gp: [N,k,chi] = [7865,2,Mod(1,7865)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7865, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7865.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [26,1,9,31,-26,9]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(5\)
\( +1 \)
\(11\)
\( -1 \)
\(13\)
\( +1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7865))\):
\( T_{2}^{26} - T_{2}^{25} - 41 T_{2}^{24} + 39 T_{2}^{23} + 733 T_{2}^{22} - 661 T_{2}^{21} - 7506 T_{2}^{20} + \cdots - 191 \)
T2^26 - T2^25 - 41*T2^24 + 39*T2^23 + 733*T2^22 - 661*T2^21 - 7506*T2^20 + 6392*T2^19 + 48624*T2^18 - 38910*T2^17 - 207693*T2^16 + 155018*T2^15 + 591665*T2^14 - 406430*T2^13 - 1113477*T2^12 + 685207*T2^11 + 1347259*T2^10 - 701255*T2^9 - 1004765*T2^8 + 391533*T2^7 + 436556*T2^6 - 100261*T2^5 - 97063*T2^4 + 7731*T2^3 + 7898*T2^2 - 226*T2 - 191
\( T_{3}^{26} - 9 T_{3}^{25} - 13 T_{3}^{24} + 323 T_{3}^{23} - 318 T_{3}^{22} - 4937 T_{3}^{21} + \cdots + 7409 \)
T3^26 - 9*T3^25 - 13*T3^24 + 323*T3^23 - 318*T3^22 - 4937*T3^21 + 9499*T3^20 + 42092*T3^19 - 107295*T3^18 - 220417*T3^17 + 688464*T3^16 + 737026*T3^15 - 2780455*T3^14 - 1591781*T3^13 + 7302130*T3^12 + 2221442*T3^11 - 12424080*T3^10 - 2030650*T3^9 + 13186265*T3^8 + 1277205*T3^7 - 8001243*T3^6 - 524360*T3^5 + 2329392*T3^4 + 66141*T3^3 - 253848*T3^2 - 6947*T3 + 7409