Properties

Label 7865.2.a.bm.1.15
Level $7865$
Weight $2$
Character 7865.1
Self dual yes
Analytic conductor $62.802$
Analytic rank $0$
Dimension $26$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7865,2,Mod(1,7865)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7865.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7865, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7865 = 5 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7865.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [26,-1,9,31,-26,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.8023411897\)
Analytic rank: \(0\)
Dimension: \(26\)
Twist minimal: no (minimal twist has level 715)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 7865.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.352577 q^{2} +2.29811 q^{3} -1.87569 q^{4} -1.00000 q^{5} +0.810261 q^{6} -1.01025 q^{7} -1.36648 q^{8} +2.28133 q^{9} -0.352577 q^{10} -4.31055 q^{12} +1.00000 q^{13} -0.356190 q^{14} -2.29811 q^{15} +3.26959 q^{16} +5.19650 q^{17} +0.804342 q^{18} +1.01604 q^{19} +1.87569 q^{20} -2.32167 q^{21} +8.26698 q^{23} -3.14032 q^{24} +1.00000 q^{25} +0.352577 q^{26} -1.65159 q^{27} +1.89491 q^{28} -3.63516 q^{29} -0.810261 q^{30} -5.64000 q^{31} +3.88574 q^{32} +1.83216 q^{34} +1.01025 q^{35} -4.27906 q^{36} -7.92615 q^{37} +0.358232 q^{38} +2.29811 q^{39} +1.36648 q^{40} -7.03652 q^{41} -0.818565 q^{42} -4.10772 q^{43} -2.28133 q^{45} +2.91474 q^{46} +4.12792 q^{47} +7.51389 q^{48} -5.97940 q^{49} +0.352577 q^{50} +11.9421 q^{51} -1.87569 q^{52} +6.10240 q^{53} -0.582313 q^{54} +1.38048 q^{56} +2.33498 q^{57} -1.28167 q^{58} +9.82561 q^{59} +4.31055 q^{60} -1.21453 q^{61} -1.98853 q^{62} -2.30471 q^{63} -5.16916 q^{64} -1.00000 q^{65} +0.455029 q^{67} -9.74701 q^{68} +18.9985 q^{69} +0.356190 q^{70} +12.4706 q^{71} -3.11738 q^{72} -0.0209630 q^{73} -2.79458 q^{74} +2.29811 q^{75} -1.90578 q^{76} +0.810261 q^{78} +15.3937 q^{79} -3.26959 q^{80} -10.6395 q^{81} -2.48091 q^{82} -4.74746 q^{83} +4.35473 q^{84} -5.19650 q^{85} -1.44828 q^{86} -8.35402 q^{87} +12.7455 q^{89} -0.804342 q^{90} -1.01025 q^{91} -15.5063 q^{92} -12.9614 q^{93} +1.45541 q^{94} -1.01604 q^{95} +8.92986 q^{96} +4.47793 q^{97} -2.10820 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q - q^{2} + 9 q^{3} + 31 q^{4} - 26 q^{5} - 9 q^{6} - 3 q^{7} - 3 q^{8} + 29 q^{9} + q^{10} + 16 q^{12} + 26 q^{13} - 7 q^{14} - 9 q^{15} + 45 q^{16} + 8 q^{17} + 11 q^{18} + 5 q^{19} - 31 q^{20} + 3 q^{21}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.352577 0.249309 0.124655 0.992200i \(-0.460218\pi\)
0.124655 + 0.992200i \(0.460218\pi\)
\(3\) 2.29811 1.32682 0.663408 0.748258i \(-0.269109\pi\)
0.663408 + 0.748258i \(0.269109\pi\)
\(4\) −1.87569 −0.937845
\(5\) −1.00000 −0.447214
\(6\) 0.810261 0.330788
\(7\) −1.01025 −0.381838 −0.190919 0.981606i \(-0.561147\pi\)
−0.190919 + 0.981606i \(0.561147\pi\)
\(8\) −1.36648 −0.483123
\(9\) 2.28133 0.760442
\(10\) −0.352577 −0.111494
\(11\) 0 0
\(12\) −4.31055 −1.24435
\(13\) 1.00000 0.277350
\(14\) −0.356190 −0.0951958
\(15\) −2.29811 −0.593370
\(16\) 3.26959 0.817398
\(17\) 5.19650 1.26034 0.630168 0.776459i \(-0.282986\pi\)
0.630168 + 0.776459i \(0.282986\pi\)
\(18\) 0.804342 0.189585
\(19\) 1.01604 0.233096 0.116548 0.993185i \(-0.462817\pi\)
0.116548 + 0.993185i \(0.462817\pi\)
\(20\) 1.87569 0.419417
\(21\) −2.32167 −0.506629
\(22\) 0 0
\(23\) 8.26698 1.72378 0.861892 0.507091i \(-0.169279\pi\)
0.861892 + 0.507091i \(0.169279\pi\)
\(24\) −3.14032 −0.641015
\(25\) 1.00000 0.200000
\(26\) 0.352577 0.0691459
\(27\) −1.65159 −0.317849
\(28\) 1.89491 0.358105
\(29\) −3.63516 −0.675033 −0.337516 0.941320i \(-0.609587\pi\)
−0.337516 + 0.941320i \(0.609587\pi\)
\(30\) −0.810261 −0.147933
\(31\) −5.64000 −1.01297 −0.506487 0.862248i \(-0.669056\pi\)
−0.506487 + 0.862248i \(0.669056\pi\)
\(32\) 3.88574 0.686908
\(33\) 0 0
\(34\) 1.83216 0.314213
\(35\) 1.01025 0.170763
\(36\) −4.27906 −0.713177
\(37\) −7.92615 −1.30305 −0.651526 0.758626i \(-0.725871\pi\)
−0.651526 + 0.758626i \(0.725871\pi\)
\(38\) 0.358232 0.0581129
\(39\) 2.29811 0.367993
\(40\) 1.36648 0.216059
\(41\) −7.03652 −1.09892 −0.549460 0.835520i \(-0.685166\pi\)
−0.549460 + 0.835520i \(0.685166\pi\)
\(42\) −0.818565 −0.126307
\(43\) −4.10772 −0.626421 −0.313211 0.949684i \(-0.601405\pi\)
−0.313211 + 0.949684i \(0.601405\pi\)
\(44\) 0 0
\(45\) −2.28133 −0.340080
\(46\) 2.91474 0.429755
\(47\) 4.12792 0.602120 0.301060 0.953605i \(-0.402660\pi\)
0.301060 + 0.953605i \(0.402660\pi\)
\(48\) 7.51389 1.08454
\(49\) −5.97940 −0.854200
\(50\) 0.352577 0.0498618
\(51\) 11.9421 1.67223
\(52\) −1.87569 −0.260111
\(53\) 6.10240 0.838229 0.419114 0.907933i \(-0.362341\pi\)
0.419114 + 0.907933i \(0.362341\pi\)
\(54\) −0.582313 −0.0792428
\(55\) 0 0
\(56\) 1.38048 0.184475
\(57\) 2.33498 0.309275
\(58\) −1.28167 −0.168292
\(59\) 9.82561 1.27919 0.639593 0.768714i \(-0.279103\pi\)
0.639593 + 0.768714i \(0.279103\pi\)
\(60\) 4.31055 0.556489
