Properties

Label 7865.2.a.bg.1.11
Level $7865$
Weight $2$
Character 7865.1
Self dual yes
Analytic conductor $62.802$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7865,2,Mod(1,7865)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7865, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7865.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7865 = 5 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7865.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,-2,-4,16,18,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.8023411897\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} - 24 x^{16} + 48 x^{15} + 230 x^{14} - 466 x^{13} - 1116 x^{12} + 2346 x^{11} + \cdots + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-0.379916\) of defining polynomial
Character \(\chi\) \(=\) 7865.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.379916 q^{2} +2.63503 q^{3} -1.85566 q^{4} +1.00000 q^{5} +1.00109 q^{6} -2.79558 q^{7} -1.46483 q^{8} +3.94337 q^{9} +0.379916 q^{10} -4.88972 q^{12} +1.00000 q^{13} -1.06209 q^{14} +2.63503 q^{15} +3.15482 q^{16} -0.676249 q^{17} +1.49815 q^{18} -6.56466 q^{19} -1.85566 q^{20} -7.36644 q^{21} +7.06520 q^{23} -3.85986 q^{24} +1.00000 q^{25} +0.379916 q^{26} +2.48580 q^{27} +5.18766 q^{28} -3.29561 q^{29} +1.00109 q^{30} -7.21879 q^{31} +4.12822 q^{32} -0.256918 q^{34} -2.79558 q^{35} -7.31756 q^{36} +11.4594 q^{37} -2.49402 q^{38} +2.63503 q^{39} -1.46483 q^{40} +0.830856 q^{41} -2.79863 q^{42} +1.65091 q^{43} +3.94337 q^{45} +2.68418 q^{46} -12.3173 q^{47} +8.31302 q^{48} +0.815286 q^{49} +0.379916 q^{50} -1.78193 q^{51} -1.85566 q^{52} -9.52603 q^{53} +0.944395 q^{54} +4.09505 q^{56} -17.2980 q^{57} -1.25206 q^{58} +9.39476 q^{59} -4.88972 q^{60} -11.4509 q^{61} -2.74254 q^{62} -11.0240 q^{63} -4.74125 q^{64} +1.00000 q^{65} +1.29322 q^{67} +1.25489 q^{68} +18.6170 q^{69} -1.06209 q^{70} +6.13995 q^{71} -5.77636 q^{72} -12.5125 q^{73} +4.35362 q^{74} +2.63503 q^{75} +12.1818 q^{76} +1.00109 q^{78} +2.74002 q^{79} +3.15482 q^{80} -5.27996 q^{81} +0.315656 q^{82} +15.2622 q^{83} +13.6696 q^{84} -0.676249 q^{85} +0.627207 q^{86} -8.68403 q^{87} -4.93482 q^{89} +1.49815 q^{90} -2.79558 q^{91} -13.1106 q^{92} -19.0217 q^{93} -4.67954 q^{94} -6.56466 q^{95} +10.8780 q^{96} -8.71138 q^{97} +0.309740 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} - 4 q^{3} + 16 q^{4} + 18 q^{5} - 2 q^{6} - 20 q^{7} + 10 q^{9} - 2 q^{10} - 20 q^{12} + 18 q^{13} + 10 q^{14} - 4 q^{15} + 8 q^{16} - 6 q^{17} - 38 q^{19} + 16 q^{20} - 22 q^{21} - 2 q^{23}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.379916 0.268641 0.134321 0.990938i \(-0.457115\pi\)
0.134321 + 0.990938i \(0.457115\pi\)
