6568 −0.671695 −0.335848 0.941916i \(-0.609023\pi\)
−0.335848 + 0.941916i \(0.609023\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.99668 −0.379196
\(696\) 0 0
\(697\) −57.5274 −2.17901
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 23.0321 0.869909 0.434955 0.900452i \(-0.356764\pi\)
0.434955 + 0.900452i \(0.356764\pi\)
\(702\) 0 0
\(703\) − 11.5177i − 0.434396i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 26.9596i − 1.01392i
\(708\) 0 0
\(709\) − 34.3471i − 1.28993i −0.764211 0.644966i \(-0.776872\pi\)
0.764211 0.644966i \(-0.223128\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 31.7005i − 1.18719i
\(714\) 0 0
\(715\) 10.3078 0.385488
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −26.4769 −0.987422 −0.493711 0.869626i \(-0.664360\pi\)
−0.493711 + 0.869626i \(0.664360\pi\)
\(720\) 0 0
\(721\) −57.4943 −2.14120
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.848966 −0.0315298
\(726\) 0 0
\(727\) − 40.9300i − 1.51801i −0.651085 0.759005i \(-0.725686\pi\)
0.651085 0.759005i \(-0.274314\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 17.9411i − 0.663575i
\(732\) 0 0
\(733\) 22.4662i 0.829808i 0.909865 + 0.414904i \(0.136185\pi\)
−0.909865 + 0.414904i \(0.863815\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 12.2822i − 0.452422i
\(738\) 0 0
\(739\) 27.2642 1.00293 0.501465 0.865178i \(-0.332794\pi\)
0.501465 + 0.865178i \(0.332794\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −15.4473 −0.566706 −0.283353 0.959016i \(-0.591447\pi\)
−0.283353 + 0.959016i \(0.591447\pi\)
\(744\) 0 0
\(745\) 12.9948 0.476093
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −10.8293 −0.395694
\(750\) 0 0
\(751\) 44.7392i 1.63256i 0.577658 + 0.816279i \(0.303967\pi\)
−0.577658 + 0.816279i \(0.696033\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 6.48014i 0.235837i
\(756\) 0 0
\(757\) 22.6158i 0.821985i 0.911639 + 0.410992i \(0.134818\pi\)
−0.911639 + 0.410992i \(0.865182\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 4.47443i − 0.162198i −0.996706 0.0810990i \(-0.974157\pi\)
0.996706 0.0810990i \(-0.0258430\pi\)
\(762\) 0 0
\(763\) −24.2397 −0.877538
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 33.2146 1.19931
\(768\) 0 0
\(769\) −37.5456 −1.35393 −0.676965 0.736016i \(-0.736705\pi\)
−0.676965 + 0.736016i \(0.736705\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.97430 −0.322783 −0.161392 0.986890i \(-0.551598\pi\)
−0.161392 + 0.986890i \(0.551598\pi\)
\(774\) 0 0
\(775\) 15.3142i 0.550104i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 52.7193i 1.88887i
\(780\) 0 0
\(781\) − 9.74776i − 0.348802i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 20.9971i 0.749420i
\(786\) 0 0
\(787\) 6.21327 0.221479 0.110740 0.993849i \(-0.464678\pi\)
0.110740 + 0.993849i \(0.464678\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −49.0253 −1.74314
\(792\) 0 0
\(793\) 77.1838 2.74088
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −23.4519 −0.830708 −0.415354 0.909660i \(-0.636342\pi\)
−0.415354 + 0.909660i \(0.636342\pi\)
\(798\) 0 0
\(799\) 1.83625i 0.0649617i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 7.25976i − 0.256191i
\(804\) 0 0
\(805\) − 16.7966i − 0.592001i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 38.3475i − 1.34823i −0.738628 0.674113i \(-0.764526\pi\)
0.738628 0.674113i \(-0.235474\pi\)
\(810\) 0 0
\(811\) 20.3661 0.715152 0.357576 0.933884i \(-0.383603\pi\)
0.357576 + 0.933884i \(0.383603\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8.35965 0.292826
\(816\) 0 0
\(817\) −16.4416 −0.575219
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −30.2233 −1.05480 −0.527401 0.849617i \(-0.676833\pi\)
−0.527401 + 0.849617i \(0.676833\pi\)
\(822\) 0 0
\(823\) − 6.31287i − 0.220053i −0.993929 0.110026i \(-0.964906\pi\)
0.993929 0.110026i \(-0.0350935\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 39.5499i − 1.37528i −0.726050 0.687642i \(-0.758646\pi\)
0.726050 0.687642i \(-0.241354\pi\)
\(828\) 0 0
\(829\) − 11.5153i − 0.399944i −0.979802 0.199972i \(-0.935915\pi\)
0.979802 0.199972i \(-0.0640851\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 14.0199i − 0.485761i
\(834\) 0 0
\(835\) −19.5505 −0.676572
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 13.8630 0.478603 0.239301 0.970945i \(-0.423082\pi\)
0.239301 + 0.970945i \(0.423082\pi\)
\(840\) 0 0
\(841\) −28.6392 −0.987560
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 31.4835 1.08307
\(846\) 0 0
\(847\) − 3.03135i − 0.104158i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 5.74153i − 0.196817i
\(852\) 0 0
\(853\) − 13.8053i − 0.472683i −0.971670 0.236341i \(-0.924052\pi\)
0.971670 0.236341i \(-0.0759484\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.3186i 0.489114i 0.969635 + 0.244557i \(0.0786425\pi\)