\(61\) −1.21453 −0.155504 −0.0777522 0.996973i \(-0.524774\pi\)
−0.0777522 + 0.996973i \(0.524774\pi\)
\(62\) −1.98853 −0.252544
\(63\) −2.30471 −0.290366
\(64\) −5.16916 −0.646146
\(65\) −1.00000 −0.124035
\(66\) 0 0
\(67\) 0.455029 0.0555907 0.0277953 0.999614i \(-0.491151\pi\)
0.0277953 + 0.999614i \(0.491151\pi\)
\(68\) −9.74701 −1.18200
\(69\) 18.9985 2.28715
\(70\) 0.356190 0.0425728
\(71\) 12.4706 1.47998 0.739991 0.672617i \(-0.234830\pi\)
0.739991 + 0.672617i \(0.234830\pi\)
\(72\) −3.11738 −0.367387
\(73\) −0.0209630 −0.00245354 −0.00122677 0.999999i \(-0.500390\pi\)
−0.00122677 + 0.999999i \(0.500390\pi\)
\(74\) −2.79458 −0.324863
\(75\) 2.29811 0.265363
\(76\) −1.90578 −0.218607
\(77\) 0 0
\(78\) 0.810261 0.0917440
\(79\) 15.3937 1.73193 0.865963 0.500108i \(-0.166706\pi\)
0.865963 + 0.500108i \(0.166706\pi\)
\(80\) −3.26959 −0.365551
\(81\) −10.6395 −1.18217
\(82\) −2.48091 −0.273971
\(83\) −4.74746 −0.521101 −0.260551 0.965460i \(-0.583904\pi\)
−0.260551 + 0.965460i \(0.583904\pi\)
\(84\) 4.35473 0.475139
\(85\) −5.19650 −0.563639
\(86\) −1.44828 −0.156173
\(87\) −8.35402 −0.895644
\(88\) 0 0
\(89\) 12.7455 1.35102 0.675509 0.737351i \(-0.263924\pi\)
0.675509 + 0.737351i \(0.263924\pi\)
\(90\) −0.804342 −0.0847851
\(91\) −1.01025 −0.105903
\(92\) −15.5063 −1.61664
\(93\) −12.9614 −1.34403
\(94\) 1.45541 0.150114
\(95\) −1.01604 −0.104243
\(96\) 8.92986 0.911400
\(97\) 4.47793 0.454664 0.227332 0.973817i \(-0.427000\pi\)
0.227332 + 0.973817i \(0.427000\pi\)
\(98\) −2.10820 −0.212960
\(99\) 0 0
\(100\) −1.87569 −0.187569
\(101\) 0.140101 0.0139406 0.00697029 0.999976i \(-0.497781\pi\)
0.00697029 + 0.999976i \(0.497781\pi\)
\(102\) 4.21052 0.416903
\(103\) −3.64965 −0.359611 −0.179805 0.983702i \(-0.557547\pi\)
−0.179805 + 0.983702i \(0.557547\pi\)
\(104\) −1.36648 −0.133994
\(105\) 2.32167 0.226571
\(106\) 2.15156 0.208978
\(107\) 4.71376 0.455697 0.227848 0.973697i \(-0.426831\pi\)
0.227848 + 0.973697i \(0.426831\pi\)
\(108\) 3.09788 0.298093
\(109\) 10.5939 1.01471 0.507356 0.861736i \(-0.330623\pi\)
0.507356 + 0.861736i \(0.330623\pi\)
\(110\) 0 0
\(111\) −18.2152 −1.72891
\(112\) −3.30310 −0.312114
\(113\) 17.1164 1.61017 0.805087 0.593157i \(-0.202119\pi\)
0.805087 + 0.593157i \(0.202119\pi\)
\(114\) 0.823257 0.0771051
\(115\) −8.26698 −0.770900
\(116\) 6.81844 0.633076
\(117\) 2.28133 0.210909
\(118\) 3.46428 0.318913
\(119\) −5.24975 −0.481244
\(120\) 3.14032 0.286671
\(121\) 0 0
\(122\) −0.428214 −0.0387687
\(123\) −16.1707 −1.45807
\(124\) 10.5789 0.950012
\(125\) −1.00000 −0.0894427
\(126\) −0.812585 −0.0723909
\(127\) −9.13869 −0.810928 −0.405464 0.914111i \(-0.632890\pi\)
−0.405464 + 0.914111i \(0.632890\pi\)
\(128\) −9.59400 −0.847998
\(129\) −9.44000 −0.831146
\(130\) −0.352577 −0.0309230
\(131\) 13.7829 1.20421 0.602107 0.798415i \(-0.294328\pi\)
0.602107 + 0.798415i \(0.294328\pi\)
\(132\) 0 0
\(133\) −1.02645 −0.0890047
\(134\) 0.160433 0.0138593
\(135\) 1.65159 0.142147
\(136\) −7.10089 −0.608897
\(137\) 1.55444 0.132805 0.0664025 0.997793i \(-0.478848\pi\)
0.0664025 + 0.997793i \(0.478848\pi\)
\(138\) 6.69841 0.570207
\(139\) −13.8505 −1.17479 −0.587393 0.809302i \(-0.699846\pi\)
−0.587393 + 0.809302i \(0.699846\pi\)
\(140\) −1.89491 −0.160149
\(141\) 9.48644 0.798902
\(142\) 4.39682 0.368973
\(143\) 0 0
\(144\) 7.45901 0.621584
\(145\) 3.63516 0.301884
\(146\) −0.00739107 −0.000611689 0
\(147\) −13.7413 −1.13337
\(148\) 14.8670 1.22206
\(149\) 13.0800 1.07155 0.535777 0.844360i \(-0.320019\pi\)
0.535777 + 0.844360i \(0.320019\pi\)
\(150\) 0.810261 0.0661575
\(151\) −22.7954 −1.85506 −0.927532 0.373743i \(-0.878074\pi\)
−0.927532 + 0.373743i \(0.878074\pi\)
\(152\) −1.38840 −0.112614
\(153\) 11.8549 0.958412
\(154\) 0 0
\(155\) 5.64000 0.453015
\(156\) −4.31055 −0.345120
\(157\) 19.7511 1.57631 0.788154 0.615478i \(-0.211037\pi\)
0.788154 + 0.615478i \(0.211037\pi\)
\(158\) 5.42746 0.431785
\(159\) 14.0240 1.11218
\(160\) −3.88574 −0.307194
\(161\) −8.35171 −0.658207
\(162\) −3.75125 −0.294726
\(163\) 8.02659 0.628691 0.314346 0.949309i \(-0.398215\pi\)
0.314346 + 0.949309i \(0.398215\pi\)
\(164\) 13.1983 1.03062
\(165\) 0 0
\(166\) −1.67384 −0.129915
\(167\) −19.5795 −1.51511 −0.757554 0.652772i \(-0.773606\pi\)
−0.757554 + 0.652772i \(0.773606\pi\)
\(168\) 3.17250 0.244764
\(169\) 1.00000 0.0769231
\(170\) −1.83216 −0.140520
\(171\) 2.31792 0.177256
\(172\) 7.70480 0.587486
\(173\) 20.7575 1.57816 0.789080 0.614290i \(-0.210558\pi\)
0.789080 + 0.614290i \(0.210558\pi\)
\(174\) −2.94543 −0.223292
\(175\) −1.01025 −0.0763676
\(176\) 0 0
\(177\) 22.5804 1.69724
\(178\) 4.49376 0.336821
\(179\) 9.68199 0.723666 0.361833 0.932243i \(-0.382151\pi\)
0.361833 + 0.932243i \(0.382151\pi\)
\(180\) 4.27906 0.318942
\(181\) 12.3283 0.916359 0.458180 0.888860i \(-0.348502\pi\)
0.458180 + 0.888860i \(0.348502\pi\)
\(182\) −0.356190 −0.0264026
\(183\) −2.79112 −0.206326
\(184\) −11.2966 −0.832799
\(185\) 7.92615 0.582742
\(186\) −4.56987 −0.335079
\(187\) 0 0
\(188\) −7.74271 −0.564695
\(189\) 1.66852 0.121367