\(3\) 2.63503 1.52133 0.760667 0.649143i \(-0.224872\pi\)
0.760667 + 0.649143i \(0.224872\pi\)
\(4\) −1.85566 −0.927832
\(5\) 1.00000 0.447214
\(6\) 1.00109 0.408693
\(7\) −2.79558 −1.05663 −0.528316 0.849048i \(-0.677176\pi\)
−0.528316 + 0.849048i \(0.677176\pi\)
\(8\) −1.46483 −0.517895
\(9\) 3.94337 1.31446
\(10\) 0.379916 0.120140
\(11\) 0 0
\(12\) −4.88972 −1.41154
\(13\) 1.00000 0.277350
\(14\) −1.06209 −0.283855
\(15\) 2.63503 0.680361
\(16\) 3.15482 0.788704
\(17\) −0.676249 −0.164015 −0.0820073 0.996632i \(-0.526133\pi\)
−0.0820073 + 0.996632i \(0.526133\pi\)
\(18\) 1.49815 0.353117
\(19\) −6.56466 −1.50604 −0.753018 0.658000i \(-0.771403\pi\)
−0.753018 + 0.658000i \(0.771403\pi\)
\(20\) −1.85566 −0.414939
\(21\) −7.36644 −1.60749
\(22\) 0 0
\(23\) 7.06520 1.47320 0.736598 0.676330i \(-0.236431\pi\)
0.736598 + 0.676330i \(0.236431\pi\)
\(24\) −3.85986 −0.787891
\(25\) 1.00000 0.200000
\(26\) 0.379916 0.0745077
\(27\) 2.48580 0.478392
\(28\) 5.18766 0.980376
\(29\) −3.29561 −0.611980 −0.305990 0.952035i \(-0.598987\pi\)
−0.305990 + 0.952035i \(0.598987\pi\)
\(30\) 1.00109 0.182773
\(31\) −7.21879 −1.29653 −0.648267 0.761413i \(-0.724506\pi\)
−0.648267 + 0.761413i \(0.724506\pi\)
\(32\) 4.12822 0.729773
\(33\) 0 0
\(34\) −0.256918 −0.0440611
\(35\) −2.79558 −0.472540
\(36\) −7.31756 −1.21959
\(37\) 11.4594 1.88392 0.941959 0.335729i \(-0.108983\pi\)
0.941959 + 0.335729i \(0.108983\pi\)
\(38\) −2.49402 −0.404583
\(39\) 2.63503 0.421942
\(40\) −1.46483 −0.231610
\(41\) 0.830856 0.129758 0.0648790 0.997893i \(-0.479334\pi\)
0.0648790 + 0.997893i \(0.479334\pi\)
\(42\) −2.79863 −0.431838
\(43\) 1.65091 0.251761 0.125881 0.992045i \(-0.459824\pi\)
0.125881 + 0.992045i \(0.459824\pi\)
\(44\) 0 0
\(45\) 3.94337 0.587842
\(46\) 2.68418 0.395761
\(47\) −12.3173 −1.79666 −0.898331 0.439320i \(-0.855220\pi\)
−0.898331 + 0.439320i \(0.855220\pi\)
\(48\) 8.31302 1.19988
\(49\) 0.815286 0.116469
\(50\) 0.379916 0.0537282
\(51\) −1.78193 −0.249521
\(52\) −1.85566 −0.257334
\(53\) −9.52603 −1.30850 −0.654250 0.756278i \(-0.727016\pi\)
−0.654250 + 0.756278i \(0.727016\pi\)
\(54\) 0.944395 0.128516
\(55\) 0 0
\(56\) 4.09505 0.547224
\(57\) −17.2980 −2.29118
\(58\) −1.25206 −0.164403
\(59\) 9.39476 1.22309 0.611547 0.791208i \(-0.290548\pi\)
0.611547 + 0.791208i \(0.290548\pi\)
\(60\) −4.88972 −0.631261
\(61\) −11.4509 −1.46614 −0.733071 0.680152i \(-0.761914\pi\)
−0.733071 + 0.680152i \(0.761914\pi\)
\(62\) −2.74254 −0.348302
\(63\) −11.0240 −1.38889
\(64\) −4.74125 −0.592657
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) 1.29322 0.157991 0.0789957 0.996875i \(-0.474829\pi\)
0.0789957 + 0.996875i \(0.474829\pi\)
\(68\) 1.25489 0.152178
\(69\) 18.6170 2.24122
\(70\) −1.06209 −0.126944