−0.969635 + 0.244557i \(0.921357\pi\)
\(858\) 0 0
\(859\) 50.8997 1.73667 0.868337 0.495974i \(-0.165189\pi\)
0.868337 + 0.495974i \(0.165189\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −25.0310 −0.852066 −0.426033 0.904708i \(-0.640089\pi\)
−0.426033 + 0.904708i \(0.640089\pi\)
\(864\) 0 0
\(865\) 21.4545 0.729474
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.48834 0.118334
\(870\) 0 0
\(871\) − 66.8500i − 2.26512i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 36.8185i 1.24469i
\(876\) 0 0
\(877\) 51.9131i 1.75298i 0.481420 + 0.876490i \(0.340121\pi\)
−0.481420 + 0.876490i \(0.659879\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 40.2674i − 1.35664i −0.734765 0.678322i \(-0.762708\pi\)
0.734765 0.678322i \(-0.237292\pi\)
\(882\) 0 0
\(883\) 14.7777 0.497309 0.248655 0.968592i \(-0.420012\pi\)
0.248655 + 0.968592i \(0.420012\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −38.9704 −1.30850 −0.654249 0.756279i \(-0.727015\pi\)
−0.654249 + 0.756279i \(0.727015\pi\)
\(888\) 0 0
\(889\) −39.3243 −1.31889
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.68277 0.0563119
\(894\) 0 0
\(895\) − 10.8263i − 0.361883i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 6.50787i − 0.217049i
\(900\) 0 0
\(901\) − 69.9677i − 2.33096i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.1681i 0.338000i
\(906\) 0 0
\(907\) 13.4008 0.444967 0.222484 0.974936i \(-0.428584\pi\)
0.222484 + 0.974936i \(0.428584\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 41.8465 1.38644 0.693218 0.720728i \(-0.256192\pi\)
0.693218 + 0.720728i \(0.256192\pi\)
\(912\) 0 0
\(913\) 9.17926 0.303789
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.46344 0.279487
\(918\) 0 0
\(919\) − 9.95866i − 0.328506i −0.986418 0.164253i \(-0.947479\pi\)
0.986418 0.164253i \(-0.0525213\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 53.0553i − 1.74634i
\(924\) 0 0
\(925\) 2.77368i 0.0911981i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 2.24932i − 0.0737976i −0.999319 0.0368988i \(-0.988252\pi\)
0.999319 0.0368988i \(-0.0117479\pi\)
\(930\) 0 0
\(931\) −12.8481 −0.421081
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −12.1290 −0.396661
\(936\) 0 0
\(937\) 53.8032 1.75767 0.878837 0.477123i \(-0.158320\pi\)
0.878837 + 0.477123i \(0.158320\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 51.7764 1.68786 0.843931 0.536451i \(-0.180235\pi\)
0.843931 + 0.536451i \(0.180235\pi\)
\(942\) 0 0
\(943\) 26.2805i 0.855811i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 15.6828i − 0.509622i −0.966991 0.254811i \(-0.917987\pi\)
0.966991 0.254811i \(-0.0820132\pi\)
\(948\) 0 0
\(949\) − 39.5136i − 1.28266i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.4309i 0.694215i 0.937825 + 0.347107i \(0.112836\pi\)
−0.937825 + 0.347107i \(0.887164\pi\)
\(954\) 0 0
\(955\) −18.4854 −0.598175
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.82162 0.187990
\(960\) 0 0
\(961\) −86.3934 −2.78688
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 25.9808 0.836351
\(966\) 0 0
\(967\) 20.8025i 0.668963i 0.942402 + 0.334481i \(0.108561\pi\)
−0.942402 + 0.334481i \(0.891439\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 10.5120i 0.337346i 0.985672 + 0.168673i \(0.0539481\pi\)
−0.985672 + 0.168673i \(0.946052\pi\)
\(972\) 0 0
\(973\) 16.0012i 0.512974i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 57.0894i 1.82645i 0.407453 + 0.913226i \(0.366417\pi\)
−0.407453 + 0.913226i \(0.633583\pi\)
\(978\) 0 0
\(979\) −9.80721 −0.313440
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 17.1034 0.545514 0.272757 0.962083i \(-0.412064\pi\)
0.272757 + 0.962083i \(0.412064\pi\)
\(984\) 0 0
\(985\) −31.3187 −0.997898
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.19611 −0.260621
\(990\) 0 0
\(991\) 40.9703i 1.30147i 0.759307 + 0.650733i \(0.225538\pi\)
−0.759307 + 0.650733i \(0.774462\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 31.5550i − 1.00036i
\(996\) 0 0
\(997\) − 21.1608i − 0.670168i −0.942188 0.335084i \(-0.891235\pi\)
0.942188 0.335084i \(-0.108765\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3168.2.k.a.1871.11 40
3.2 odd 2 inner 3168.2.k.a.1871.29 40
4.3 odd 2 792.2.k.a.683.17 40
8.3 odd 2 inner 3168.2.k.a.1871.30 40
8.5 even 2 792.2.k.a.683.23 yes 40
12.11 even 2 792.2.k.a.683.24 yes 40
24.5 odd 2 792.2.k.a.683.18 yes 40
24.11 even 2 inner 3168.2.k.a.1871.12 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.k.a.683.17 40 4.3 odd 2
792.2.k.a.683.18 yes 40 24.5 odd 2
792.2.k.a.683.23 yes 40 8.5 even 2
792.2.k.a.683.24 yes 40 12.11 even 2
3168.2.k.a.1871.11 40 1.1 even 1 trivial
3168.2.k.a.1871.12 40 24.11 even 2 inner
3168.2.k.a.1871.29 40 3.2 odd 2 inner
3168.2.k.a.1871.30 40 8.3 odd 2 inner