\(190\) −0.358232 −0.0259889
\(191\) 14.8784 1.07656 0.538281 0.842765i \(-0.319074\pi\)
0.538281 + 0.842765i \(0.319074\pi\)
\(192\) −11.8793 −0.857317
\(193\) −1.27494 −0.0917722 −0.0458861 0.998947i \(-0.514611\pi\)
−0.0458861 + 0.998947i \(0.514611\pi\)
\(194\) 1.57881 0.113352
\(195\) −2.29811 −0.164571
\(196\) 11.2155 0.801107
\(197\) 17.7733 1.26629 0.633147 0.774031i \(-0.281763\pi\)
0.633147 + 0.774031i \(0.281763\pi\)
\(198\) 0 0
\(199\) 11.3730 0.806208 0.403104 0.915154i \(-0.367931\pi\)
0.403104 + 0.915154i \(0.367931\pi\)
\(200\) −1.36648 −0.0966245
\(201\) 1.04571 0.0737586
\(202\) 0.0493964 0.00347552
\(203\) 3.67242 0.257753
\(204\) −22.3997 −1.56830
\(205\) 7.03652 0.491452
\(206\) −1.28678 −0.0896543
\(207\) 18.8597 1.31084
\(208\) 3.26959 0.226705
\(209\) 0 0
\(210\) 0.818565 0.0564863
\(211\) 17.8881 1.23147 0.615735 0.787953i \(-0.288859\pi\)
0.615735 + 0.787953i \(0.288859\pi\)
\(212\) −11.4462 −0.786128
\(213\) 28.6587 1.96367
\(214\) 1.66196 0.113609
\(215\) 4.10772 0.280144
\(216\) 2.25687 0.153560
\(217\) 5.69780 0.386792
\(218\) 3.73516 0.252977
\(219\) −0.0481754 −0.00325539
\(220\) 0 0
\(221\) 5.19650 0.349554
\(222\) −6.42225 −0.431033
\(223\) 4.87979 0.326775 0.163388 0.986562i \(-0.447758\pi\)
0.163388 + 0.986562i \(0.447758\pi\)
\(224\) −3.92556 −0.262287
\(225\) 2.28133 0.152088
\(226\) 6.03484 0.401431
\(227\) 24.0929 1.59910 0.799552 0.600596i \(-0.205070\pi\)
0.799552 + 0.600596i \(0.205070\pi\)
\(228\) −4.37969 −0.290052
\(229\) 12.5817 0.831424 0.415712 0.909496i \(-0.363532\pi\)
0.415712 + 0.909496i \(0.363532\pi\)
\(230\) −2.91474 −0.192192
\(231\) 0 0
\(232\) 4.96737 0.326124
\(233\) 3.60218 0.235987 0.117993 0.993014i \(-0.462354\pi\)
0.117993 + 0.993014i \(0.462354\pi\)
\(234\) 0.804342 0.0525815
\(235\) −4.12792 −0.269276
\(236\) −18.4298 −1.19968
\(237\) 35.3765 2.29795
\(238\) −1.85094 −0.119979
\(239\) 0.920844 0.0595644 0.0297822 0.999556i \(-0.490519\pi\)
0.0297822 + 0.999556i \(0.490519\pi\)
\(240\) −7.51389 −0.485020
\(241\) 4.21776 0.271690 0.135845 0.990730i \(-0.456625\pi\)
0.135845 + 0.990730i \(0.456625\pi\)
\(242\) 0 0
\(243\) −19.4961 −1.25067
\(244\) 2.27808 0.145839
\(245\) 5.97940 0.382010
\(246\) −5.70142 −0.363509
\(247\) 1.01604 0.0646491
\(248\) 7.70693 0.489390
\(249\) −10.9102 −0.691406
\(250\) −0.352577 −0.0222989
\(251\) −8.17462 −0.515977 −0.257989 0.966148i \(-0.583060\pi\)
−0.257989 + 0.966148i \(0.583060\pi\)
\(252\) 4.32291 0.272318
\(253\) 0 0
\(254\) −3.22209 −0.202172
\(255\) −11.9421 −0.747846
\(256\) 6.95571 0.434732
\(257\) 21.1350 1.31836 0.659182 0.751983i \(-0.270903\pi\)
0.659182 + 0.751983i \(0.270903\pi\)
\(258\) −3.32832 −0.207212
\(259\) 8.00739 0.497555
\(260\) 1.87569 0.116325
\(261\) −8.29299 −0.513323
\(262\) 4.85951 0.300222
\(263\) 17.9537 1.10707 0.553537 0.832824i \(-0.313278\pi\)
0.553537 + 0.832824i \(0.313278\pi\)
\(264\) 0 0
\(265\) −6.10240 −0.374867
\(266\) −0.361903 −0.0221897
\(267\) 29.2906 1.79255
\(268\) −0.853494 −0.0521354
\(269\) 12.0971 0.737574 0.368787 0.929514i \(-0.379773\pi\)
0.368787 + 0.929514i \(0.379773\pi\)
\(270\) 0.582313 0.0354384
\(271\) 3.71785 0.225843 0.112922 0.993604i \(-0.463979\pi\)
0.112922 + 0.993604i \(0.463979\pi\)
\(272\) 16.9904 1.03020
\(273\) −2.32167 −0.140514
\(274\) 0.548060 0.0331095
\(275\) 0 0
\(276\) −35.6352 −2.14499
\(277\) −14.2568 −0.856611 −0.428305 0.903634i \(-0.640889\pi\)
−0.428305 + 0.903634i \(0.640889\pi\)
\(278\) −4.88337 −0.292885
\(279\) −12.8667 −0.770308
\(280\) −1.38048 −0.0824996
\(281\) −23.6807 −1.41267 −0.706337 0.707876i \(-0.749654\pi\)
−0.706337 + 0.707876i \(0.749654\pi\)
\(282\) 3.34470 0.199174
\(283\) 1.90819 0.113430 0.0567150 0.998390i \(-0.481937\pi\)
0.0567150 + 0.998390i \(0.481937\pi\)
\(284\) −23.3909 −1.38799
\(285\) −2.33498 −0.138312
\(286\) 0 0
\(287\) 7.10863 0.419609
\(288\) 8.86463 0.522353
\(289\) 10.0036 0.588445
\(290\) 1.28167 0.0752624
\(291\) 10.2908 0.603256
\(292\) 0.0393201 0.00230104
\(293\) −24.4473 −1.42823 −0.714113 0.700031i \(-0.753170\pi\)
−0.714113 + 0.700031i \(0.753170\pi\)
\(294\) −4.84487 −0.282559
\(295\) −9.82561 −0.572069
\(296\) 10.8309 0.629534
\(297\) 0 0
\(298\) 4.61169 0.267148
\(299\) 8.26698 0.478092
\(300\) −4.31055 −0.248870
\(301\) 4.14982 0.239191
\(302\) −8.03713 −0.462485
\(303\) 0.321968 0.0184966
\(304\) 3.32204 0.190532
\(305\) 1.21453 0.0695436
\(306\) 4.17976 0.238941
\(307\) −32.0846 −1.83117 −0.915583 0.402130i \(-0.868270\pi\)
−0.915583 + 0.402130i \(0.868270\pi\)
\(308\) 0 0
\(309\) −8.38732 −0.477138
\(310\) 1.98853 0.112941
\(311\) −16.4859 −0.934828 −0.467414 0.884039i \(-0.654814\pi\)
−0.467414 + 0.884039i \(0.654814\pi\)
\(312\) −3.14032 −0.177786
\(313\) 19.4868 1.10146 0.550730 0.834683i \(-0.314349\pi\)
0.550730 + 0.834683i \(0.314349\pi\)
\(314\) 6.96377 0.392988
\(315\) 2.30471 0.129856
\(316\) −28.8738 −1.62428
\(317\) −25.9810 −1.45924 −0.729620 0.683852i \(-0.760303\pi\)
−0.729620 + 0.683852i \(0.760303\pi\)
\(318\) 4.94453 0.277276