\(71\) 6.13995 0.728678 0.364339 0.931266i \(-0.381295\pi\)
0.364339 + 0.931266i \(0.381295\pi\)
\(72\) −5.77636 −0.680750
\(73\) −12.5125 −1.46448 −0.732239 0.681047i \(-0.761525\pi\)
−0.732239 + 0.681047i \(0.761525\pi\)
\(74\) 4.35362 0.506098
\(75\) 2.63503 0.304267
\(76\) 12.1818 1.39735
\(77\) 0 0
\(78\) 1.00109 0.113351
\(79\) 2.74002 0.308276 0.154138 0.988049i \(-0.450740\pi\)
0.154138 + 0.988049i \(0.450740\pi\)
\(80\) 3.15482 0.352719
\(81\) −5.27996 −0.586662
\(82\) 0.315656 0.0348583
\(83\) 15.2622 1.67524 0.837620 0.546254i \(-0.183947\pi\)
0.837620 + 0.546254i \(0.183947\pi\)
\(84\) 13.6696 1.49148
\(85\) −0.676249 −0.0733495
\(86\) 0.627207 0.0676334
\(87\) −8.68403 −0.931025
\(88\) 0 0
\(89\) −4.93482 −0.523090 −0.261545 0.965191i \(-0.584232\pi\)
−0.261545 + 0.965191i \(0.584232\pi\)
\(90\) 1.49815 0.157919
\(91\) −2.79558 −0.293057
\(92\) −13.1106 −1.36688
\(93\) −19.0217 −1.97246
\(94\) −4.67954 −0.482657
\(95\) −6.56466 −0.673520
\(96\) 10.8780 1.11023
\(97\) −8.71138 −0.884507 −0.442253 0.896890i \(-0.645821\pi\)
−0.442253 + 0.896890i \(0.645821\pi\)
\(98\) 0.309740 0.0312885
\(99\) 0 0
\(100\) −1.85566 −0.185566
\(101\) −9.23797 −0.919212 −0.459606 0.888123i \(-0.652009\pi\)
−0.459606 + 0.888123i \(0.652009\pi\)
\(102\) −0.676986 −0.0670316
\(103\) −12.6179 −1.24328 −0.621639 0.783304i \(-0.713533\pi\)
−0.621639 + 0.783304i \(0.713533\pi\)
\(104\) −1.46483 −0.143638
\(105\) −7.36644 −0.718891
\(106\) −3.61909 −0.351517
\(107\) −17.4313 −1.68515 −0.842574 0.538580i \(-0.818961\pi\)
−0.842574 + 0.538580i \(0.818961\pi\)
\(108\) −4.61281 −0.443867
\(109\) 4.99577 0.478508 0.239254 0.970957i \(-0.423097\pi\)
0.239254 + 0.970957i \(0.423097\pi\)
\(110\) 0 0
\(111\) 30.1959 2.86607
\(112\) −8.81955 −0.833369
\(113\) −17.4325 −1.63991 −0.819955 0.572428i \(-0.806002\pi\)
−0.819955 + 0.572428i \(0.806002\pi\)
\(114\) −6.57181 −0.615506
\(115\) 7.06520 0.658834
\(116\) 6.11555 0.567814
\(117\) 3.94337 0.364564
\(118\) 3.56922 0.328573
\(119\) 1.89051 0.173303
\(120\) −3.85986 −0.352356
\(121\) 0 0
\(122\) −4.35039 −0.393866
\(123\) 2.18933 0.197405
\(124\) 13.3957 1.20296
\(125\) 1.00000 0.0894427
\(126\) −4.18820 −0.373114
\(127\) 4.21549 0.374064 0.187032 0.982354i \(-0.440113\pi\)
0.187032 + 0.982354i \(0.440113\pi\)
\(128\) −10.0577 −0.888986
\(129\) 4.35019 0.383013
\(130\) 0.379916 0.0333208
\(131\) −1.15638 −0.101033 −0.0505167 0.998723i \(-0.516087\pi\)
−0.0505167 + 0.998723i \(0.516087\pi\)
\(132\) 0 0
\(133\) 18.3520 1.59132
\(134\) 0.491314 0.0424430
\(135\) 2.48580 0.213943
\(136\) 0.990589 0.0849423
\(137\) −6.41338 −0.547932 −0.273966 0.961739i \(-0.588336\pi\)
−0.273966 + 0.961739i \(0.588336\pi\)
\(138\) 7.07290 0.602085
