Properties

Label 7865.2.a.p
Level $7865$
Weight $2$
Character orbit 7865.a
Self dual yes
Analytic conductor $62.802$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7865,2,Mod(1,7865)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7865, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7865.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7865 = 5 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7865.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,5,-2,7,-6,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.8023411897\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.3486377.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 6x^{4} - x^{3} + 7x^{2} + x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 715)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{4} + 1) q^{2} - \beta_{5} q^{3} + ( - \beta_{4} + \beta_{2} + 1) q^{4} - q^{5} + ( - 2 \beta_{5} - \beta_{4} - \beta_{3} + \cdots + 1) q^{6} + ( - \beta_{5} - \beta_{3} + 2) q^{7} + ( - \beta_{4} + \beta_{3} + 2 \beta_{2} + \cdots + 2) q^{8}+ \cdots + ( - 12 \beta_{5} - 14 \beta_{4} + \cdots + 10) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{2} - 2 q^{3} + 7 q^{4} - 6 q^{5} - 3 q^{6} + 8 q^{7} + 15 q^{8} + 4 q^{9} - 5 q^{10} + 4 q^{12} - 6 q^{13} + 2 q^{15} + 21 q^{16} + 16 q^{17} + 17 q^{18} + 4 q^{19} - 7 q^{20} + 16 q^{21} - 2 q^{23}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 6x^{4} - x^{3} + 7x^{2} + x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{5} - 5\nu^{3} - \nu^{2} + 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - 5\nu^{2} + 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{5} + 5\nu^{3} + 2\nu^{2} - 3\nu - 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - 6\nu^{3} - \nu^{2} + 6\nu + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - \nu^{4} - 5\nu^{3} + 4\nu^{2} + 4\nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{2} - \beta _1 - 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + 2\beta_{3} + \beta_{2} + \beta _1 + 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{5} - \beta_{4} + 2\beta_{2} - \beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 5\beta_{5} + 10\beta_{3} + 7\beta_{2} + 5\beta _1 + 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 19\beta_{5} - 10\beta_{4} + 2\beta_{3} + 19\beta_{2} - 5\beta _1 - 5 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.333026
−1.97227
−1.22291
1.12278
−0.496030
2.23541
−1.66974 0.417146 0.788028 −1.00000 −0.696526 5.01383 2.02368 −2.82599 1.66974
1.2 −0.465241 0.943751 −1.78355 −1.00000 −0.439072 −0.235891 1.76026 −2.10933 0.465241
1.3 0.594807 −3.26314 −1.64620 −1.00000 −1.94094 0.486385 −2.16879 7.64811 −0.594807
1.4 1.23213 −0.651701 −0.481844 −1.00000 −0.802983 −1.09740 −3.05797 −2.57529 −1.23213
1.5 2.51998 2.48027 4.35029 −1.00000 6.25024 5.08029 5.92267 3.15176 −2.51998
1.6 2.78806 −1.92633 5.77328 −1.00000 −5.37071 −1.24723 10.5201 0.710733 −2.78806
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(11\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7865.2.a.p 6
11.b odd 2 1 715.2.a.f 6
33.d even 2 1 6435.2.a.bk 6
55.d odd 2 1 3575.2.a.r 6
143.d odd 2 1 9295.2.a.o 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
715.2.a.f 6 11.b odd 2 1
3575.2.a.r 6 55.d odd 2 1
6435.2.a.bk 6 33.d even 2 1
7865.2.a.p 6 1.a even 1 1 trivial
9295.2.a.o 6 143.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7865))\):

\( T_{2}^{6} - 5T_{2}^{5} + 3T_{2}^{4} + 15T_{2}^{3} - 17T_{2}^{2} - 2T_{2} + 4 \) Copy content Toggle raw display
\( T_{3}^{6} + 2T_{3}^{5} - 9T_{3}^{4} - 12T_{3}^{3} + 15T_{3}^{2} + 6T_{3} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 5 T^{5} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( T^{6} + 2 T^{5} + \cdots - 4 \) Copy content Toggle raw display
$5$ \( (T + 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 8 T^{5} + \cdots - 4 \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( (T + 1)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} - 16 T^{5} + \cdots - 592 \) Copy content Toggle raw display
$19$ \( T^{6} - 4 T^{5} + \cdots - 869 \) Copy content Toggle raw display
$23$ \( T^{6} + 2 T^{5} + \cdots - 6668 \) Copy content Toggle raw display
$29$ \( T^{6} - 2 T^{5} + \cdots + 14528 \) Copy content Toggle raw display
$31$ \( T^{6} - 4 T^{5} + \cdots + 5056 \) Copy content Toggle raw display
$37$ \( T^{6} + 14 T^{5} + \cdots - 31696 \) Copy content Toggle raw display
$41$ \( T^{6} - 18 T^{5} + \cdots + 29183 \) Copy content Toggle raw display
$43$ \( T^{6} - 12 T^{5} + \cdots + 23152 \) Copy content Toggle raw display
$47$ \( T^{6} + 24 T^{5} + \cdots + 592 \) Copy content Toggle raw display
$53$ \( T^{6} + 10 T^{5} + \cdots + 44864 \) Copy content Toggle raw display
$59$ \( T^{6} + 8 T^{5} + \cdots - 64576 \) Copy content Toggle raw display
$61$ \( T^{6} - 16 T^{5} + \cdots + 8128 \) Copy content Toggle raw display
$67$ \( T^{6} - 6 T^{5} + \cdots + 784 \) Copy content Toggle raw display
$71$ \( T^{6} - 10 T^{5} + \cdots + 379328 \) Copy content Toggle raw display
$73$ \( T^{6} - 32 T^{5} + \cdots + 45148 \) Copy content Toggle raw display
$79$ \( T^{6} + 16 T^{5} + \cdots + 36032 \) Copy content Toggle raw display
$83$ \( T^{6} - 22 T^{5} + \cdots + 1732 \) Copy content Toggle raw display
$89$ \( T^{6} + 26 T^{5} + \cdots + 97472 \) Copy content Toggle raw display
$97$ \( T^{6} + 4 T^{5} + \cdots + 2096 \) Copy content Toggle raw display
show more
show less