\(319\) 0 0
\(320\) 5.16916 0.288965
\(321\) 10.8328 0.604626
\(322\) −2.94462 −0.164097
\(323\) 5.27985 0.293779
\(324\) 19.9565 1.10869
\(325\) 1.00000 0.0554700
\(326\) 2.82999 0.156738
\(327\) 24.3460 1.34634
\(328\) 9.61524 0.530913
\(329\) −4.17023 −0.229912
\(330\) 0 0
\(331\) 7.52505 0.413614 0.206807 0.978382i \(-0.433693\pi\)
0.206807 + 0.978382i \(0.433693\pi\)
\(332\) 8.90476 0.488712
\(333\) −18.0821 −0.990895
\(334\) −6.90328 −0.377730
\(335\) −0.455029 −0.0248609
\(336\) −7.59090 −0.414118
\(337\) −27.3812 −1.49155 −0.745775 0.666198i \(-0.767920\pi\)
−0.745775 + 0.666198i \(0.767920\pi\)
\(338\) 0.352577 0.0191776
\(339\) 39.3354 2.13641
\(340\) 9.74701 0.528606
\(341\) 0 0
\(342\) 0.817244 0.0441915
\(343\) 13.1124 0.708004
\(344\) 5.61310 0.302638
\(345\) −18.9985 −1.02284
\(346\) 7.31859 0.393450
\(347\) −7.83021 −0.420348 −0.210174 0.977664i \(-0.567403\pi\)
−0.210174 + 0.977664i \(0.567403\pi\)
\(348\) 15.6695 0.839976
\(349\) −0.934782 −0.0500377 −0.0250189 0.999687i \(-0.507965\pi\)
−0.0250189 + 0.999687i \(0.507965\pi\)
\(350\) −0.356190 −0.0190392
\(351\) −1.65159 −0.0881555
\(352\) 0 0
\(353\) −5.96801 −0.317645 −0.158823 0.987307i \(-0.550770\pi\)
−0.158823 + 0.987307i \(0.550770\pi\)
\(354\) 7.96131 0.423139
\(355\) −12.4706 −0.661868
\(356\) −23.9066 −1.26705
\(357\) −12.0645 −0.638522
\(358\) 3.41364 0.180417
\(359\) −13.5952 −0.717528 −0.358764 0.933428i \(-0.616802\pi\)
−0.358764 + 0.933428i \(0.616802\pi\)
\(360\) 3.11738 0.164300
\(361\) −17.9677 −0.945666
\(362\) 4.34669 0.228457
\(363\) 0 0
\(364\) 1.89491 0.0993204
\(365\) 0.0209630 0.00109725
\(366\) −0.984084 −0.0514389
\(367\) 31.0999 1.62340 0.811700 0.584075i \(-0.198542\pi\)
0.811700 + 0.584075i \(0.198542\pi\)
\(368\) 27.0297 1.40902
\(369\) −16.0526 −0.835665
\(370\) 2.79458 0.145283
\(371\) −6.16494 −0.320068
\(372\) 24.3115 1.26049
\(373\) −3.51303 −0.181898 −0.0909490 0.995856i \(-0.528990\pi\)
−0.0909490 + 0.995856i \(0.528990\pi\)
\(374\) 0 0
\(375\) −2.29811 −0.118674
\(376\) −5.64071 −0.290898
\(377\) −3.63516 −0.187220
\(378\) 0.588281 0.0302579
\(379\) 19.1420 0.983257 0.491628 0.870805i \(-0.336402\pi\)
0.491628 + 0.870805i \(0.336402\pi\)
\(380\) 1.90578 0.0977642
\(381\) −21.0017 −1.07595
\(382\) 5.24577 0.268397
\(383\) −14.6669 −0.749446 −0.374723 0.927137i \(-0.622262\pi\)
−0.374723 + 0.927137i \(0.622262\pi\)
\(384\) −22.0481 −1.12514
\(385\) 0 0
\(386\) −0.449514 −0.0228797
\(387\) −9.37105 −0.476357
\(388\) −8.39920 −0.426405
\(389\) 17.0500 0.864467 0.432234 0.901762i \(-0.357726\pi\)
0.432234 + 0.901762i \(0.357726\pi\)
\(390\) −0.810261 −0.0410292
\(391\) 42.9593 2.17255
\(392\) 8.17071 0.412683
\(393\) 31.6746 1.59777
\(394\) 6.26645 0.315699
\(395\) −15.3937 −0.774541
\(396\) 0 0
\(397\) −30.3251 −1.52197 −0.760986 0.648768i \(-0.775285\pi\)
−0.760986 + 0.648768i \(0.775285\pi\)
\(398\) 4.00984 0.200995
\(399\) −2.35891 −0.118093
\(400\) 3.26959 0.163480
\(401\) 17.7520 0.886491 0.443246 0.896400i \(-0.353827\pi\)
0.443246 + 0.896400i \(0.353827\pi\)
\(402\) 0.368692 0.0183887
\(403\) −5.64000 −0.280948
\(404\) −0.262786 −0.0130741
\(405\) 10.6395 0.528682
\(406\) 1.29481 0.0642602
\(407\) 0 0
\(408\) −16.3187 −0.807894
\(409\) −15.7843 −0.780484 −0.390242 0.920712i \(-0.627609\pi\)
−0.390242 + 0.920712i \(0.627609\pi\)
\(410\) 2.48091 0.122524
\(411\) 3.57228 0.176208
\(412\) 6.84562 0.337259
\(413\) −9.92631 −0.488442
\(414\) 6.64948 0.326804
\(415\) 4.74746 0.233044
\(416\) 3.88574 0.190514
\(417\) −31.8301 −1.55873
\(418\) 0 0
\(419\) −10.5491 −0.515359 −0.257679 0.966230i \(-0.582958\pi\)
−0.257679 + 0.966230i \(0.582958\pi\)
\(420\) −4.35473 −0.212489
\(421\) 18.8585 0.919107 0.459554 0.888150i \(-0.348009\pi\)
0.459554 + 0.888150i \(0.348009\pi\)
\(422\) 6.30694 0.307017
\(423\) 9.41714 0.457877
\(424\) −8.33879 −0.404967
\(425\) 5.19650 0.252067
\(426\) 10.1044 0.489560
\(427\) 1.22697 0.0593775
\(428\) −8.84156 −0.427373
\(429\) 0 0
\(430\) 1.44828 0.0698425
\(431\) −37.7626 −1.81896 −0.909480 0.415747i \(-0.863520\pi\)
−0.909480 + 0.415747i \(0.863520\pi\)
\(432\) −5.40004 −0.259809
\(433\) −16.3528 −0.785864 −0.392932 0.919567i \(-0.628539\pi\)
−0.392932 + 0.919567i \(0.628539\pi\)
\(434\) 2.00891 0.0964308
\(435\) 8.35402 0.400544
\(436\) −19.8709 −0.951643
\(437\) 8.39958 0.401807
\(438\) −0.0169855 −0.000811599 0
\(439\) 36.8040 1.75656 0.878279 0.478149i \(-0.158692\pi\)
0.878279 + 0.478149i \(0.158692\pi\)
\(440\) 0 0
\(441\) −13.6410 −0.649569
\(442\) 1.83216 0.0871471
\(443\) −5.65673 −0.268759 −0.134380 0.990930i \(-0.542904\pi\)
−0.134380 + 0.990930i \(0.542904\pi\)
\(444\) 34.1661 1.62145
\(445\) −12.7455 −0.604194
\(446\) 1.72050 0.0814680
\(447\) 30.0593 1.42175
\(448\) 5.22214 0.246723
\(449\) 1.05268 0.0496792 0.0248396 0.999691i \(-0.492092\pi\)
0.0248396 + 0.999691i \(0.492092\pi\)
\(450\) 0.804342 0.0379171
\(451\) 0 0
\(452\) −32.1050 −1.51009
\(453\) −52.3864 −2.46133
\(454\) 8.49461 0.398672
\(455\) 1.01025 0.0473612
\(456\) −3.19069 −0.149418