\(139\) −0.774269 −0.0656726 −0.0328363 0.999461i \(-0.510454\pi\)
−0.0328363 + 0.999461i \(0.510454\pi\)
\(140\) 5.18766 0.438438
\(141\) −32.4564 −2.73332
\(142\) 2.33267 0.195753
\(143\) 0 0
\(144\) 12.4406 1.03672
\(145\) −3.29561 −0.273686
\(146\) −4.75370 −0.393419
\(147\) 2.14830 0.177189
\(148\) −21.2648 −1.74796
\(149\) 7.70984 0.631615 0.315807 0.948823i \(-0.397725\pi\)
0.315807 + 0.948823i \(0.397725\pi\)
\(150\) 1.00109 0.0817386
\(151\) −16.3851 −1.33340 −0.666699 0.745327i \(-0.732293\pi\)
−0.666699 + 0.745327i \(0.732293\pi\)
\(152\) 9.61610 0.779968
\(153\) −2.66670 −0.215590
\(154\) 0 0
\(155\) −7.21879 −0.579827
\(156\) −4.88972 −0.391491
\(157\) −17.0645 −1.36190 −0.680948 0.732332i \(-0.738432\pi\)
−0.680948 + 0.732332i \(0.738432\pi\)
\(158\) 1.04098 0.0828157
\(159\) −25.1013 −1.99067
\(160\) 4.12822 0.326365
\(161\) −19.7514 −1.55663
\(162\) −2.00594 −0.157602
\(163\) 15.0436 1.17830 0.589152 0.808023i \(-0.299462\pi\)
0.589152 + 0.808023i \(0.299462\pi\)
\(164\) −1.54179 −0.120394
\(165\) 0 0
\(166\) 5.79834 0.450038
\(167\) −5.07446 −0.392673 −0.196337 0.980537i \(-0.562905\pi\)
−0.196337 + 0.980537i \(0.562905\pi\)
\(168\) 10.7906 0.832510
\(169\) 1.00000 0.0769231
\(170\) −0.256918 −0.0197047
\(171\) −25.8868 −1.97962
\(172\) −3.06353 −0.233592
\(173\) 0.719542 0.0547058 0.0273529 0.999626i \(-0.491292\pi\)
0.0273529 + 0.999626i \(0.491292\pi\)
\(174\) −3.29920 −0.250112
\(175\) −2.79558 −0.211326
\(176\) 0 0
\(177\) 24.7555 1.86073
\(178\) −1.87482 −0.140523
\(179\) 9.73814 0.727863 0.363931 0.931426i \(-0.381434\pi\)
0.363931 + 0.931426i \(0.381434\pi\)
\(180\) −7.31756 −0.545419
\(181\) −0.447941 −0.0332952 −0.0166476 0.999861i \(-0.505299\pi\)
−0.0166476 + 0.999861i \(0.505299\pi\)
\(182\) −1.06209 −0.0787271
\(183\) −30.1735 −2.23049
\(184\) −10.3493 −0.762961
\(185\) 11.4594 0.842513
\(186\) −7.22665 −0.529884
\(187\) 0 0
\(188\) 22.8568 1.66700
\(189\) −6.94926 −0.505484
\(190\) −2.49402 −0.180935
\(191\) 2.74882 0.198897 0.0994487 0.995043i \(-0.468292\pi\)
0.0994487 + 0.995043i \(0.468292\pi\)
\(192\) −12.4933 −0.901628
\(193\) 18.9326 1.36280 0.681398 0.731913i \(-0.261372\pi\)
0.681398 + 0.731913i \(0.261372\pi\)
\(194\) −3.30959 −0.237615
\(195\) 2.63503 0.188698
\(196\) −1.51290 −0.108064
\(197\) −19.3449 −1.37827 −0.689134 0.724634i \(-0.742009\pi\)
−0.689134 + 0.724634i \(0.742009\pi\)
\(198\) 0 0
\(199\) 9.23227 0.654458 0.327229 0.944945i \(-0.393885\pi\)
0.327229 + 0.944945i \(0.393885\pi\)
\(200\) −1.46483 −0.103579
\(201\) 3.40766 0.240358
\(202\) −3.50965 −0.246938
\(203\) 9.21316 0.646637
\(204\) 3.30667 0.231513
\(205\) 0.830856 0.0580295
\(206\) −4.79374 −0.333996
\(207\) 27.8607 1.93645
\(208\) 3.15482 0.218747