\(457\) 11.4819 0.537101 0.268551 0.963266i \(-0.413455\pi\)
0.268551 + 0.963266i \(0.413455\pi\)
\(458\) 4.43602 0.207282
\(459\) −8.58250 −0.400597
\(460\) 15.5063 0.722985
\(461\) 1.91111 0.0890094 0.0445047 0.999009i \(-0.485829\pi\)
0.0445047 + 0.999009i \(0.485829\pi\)
\(462\) 0 0
\(463\) 11.5832 0.538316 0.269158 0.963096i \(-0.413255\pi\)
0.269158 + 0.963096i \(0.413255\pi\)
\(464\) −11.8855 −0.551770
\(465\) 12.9614 0.601068
\(466\) 1.27004 0.0588337
\(467\) −31.6490 −1.46454 −0.732270 0.681015i \(-0.761539\pi\)
−0.732270 + 0.681015i \(0.761539\pi\)
\(468\) −4.27906 −0.197800
\(469\) −0.459693 −0.0212266
\(470\) −1.45541 −0.0671330
\(471\) 45.3902 2.09147
\(472\) −13.4265 −0.618003
\(473\) 0 0
\(474\) 12.4729 0.572900
\(475\) 1.01604 0.0466191
\(476\) 9.84691 0.451332
\(477\) 13.9216 0.637424
\(478\) 0.324668 0.0148500
\(479\) 3.50261 0.160038 0.0800191 0.996793i \(-0.474502\pi\)
0.0800191 + 0.996793i \(0.474502\pi\)
\(480\) −8.92986 −0.407591
\(481\) −7.92615 −0.361402
\(482\) 1.48708 0.0677348
\(483\) −19.1932 −0.873319
\(484\) 0 0
\(485\) −4.47793 −0.203332
\(486\) −6.87386 −0.311804
\(487\) −1.22529 −0.0555234 −0.0277617 0.999615i \(-0.508838\pi\)
−0.0277617 + 0.999615i \(0.508838\pi\)
\(488\) 1.65962 0.0751277
\(489\) 18.4460 0.834158
\(490\) 2.10820 0.0952386
\(491\) 12.9163 0.582903 0.291452 0.956586i \(-0.405862\pi\)
0.291452 + 0.956586i \(0.405862\pi\)
\(492\) 30.3313 1.36744
\(493\) −18.8901 −0.850767
\(494\) 0.358232 0.0161176
\(495\) 0 0
\(496\) −18.4405 −0.828002
\(497\) −12.5984 −0.565114
\(498\) −3.84668 −0.172374
\(499\) 5.95353 0.266517 0.133258 0.991081i \(-0.457456\pi\)
0.133258 + 0.991081i \(0.457456\pi\)
\(500\) 1.87569 0.0838834
\(501\) −44.9959 −2.01027
\(502\) −2.88218 −0.128638
\(503\) −14.1880 −0.632610 −0.316305 0.948658i \(-0.602442\pi\)
−0.316305 + 0.948658i \(0.602442\pi\)
\(504\) 3.14933 0.140282
\(505\) −0.140101 −0.00623442
\(506\) 0 0
\(507\) 2.29811 0.102063
\(508\) 17.1413 0.760524
\(509\) 32.1246 1.42390 0.711949 0.702231i \(-0.247813\pi\)
0.711949 + 0.702231i \(0.247813\pi\)
\(510\) −4.21052 −0.186445
\(511\) 0.0211779 0.000936853 0
\(512\) 21.6404 0.956380
\(513\) −1.67809 −0.0740893
\(514\) 7.45170 0.328680
\(515\) 3.64965 0.160823
\(516\) 17.7065 0.779486
\(517\) 0 0
\(518\) 2.82322 0.124045
\(519\) 47.7030 2.09393
\(520\) 1.36648 0.0599240
\(521\) 24.4208 1.06989 0.534946 0.844886i \(-0.320332\pi\)
0.534946 + 0.844886i \(0.320332\pi\)
\(522\) −2.92391 −0.127976
\(523\) −0.534093 −0.0233543 −0.0116771 0.999932i \(-0.503717\pi\)
−0.0116771 + 0.999932i \(0.503717\pi\)
\(524\) −25.8524 −1.12937
\(525\) −2.32167 −0.101326
\(526\) 6.33006 0.276004
\(527\) −29.3082 −1.27669
\(528\) 0 0
\(529\) 45.3430 1.97143
\(530\) −2.15156 −0.0934579
\(531\) 22.4154 0.972746
\(532\) 1.92531 0.0834726
\(533\) −7.03652 −0.304786
\(534\) 10.3272 0.446900
\(535\) −4.71376 −0.203794
\(536\) −0.621787 −0.0268571
\(537\) 22.2503 0.960171
\(538\) 4.26516 0.183884
\(539\) 0 0
\(540\) −3.09788 −0.133311
\(541\) −45.8729 −1.97223 −0.986114 0.166070i \(-0.946892\pi\)
−0.986114 + 0.166070i \(0.946892\pi\)
\(542\) 1.31083 0.0563048
\(543\) 28.3319 1.21584
\(544\) 20.1922 0.865734
\(545\) −10.5939 −0.453793
\(546\) −0.818565 −0.0350313
\(547\) 12.5569 0.536896 0.268448 0.963294i \(-0.413489\pi\)
0.268448 + 0.963294i \(0.413489\pi\)
\(548\) −2.91565 −0.124550
\(549\) −2.77073 −0.118252
\(550\) 0 0
\(551\) −3.69347 −0.157347
\(552\) −25.9610 −1.10497
\(553\) −15.5515 −0.661315
\(554\) −5.02663 −0.213561
\(555\) 18.2152 0.773192
\(556\) 25.9793 1.10177
\(557\) 37.2692 1.57915 0.789574 0.613656i \(-0.210302\pi\)
0.789574 + 0.613656i \(0.210302\pi\)
\(558\) −4.53649 −0.192045
\(559\) −4.10772 −0.173738
\(560\) 3.30310 0.139581
\(561\) 0 0
\(562\) −8.34927 −0.352193
\(563\) −39.5039 −1.66489 −0.832446 0.554107i \(-0.813060\pi\)
−0.832446 + 0.554107i \(0.813060\pi\)
\(564\) −17.7936 −0.749246
\(565\) −17.1164 −0.720092
\(566\) 0.672783 0.0282792
\(567\) 10.7486 0.451397
\(568\) −17.0407 −0.715013
\(569\) −32.3207 −1.35495 −0.677476 0.735544i \(-0.736926\pi\)
−0.677476 + 0.735544i \(0.736926\pi\)
\(570\) −0.823257 −0.0344825
\(571\) 3.35611 0.140449 0.0702244 0.997531i \(-0.477628\pi\)
0.0702244 + 0.997531i \(0.477628\pi\)
\(572\) 0 0
\(573\) 34.1922 1.42840
\(574\) 2.50634 0.104613
\(575\) 8.26698 0.344757
\(576\) −11.7926 −0.491356
\(577\) −18.8033 −0.782790 −0.391395 0.920223i \(-0.628007\pi\)
−0.391395 + 0.920223i \(0.628007\pi\)
\(578\) 3.52702 0.146705
\(579\) −2.92996 −0.121765
\(580\) −6.81844 −0.283120
\(581\) 4.79611 0.198976
\(582\) 3.62829 0.150397
\(583\) 0 0
\(584\) 0.0286455 0.00118536
\(585\) −2.28133 −0.0943212
\(586\) −8.61954 −0.356070
\(587\) −13.6710 −0.564262 −0.282131 0.959376i \(-0.591041\pi\)
−0.282131 + 0.959376i \(0.591041\pi\)
\(588\) 25.7745 1.06292
\(589\) −5.73046 −0.236120
\(590\) −3.46428 −0.142622
\(591\) 40.8450 1.68014
\(592\) −25.9153 −1.06511
\(593\) 34.9825 1.43656 0.718280 0.695754i \(-0.244929\pi\)
0.718280 + 0.695754i \(0.244929\pi\)
\(594\) 0 0
\(595\) 5.24975 0.215219
\(596\) −24.5340 −1.00495
\(597\) 26.1364 1.06969
\(598\) 2.91474 0.119193
\(599\) −36.5209 −1.49220 −0.746101 0.665833i \(-0.768076\pi\)
−0.746101 + 0.665833i \(0.768076\pi\)
\(600\) −3.14032 −0.128203
\(601\) −27.3418 −1.11530 −0.557648 0.830077i \(-0.688296\pi\)
−0.557648 + 0.830077i \(0.688296\pi\)
\(602\) 1.46313 0.0596326
\(603\) 1.03807 0.0422735
\(604\) 42.7571 1.73976
\(605\) 0 0
\(606\) 0.113518 0.00461137
\(607\) −32.8217 −1.33219 −0.666097 0.745865i \(-0.732036\pi\)
−0.666097 + 0.745865i \(0.732036\pi\)
\(608\) 3.94806 0.160115
\(609\) 8.43963 0.341991
\(610\) 0.428214 0.0173379
\(611\) 4.12792 0.166998
\(612\) −22.2361 −0.898842
\(613\) −23.3452 −0.942904 −0.471452 0.881892i \(-0.656270\pi\)
−0.471452 + 0.881892i \(0.656270\pi\)
\(614\) −11.3123 −0.456526
\(615\) 16.1707 0.652067
\(616\) 0 0
\(617\) −14.2346 −0.573064 −0.286532 0.958071i \(-0.592502\pi\)
−0.286532 + 0.958071i \(0.592502\pi\)
\(618\) −2.95717 −0.118955
\(619\) 6.90352 0.277476 0.138738 0.990329i \(-0.455695\pi\)
0.138738 + 0.990329i \(0.455695\pi\)
\(620\) −10.5789 −0.424858
\(621\) −13.6537 −0.547904
\(622\) −5.81253 −0.233061
\(623\) −12.8761 −0.515870
\(624\) 7.51389 0.300796
\(625\) 1.00000 0.0400000
\(626\) 6.87060 0.274604
\(627\) 0 0
\(628\) −37.0469 −1.47833
\(629\) −41.1882 −1.64228
\(630\) 0.812585 0.0323742
\(631\) 19.0834 0.759700 0.379850 0.925048i \(-0.375976\pi\)
0.379850 + 0.925048i \(0.375976\pi\)
\(632\) −21.0351 −0.836733
\(633\) 41.1090 1.63394
\(634\) −9.16031 −0.363802
\(635\) 9.13869 0.362658
\(636\) −26.3047 −1.04305
\(637\) −5.97940 −0.236912
\(638\) 0 0
\(639\) 28.4494 1.12544
\(640\) 9.59400 0.379236
\(641\) −27.8895 −1.10157 −0.550784 0.834648i \(-0.685671\pi\)
−0.550784 + 0.834648i \(0.685671\pi\)
\(642\) 3.81938 0.150739
\(643\) 2.16160 0.0852454 0.0426227 0.999091i \(-0.486429\pi\)
0.0426227 + 0.999091i \(0.486429\pi\)
\(644\) 15.6652 0.617296
\(645\) 9.44000 0.371700
\(646\) 1.86155 0.0732417
\(647\) 35.3023 1.38788 0.693938 0.720035i \(-0.255874\pi\)
0.693938 + 0.720035i \(0.255874\pi\)
\(648\) 14.5387 0.571133
\(649\) 0 0
\(650\) 0.352577 0.0138292
\(651\) 13.0942 0.513202
\(652\) −15.0554 −0.589615
\(653\) −12.2376 −0.478894 −0.239447 0.970909i \(-0.576966\pi\)
−0.239447 + 0.970909i \(0.576966\pi\)
\(654\) 8.58383 0.335654
\(655\) −13.7829 −0.538541
\(656\) −23.0065 −0.898255
\(657\) −0.0478235 −0.00186577
\(658\) −1.47033 −0.0573192
\(659\) −33.1387 −1.29090 −0.645450 0.763802i \(-0.723330\pi\)
−0.645450 + 0.763802i \(0.723330\pi\)
\(660\) 0 0
\(661\) −16.3609 −0.636367 −0.318184 0.948029i \(-0.603073\pi\)
−0.318184 + 0.948029i \(0.603073\pi\)
\(662\) 2.65316 0.103118
\(663\) 11.9421 0.463794
\(664\) 6.48729 0.251756
\(665\) 1.02645 0.0398041
\(666\) −6.37534 −0.247039
\(667\) −30.0518 −1.16361
\(668\) 36.7251 1.42094
\(669\) 11.2143 0.433571
\(670\) −0.160433 −0.00619805
\(671\) 0 0
\(672\) −9.02138 −0.348007
\(673\) 7.70585 0.297039 0.148519 0.988910i \(-0.452549\pi\)
0.148519 + 0.988910i \(0.452549\pi\)
\(674\) −9.65397 −0.371857
\(675\) −1.65159 −0.0635699
\(676\) −1.87569 −0.0721419
\(677\) 41.8077 1.60680 0.803399 0.595440i \(-0.203022\pi\)
0.803399 + 0.595440i \(0.203022\pi\)
\(678\) 13.8687 0.532626
\(679\) −4.52382 −0.173608
\(680\) 7.10089 0.272307
\(681\) 55.3683 2.12172
\(682\) 0 0
\(683\) −12.0932 −0.462735 −0.231368 0.972866i \(-0.574320\pi\)
−0.231368 + 0.972866i \(0.574320\pi\)
\(684\) −4.34770 −0.166238
\(685\) −1.55444 −0.0593922
\(686\) 4.62313 0.176512
\(687\) 28.9142 1.10315
\(688\) −13.4306 −0.512035
\(689\) 6.10240 0.232483
\(690\) −6.69841 −0.255004
\(691\) −18.1717 −0.691284 −0.345642 0.938366i \(-0.612339\pi\)
−0.345642 + 0.938366i \(0.612339\pi\)
\(692\) −38.9346 −1.48007
\(693\) 0 0
\(694\) −2.76075 −0.104797
\(695\) 13.8505 0.525381
\(696\) 11.4156 0.432706
\(697\) −36.5652 −1.38501
\(698\) −0.329582 −0.0124749
\(699\) 8.27822 0.313111
\(700\) 1.89491 0.0716210
\(701\) 30.7956 1.16313 0.581566 0.813499i \(-0.302440\pi\)
0.581566 + 0.813499i \(0.302440\pi\)
\(702\) −0.582313 −0.0219780
\(703\) −8.05329 −0.303736
\(704\) 0 0
\(705\) −9.48644 −0.357280
\(706\) −2.10418 −0.0791919
\(707\) −0.141537 −0.00532304
\(708\) −42.3538 −1.59175
\(709\) 30.2679 1.13673 0.568367 0.822775i \(-0.307575\pi\)
0.568367 + 0.822775i \(0.307575\pi\)
\(710\) −4.39682 −0.165010
\(711\) 35.1180 1.31703
\(712\) −17.4164 −0.652708
\(713\) −46.6257 −1.74615
\(714\) −4.25367 −0.159190
\(715\) 0 0
\(716\) −18.1604 −0.678686
\(717\) 2.11620 0.0790311
\(718\) −4.79335 −0.178886
\(719\) 3.47981 0.129775 0.0648874 0.997893i \(-0.479331\pi\)
0.0648874 + 0.997893i \(0.479331\pi\)
\(720\) −7.45901 −0.277981
\(721\) 3.68706 0.137313
\(722\) −6.33498 −0.235763
\(723\) 9.69290 0.360483
\(724\) −23.1242 −0.859403
\(725\) −3.63516 −0.135007
\(726\) 0 0
\(727\) −14.5774 −0.540644 −0.270322 0.962770i \(-0.587130\pi\)
−0.270322 + 0.962770i \(0.587130\pi\)
\(728\) 1.38048 0.0511641
\(729\) −12.8856 −0.477244
\(730\) 0.00739107 0.000273556 0
\(731\) −21.3457 −0.789501