\(209\) 0 0
\(210\) −2.79863 −0.193124
\(211\) −25.4086 −1.74920 −0.874601 0.484844i \(-0.838876\pi\)
−0.874601 + 0.484844i \(0.838876\pi\)
\(212\) 17.6771 1.21407
\(213\) 16.1789 1.10856
\(214\) −6.62243 −0.452700
\(215\) 1.65091 0.112591
\(216\) −3.64127 −0.247757
\(217\) 20.1807 1.36996
\(218\) 1.89797 0.128547
\(219\) −32.9708 −2.22796
\(220\) 0 0
\(221\) −0.676249 −0.0454894
\(222\) 11.4719 0.769944
\(223\) 6.66720 0.446469 0.223234 0.974765i \(-0.428339\pi\)
0.223234 + 0.974765i \(0.428339\pi\)
\(224\) −11.5408 −0.771101
\(225\) 3.94337 0.262891
\(226\) −6.62288 −0.440547
\(227\) −4.30099 −0.285467 −0.142733 0.989761i \(-0.545589\pi\)
−0.142733 + 0.989761i \(0.545589\pi\)
\(228\) 32.0994 2.12583
\(229\) 17.7403 1.17231 0.586155 0.810199i \(-0.300641\pi\)
0.586155 + 0.810199i \(0.300641\pi\)
\(230\) 2.68418 0.176990
\(231\) 0 0
\(232\) 4.82751 0.316941
\(233\) −1.38481 −0.0907221 −0.0453610 0.998971i \(-0.514444\pi\)
−0.0453610 + 0.998971i \(0.514444\pi\)
\(234\) 1.49815 0.0979370
\(235\) −12.3173 −0.803492
\(236\) −17.4335 −1.13483
\(237\) 7.22003 0.468991
\(238\) 0.718235 0.0465563
\(239\) 9.92601 0.642060 0.321030 0.947069i \(-0.395971\pi\)
0.321030 + 0.947069i \(0.395971\pi\)
\(240\) 8.31302 0.536603
\(241\) −7.23892 −0.466300 −0.233150 0.972441i \(-0.574903\pi\)
−0.233150 + 0.972441i \(0.574903\pi\)
\(242\) 0 0
\(243\) −21.3702 −1.37090
\(244\) 21.2491 1.36033
\(245\) 0.815286 0.0520867
\(246\) 0.831761 0.0530311
\(247\) −6.56466 −0.417699
\(248\) 10.5743 0.671468
\(249\) 40.2162 2.54860
\(250\) 0.379916 0.0240280
\(251\) −17.2498 −1.08880 −0.544400 0.838826i \(-0.683243\pi\)
−0.544400 + 0.838826i \(0.683243\pi\)
\(252\) 20.4569 1.28866
\(253\) 0 0
\(254\) 1.60153 0.100489
\(255\) −1.78193 −0.111589
\(256\) 5.66142 0.353839
\(257\) 10.8029 0.673863 0.336932 0.941529i \(-0.390611\pi\)
0.336932 + 0.941529i \(0.390611\pi\)
\(258\) 1.65271 0.102893
\(259\) −32.0358 −1.99061
\(260\) −1.85566 −0.115083
\(261\) −12.9958 −0.804420
\(262\) −0.439328 −0.0271417
\(263\) −13.9304 −0.858986 −0.429493 0.903070i \(-0.641308\pi\)
−0.429493 + 0.903070i \(0.641308\pi\)
\(264\) 0 0
\(265\) −9.52603 −0.585179
\(266\) 6.97224 0.427495
\(267\) −13.0034 −0.795794
\(268\) −2.39977 −0.146590
\(269\) −4.96474 −0.302705 −0.151353 0.988480i \(-0.548363\pi\)
−0.151353 + 0.988480i \(0.548363\pi\)
\(270\) 0.944395 0.0574740
\(271\) 26.2536 1.59479 0.797396 0.603457i \(-0.206210\pi\)
0.797396 + 0.603457i \(0.206210\pi\)
\(272\) −2.13344 −0.129359
\(273\) −7.36644 −0.445837
\(274\) −2.43654 −0.147197
\(275\) 0 0
\(276\) −34.5469 −2.07948
\(277\) −16.8047 −1.00970 −0.504848 0.863208i \(-0.668452\pi\)
−0.504848 + 0.863208i \(0.668452\pi\)
\(278\) −0.294157 −0.0176424