\(732\) 5.23528 0.193502
\(733\) −5.11376 −0.188881 −0.0944404 0.995531i \(-0.530106\pi\)
−0.0944404 + 0.995531i \(0.530106\pi\)
\(734\) 10.9651 0.404729
\(735\) 13.7413 0.506857
\(736\) 32.1233 1.18408
\(737\) 0 0
\(738\) −5.65977 −0.208339
\(739\) 5.71529 0.210241 0.105120 0.994460i \(-0.466477\pi\)
0.105120 + 0.994460i \(0.466477\pi\)
\(740\) −14.8670 −0.546522
\(741\) 2.33498 0.0857775
\(742\) −2.17361 −0.0797958
\(743\) 43.5737 1.59856 0.799282 0.600956i \(-0.205213\pi\)
0.799282 + 0.600956i \(0.205213\pi\)
\(744\) 17.7114 0.649331
\(745\) −13.0800 −0.479213
\(746\) −1.23861 −0.0453489
\(747\) −10.8305 −0.396267
\(748\) 0 0
\(749\) −4.76207 −0.174002
\(750\) −0.810261 −0.0295865
\(751\) −6.51762 −0.237831 −0.118916 0.992904i \(-0.537942\pi\)
−0.118916 + 0.992904i \(0.537942\pi\)
\(752\) 13.4966 0.492171
\(753\) −18.7862 −0.684607
\(754\) −1.28167 −0.0466758
\(755\) 22.7954 0.829610
\(756\) −3.12963 −0.113823
\(757\) −27.2355 −0.989891 −0.494945 0.868924i \(-0.664812\pi\)
−0.494945 + 0.868924i \(0.664812\pi\)
\(758\) 6.74901 0.245135
\(759\) 0 0
\(760\) 1.38840 0.0503624
\(761\) 35.4612 1.28547 0.642734 0.766089i \(-0.277800\pi\)
0.642734 + 0.766089i \(0.277800\pi\)
\(762\) −7.40472 −0.268245
\(763\) −10.7025 −0.387456
\(764\) −27.9072 −1.00965
\(765\) −11.8549 −0.428615
\(766\) −5.17122 −0.186844
\(767\) 9.82561 0.354782
\(768\) 15.9850 0.576810
\(769\) 38.8812 1.40209 0.701047 0.713115i \(-0.252716\pi\)
0.701047 + 0.713115i \(0.252716\pi\)
\(770\) 0 0
\(771\) 48.5706 1.74923
\(772\) 2.39139 0.0860681
\(773\) 36.4065 1.30945 0.654726 0.755866i \(-0.272784\pi\)
0.654726 + 0.755866i \(0.272784\pi\)
\(774\) −3.30401 −0.118760
\(775\) −5.64000 −0.202595
\(776\) −6.11898 −0.219659
\(777\) 18.4019 0.660164
\(778\) 6.01141 0.215520
\(779\) −7.14939 −0.256153
\(780\) 4.31055 0.154342
\(781\) 0 0
\(782\) 15.1465 0.541636
\(783\) 6.00381 0.214559
\(784\) −19.5502 −0.698221
\(785\) −19.7511 −0.704947
\(786\) 11.1677 0.398339
\(787\) −13.8936 −0.495252 −0.247626 0.968856i \(-0.579650\pi\)
−0.247626 + 0.968856i \(0.579650\pi\)
\(788\) −33.3372 −1.18759
\(789\) 41.2597 1.46888
\(790\) −5.42746 −0.193100
\(791\) −17.2918 −0.614826
\(792\) 0 0
\(793\) −1.21453 −0.0431291
\(794\) −10.6919 −0.379442
\(795\) −14.0240 −0.497380
\(796\) −21.3322 −0.756099
\(797\) 12.1062 0.428823 0.214411 0.976743i \(-0.431217\pi\)
0.214411 + 0.976743i \(0.431217\pi\)
\(798\) −0.831695 −0.0294417
\(799\) 21.4507 0.758873
\(800\) 3.88574 0.137382
\(801\) 29.0766 1.02737
\(802\) 6.25893 0.221011
\(803\) 0 0
\(804\) −1.96143 −0.0691742
\(805\) 8.35171 0.294359
\(806\) −1.98853 −0.0700430
\(807\) 27.8006 0.978626
\(808\) −0.191445 −0.00673501
\(809\) −3.88807 −0.136697 −0.0683487 0.997661i \(-0.521773\pi\)
−0.0683487 + 0.997661i \(0.521773\pi\)
\(810\) 3.75125 0.131805
\(811\) −0.560893 −0.0196956 −0.00984781 0.999952i \(-0.503135\pi\)
−0.00984781 + 0.999952i \(0.503135\pi\)
\(812\) −6.88832 −0.241732
\(813\) 8.54405 0.299653
\(814\) 0 0
\(815\) −8.02659 −0.281159
\(816\) 39.0459 1.36688
\(817\) −4.17361 −0.146016
\(818\) −5.56518 −0.194582
\(819\) −2.30471 −0.0805330
\(820\) −13.1983 −0.460906
\(821\) 11.9834 0.418224 0.209112 0.977892i \(-0.432943\pi\)
0.209112 + 0.977892i \(0.432943\pi\)
\(822\) 1.25950 0.0439302
\(823\) 0.466032 0.0162448 0.00812242 0.999967i \(-0.497415\pi\)
0.00812242 + 0.999967i \(0.497415\pi\)
\(824\) 4.98717 0.173736
\(825\) 0 0
\(826\) −3.49978 −0.121773
\(827\) 2.78295 0.0967725 0.0483863 0.998829i \(-0.484592\pi\)
0.0483863 + 0.998829i \(0.484592\pi\)
\(828\) −35.3749 −1.22936
\(829\) 42.7951 1.48634 0.743168 0.669105i \(-0.233322\pi\)
0.743168 + 0.669105i \(0.233322\pi\)
\(830\) 1.67384 0.0580999
\(831\) −32.7638 −1.13657
\(832\) −5.16916 −0.179209
\(833\) −31.0719 −1.07658
\(834\) −11.2225 −0.388605
\(835\) 19.5795 0.677577
\(836\) 0 0
\(837\) 9.31498 0.321973
\(838\) −3.71938 −0.128484
\(839\) −9.39261 −0.324269 −0.162134 0.986769i \(-0.551838\pi\)
−0.162134 + 0.986769i \(0.551838\pi\)
\(840\) −3.17250 −0.109462
\(841\) −15.7856 −0.544331
\(842\) 6.64907 0.229142
\(843\) −54.4210 −1.87436
\(844\) −33.5526 −1.15493
\(845\) −1.00000 −0.0344010
\(846\) 3.32026 0.114153
\(847\) 0 0
\(848\) 19.9523 0.685166
\(849\) 4.38524 0.150501
\(850\) 1.83216 0.0628426
\(851\) −65.5254 −2.24618
\(852\) −53.7549 −1.84161
\(853\) −27.7852 −0.951347 −0.475674 0.879622i \(-0.657796\pi\)
−0.475674 + 0.879622i \(0.657796\pi\)
\(854\) 0.432602 0.0148034
\(855\) −2.31792 −0.0792711
\(856\) −6.44125 −0.220157
\(857\) −48.0083 −1.63993 −0.819967 0.572411i \(-0.806008\pi\)
−0.819967 + 0.572411i \(0.806008\pi\)
\(858\) 0 0
\(859\) 19.5360 0.666560 0.333280 0.942828i \(-0.391845\pi\)
0.333280 + 0.942828i \(0.391845\pi\)
\(860\) −7.70480 −0.262732
\(861\) 16.3364 0.556745
\(862\) −13.3142 −0.453484
\(863\) 50.6644 1.72464 0.862318 0.506368i \(-0.169012\pi\)
0.862318 + 0.506368i \(0.169012\pi\)
\(864\) −6.41766 −0.218333
\(865\) −20.7575 −0.705775
\(866\) −5.76561 −0.195923
\(867\) 22.9893 0.780758
\(868\) −10.6873 −0.362751