\(279\) −28.4663 −1.70424
\(280\) 4.09505 0.244726
\(281\) 10.4812 0.625253 0.312627 0.949876i \(-0.398791\pi\)
0.312627 + 0.949876i \(0.398791\pi\)
\(282\) −12.3307 −0.734283
\(283\) −9.72330 −0.577990 −0.288995 0.957331i \(-0.593321\pi\)
−0.288995 + 0.957331i \(0.593321\pi\)
\(284\) −11.3937 −0.676091
\(285\) −17.2980 −1.02465
\(286\) 0 0
\(287\) −2.32273 −0.137106
\(288\) 16.2791 0.959255
\(289\) −16.5427 −0.973099
\(290\) −1.25206 −0.0735233
\(291\) −22.9547 −1.34563
\(292\) 23.2190 1.35879
\(293\) 21.0853 1.23182 0.615908 0.787818i \(-0.288789\pi\)
0.615908 + 0.787818i \(0.288789\pi\)
\(294\) 0.816174 0.0476002
\(295\) 9.39476 0.546984
\(296\) −16.7861 −0.975672
\(297\) 0 0
\(298\) 2.92909 0.169678
\(299\) 7.06520 0.408591
\(300\) −4.88972 −0.282308
\(301\) −4.61525 −0.266019
\(302\) −6.22495 −0.358205
\(303\) −24.3423 −1.39843
\(304\) −20.7103 −1.18782
\(305\) −11.4509 −0.655679
\(306\) −1.01312 −0.0579163
\(307\) 14.6255 0.834719 0.417359 0.908742i \(-0.362956\pi\)
0.417359 + 0.908742i \(0.362956\pi\)
\(308\) 0 0
\(309\) −33.2485 −1.89144
\(310\) −2.74254 −0.155766
\(311\) 8.01582 0.454535 0.227268 0.973832i \(-0.427021\pi\)
0.227268 + 0.973832i \(0.427021\pi\)
\(312\) −3.85986 −0.218522
\(313\) 5.29875 0.299503 0.149751 0.988724i \(-0.452153\pi\)
0.149751 + 0.988724i \(0.452153\pi\)
\(314\) −6.48308 −0.365862
\(315\) −11.0240 −0.621133
\(316\) −5.08456 −0.286029
\(317\) 9.94587 0.558616 0.279308 0.960202i \(-0.409895\pi\)
0.279308 + 0.960202i \(0.409895\pi\)
\(318\) −9.53640 −0.534775
\(319\) 0 0
\(320\) −4.74125 −0.265044
\(321\) −45.9320 −2.56367
\(322\) −7.50386 −0.418174
\(323\) 4.43934 0.247012
\(324\) 9.79782 0.544324
\(325\) 1.00000 0.0554700
\(326\) 5.71529 0.316541
\(327\) 13.1640 0.727971
\(328\) −1.21706 −0.0672010
\(329\) 34.4340 1.89841
\(330\) 0 0
\(331\) −8.98625 −0.493929 −0.246965 0.969024i \(-0.579433\pi\)
−0.246965 + 0.969024i \(0.579433\pi\)
\(332\) −28.3214 −1.55434
\(333\) 45.1887 2.47633
\(334\) −1.92787 −0.105488
\(335\) 1.29322 0.0706559
\(336\) −23.2398 −1.26783
\(337\) −35.7894 −1.94958 −0.974788 0.223134i \(-0.928371\pi\)
−0.974788 + 0.223134i \(0.928371\pi\)
\(338\) 0.379916 0.0206647
\(339\) −45.9351 −2.49485
\(340\) 1.25489 0.0680560
\(341\) 0 0
\(342\) −9.83483 −0.531807
\(343\) 17.2899 0.933566
\(344\) −2.41830 −0.130386
\(345\) 18.6170 1.00231
\(346\) 0.273366 0.0146962
\(347\) −35.4471 −1.90290 −0.951449 0.307806i \(-0.900405\pi\)
−0.951449 + 0.307806i \(0.900405\pi\)
\(348\) 16.1146 0.863835
\(349\) 1.34082 0.0717725 0.0358863 0.999356i \(-0.488575\pi\)
0.0358863 + 0.999356i \(0.488575\pi\)
\(350\) −1.06209 −0.0567709
\(351\) 2.48580 0.132682
\(352\) 0 0
\(353\) −2.94069 −0.156517 −0.0782586 0.996933i \(-0.524936\pi\)