\(869\) 0 0
\(870\) 2.94543 0.0998594
\(871\) 0.455029 0.0154181
\(872\) −14.4763 −0.490231
\(873\) 10.2156 0.345746
\(874\) 2.96150 0.100174
\(875\) 1.01025 0.0341526
\(876\) 0.0903621 0.00305305
\(877\) −45.7787 −1.54584 −0.772918 0.634506i \(-0.781203\pi\)
−0.772918 + 0.634506i \(0.781203\pi\)
\(878\) 12.9762 0.437926
\(879\) −56.1826 −1.89499
\(880\) 0 0
\(881\) −0.502588 −0.0169326 −0.00846631 0.999964i \(-0.502695\pi\)
−0.00846631 + 0.999964i \(0.502695\pi\)
\(882\) −4.80948 −0.161944
\(883\) −8.13923 −0.273907 −0.136953 0.990577i \(-0.543731\pi\)
−0.136953 + 0.990577i \(0.543731\pi\)
\(884\) −9.74701 −0.327828
\(885\) −22.5804 −0.759031
\(886\) −1.99443 −0.0670042
\(887\) 38.3856 1.28886 0.644431 0.764662i \(-0.277094\pi\)
0.644431 + 0.764662i \(0.277094\pi\)
\(888\) 24.8907 0.835276
\(889\) 9.23235 0.309643
\(890\) −4.49376 −0.150631
\(891\) 0 0
\(892\) −9.15298 −0.306464
\(893\) 4.19414 0.140351
\(894\) 10.5982 0.354457
\(895\) −9.68199 −0.323633
\(896\) 9.69232 0.323798
\(897\) 18.9985 0.634340
\(898\) 0.371152 0.0123855
\(899\) 20.5023 0.683790
\(900\) −4.27906 −0.142635
\(901\) 31.7111 1.05645
\(902\) 0 0
\(903\) 9.53675 0.317363
\(904\) −23.3892 −0.777912
\(905\) −12.3283 −0.409808
\(906\) −18.4702 −0.613632
\(907\) −42.9084 −1.42475 −0.712375 0.701799i \(-0.752380\pi\)
−0.712375 + 0.701799i \(0.752380\pi\)
\(908\) −45.1909 −1.49971
\(909\) 0.319616 0.0106010
\(910\) 0.356190 0.0118076
\(911\) −50.5402 −1.67447 −0.837236 0.546841i \(-0.815830\pi\)
−0.837236 + 0.546841i \(0.815830\pi\)
\(912\) 7.63442 0.252801
\(913\) 0 0
\(914\) 4.04825 0.133904
\(915\) 2.79112 0.0922717
\(916\) −23.5994 −0.779747
\(917\) −13.9241 −0.459815
\(918\) −3.02599 −0.0998725
\(919\) 50.0538 1.65112 0.825561 0.564312i \(-0.190859\pi\)
0.825561 + 0.564312i \(0.190859\pi\)
\(920\) 11.2966 0.372439
\(921\) −73.7341 −2.42962
\(922\) 0.673814 0.0221909
\(923\) 12.4706 0.410473
\(924\) 0 0
\(925\) −7.92615 −0.260610
\(926\) 4.08396 0.134207
\(927\) −8.32605 −0.273463
\(928\) −14.1253 −0.463685
\(929\) 22.6499 0.743120 0.371560 0.928409i \(-0.378823\pi\)
0.371560 + 0.928409i \(0.378823\pi\)
\(930\) 4.56987 0.149852
\(931\) −6.07531 −0.199110
\(932\) −6.75658 −0.221319
\(933\) −37.8864 −1.24034
\(934\) −11.1587 −0.365123
\(935\) 0 0
\(936\) −3.11738 −0.101895
\(937\) 53.4744 1.74693 0.873466 0.486885i \(-0.161867\pi\)
0.873466 + 0.486885i \(0.161867\pi\)
\(938\) −0.162077 −0.00529200
\(939\) 44.7830 1.46144
\(940\) 7.74271 0.252539
\(941\) −27.9330 −0.910590 −0.455295 0.890341i \(-0.650466\pi\)
−0.455295 + 0.890341i \(0.650466\pi\)
\(942\) 16.0035 0.521423
\(943\) −58.1708 −1.89430
\(944\) 32.1257 1.04560
\(945\) −1.66852 −0.0542770
\(946\) 0 0
\(947\) −5.89506 −0.191564 −0.0957819 0.995402i \(-0.530535\pi\)
−0.0957819 + 0.995402i \(0.530535\pi\)
\(948\) −66.3553 −2.15512
\(949\) −0.0209630 −0.000680488 0
\(950\) 0.358232 0.0116226
\(951\) −59.7074 −1.93614
\(952\) 7.17367 0.232500
\(953\) −18.4199 −0.596679 −0.298339 0.954460i \(-0.596433\pi\)
−0.298339 + 0.954460i \(0.596433\pi\)
\(954\) 4.90841 0.158916
\(955\) −14.8784 −0.481453
\(956\) −1.72722 −0.0558622
\(957\) 0 0
\(958\) 1.23494 0.0398990
\(959\) −1.57037 −0.0507100
\(960\) 11.8793 0.383404
\(961\) 0.809564 0.0261150
\(962\) −2.79458 −0.0901007
\(963\) 10.7536 0.346531
\(964\) −7.91121 −0.254803
\(965\) 1.27494 0.0410418
\(966\) −6.76706 −0.217727
\(967\) 32.3610 1.04066 0.520330 0.853965i \(-0.325809\pi\)
0.520330 + 0.853965i \(0.325809\pi\)
\(968\) 0 0
\(969\) 12.1337 0.389790
\(970\) −1.57881 −0.0506926
\(971\) −12.1960 −0.391389 −0.195695 0.980665i \(-0.562696\pi\)
−0.195695 + 0.980665i \(0.562696\pi\)
\(972\) 36.5686 1.17294
\(973\) 13.9925 0.448578
\(974\) −0.432010 −0.0138425
\(975\) 2.29811 0.0735985
\(976\) −3.97101 −0.127109
\(977\) −7.50263 −0.240030 −0.120015 0.992772i \(-0.538294\pi\)
−0.120015 + 0.992772i \(0.538294\pi\)
\(978\) 6.50363 0.207963
\(979\) 0 0
\(980\) −11.2155 −0.358266
\(981\) 24.1682 0.771630
\(982\) 4.55397 0.145323
\(983\) −18.8299 −0.600579 −0.300290 0.953848i \(-0.597083\pi\)
−0.300290 + 0.953848i \(0.597083\pi\)
\(984\) 22.0969 0.704424
\(985\) −17.7733 −0.566304
\(986\) −6.66021 −0.212104
\(987\) −9.58366 −0.305051
\(988\) −1.90578 −0.0606308
\(989\) −33.9584 −1.07982
\(990\) 0 0
\(991\) −54.1808 −1.72111 −0.860556 0.509357i \(-0.829883\pi\)
−0.860556 + 0.509357i \(0.829883\pi\)
\(992\) −21.9155 −0.695819
\(993\) 17.2934 0.548790
\(994\) −4.44189 −0.140888
\(995\) −11.3730 −0.360547
\(996\) 20.4642 0.648431
\(997\) 17.4158 0.551565 0.275783 0.961220i \(-0.411063\pi\)
0.275783 + 0.961220i \(0.411063\pi\)
\(998\) 2.09908 0.0664451
\(999\) 13.0908 0.414174
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7865.2.a.bm.1.15 26
11.5 even 5 715.2.v.d.586.6 yes 52
11.9 even 5 715.2.v.d.521.6 52
11.10 odd 2 7865.2.a.bn.1.12 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
715.2.v.d.521.6 52 11.9 even 5
715.2.v.d.586.6 yes 52 11.5 even 5
7865.2.a.bm.1.15 26 1.1 even 1 trivial
7865.2.a.bn.1.12 26 11.10 odd 2