−0.0782586 + 0.996933i \(0.524936\pi\)
\(354\) 9.40499 0.499870
\(355\) 6.13995 0.325875
\(356\) 9.15736 0.485339
\(357\) 4.98155 0.263651
\(358\) 3.69967 0.195534
\(359\) 21.5054 1.13501 0.567506 0.823369i \(-0.307908\pi\)
0.567506 + 0.823369i \(0.307908\pi\)
\(360\) −5.77636 −0.304441
\(361\) 24.0947 1.26814
\(362\) −0.170180 −0.00894447
\(363\) 0 0
\(364\) 5.18766 0.271907
\(365\) −12.5125 −0.654935
\(366\) −11.4634 −0.599202
\(367\) −20.9797 −1.09513 −0.547566 0.836763i \(-0.684445\pi\)
−0.547566 + 0.836763i \(0.684445\pi\)
\(368\) 22.2894 1.16192
\(369\) 3.27637 0.170561
\(370\) 4.35362 0.226334
\(371\) 26.6308 1.38260
\(372\) 35.2979 1.83011
\(373\) 15.3589 0.795251 0.397626 0.917548i \(-0.369834\pi\)
0.397626 + 0.917548i \(0.369834\pi\)
\(374\) 0 0
\(375\) 2.63503 0.136072
\(376\) 18.0427 0.930482
\(377\) −3.29561 −0.169733
\(378\) −2.64013 −0.135794
\(379\) 6.11986 0.314356 0.157178 0.987570i \(-0.449760\pi\)
0.157178 + 0.987570i \(0.449760\pi\)
\(380\) 12.1818 0.624913
\(381\) 11.1079 0.569076
\(382\) 1.04432 0.0534321
\(383\) −37.5335 −1.91787 −0.958935 0.283626i \(-0.908462\pi\)
−0.958935 + 0.283626i \(0.908462\pi\)
\(384\) −26.5024 −1.35244
\(385\) 0 0
\(386\) 7.19279 0.366103
\(387\) 6.51014 0.330929
\(388\) 16.1654 0.820674
\(389\) −11.9505 −0.605915 −0.302957 0.953004i \(-0.597974\pi\)
−0.302957 + 0.953004i \(0.597974\pi\)
\(390\) 1.00109 0.0506921
\(391\) −4.77784 −0.241626
\(392\) −1.19425 −0.0603190
\(393\) −3.04709 −0.153706
\(394\) −7.34944 −0.370260
\(395\) 2.74002 0.137865
\(396\) 0 0
\(397\) 18.2610 0.916492 0.458246 0.888825i \(-0.348478\pi\)
0.458246 + 0.888825i \(0.348478\pi\)
\(398\) 3.50749 0.175814
\(399\) 48.3581 2.42093
\(400\) 3.15482 0.157741
\(401\) 11.4536 0.571966 0.285983 0.958235i \(-0.407680\pi\)
0.285983 + 0.958235i \(0.407680\pi\)
\(402\) 1.29462 0.0645700
\(403\) −7.21879 −0.359594
\(404\) 17.1426 0.852874
\(405\) −5.27996 −0.262363
\(406\) 3.50023 0.173713
\(407\) 0 0
\(408\) 2.61023 0.129226
\(409\) 27.6610 1.36775 0.683873 0.729601i \(-0.260294\pi\)
0.683873 + 0.729601i \(0.260294\pi\)
\(410\) 0.315656 0.0155891
\(411\) −16.8994 −0.833587
\(412\) 23.4146 1.15355
\(413\) −26.2638 −1.29236
\(414\) 10.5847 0.520211
\(415\) 15.2622 0.749190
\(416\) 4.12822 0.202403
\(417\) −2.04022 −0.0999099
\(418\) 0 0
\(419\) −24.0090 −1.17292 −0.586459 0.809979i \(-0.699478\pi\)
−0.586459 + 0.809979i \(0.699478\pi\)
\(420\) 13.6696 0.667010
\(421\) −15.4557 −0.753267 −0.376634 0.926362i \(-0.622918\pi\)
−0.376634 + 0.926362i \(0.622918\pi\)
\(422\) −9.65314 −0.469908
\(423\) −48.5716 −2.36163
\(424\) 13.9540 0.677666
\(425\) −0.676249 −0.0328029
\(426\) 6.14664 0.297806
\(427\) 32.0120 1.54917
\(428\) 32.3467 1.56353
\(429\) 0 0
\(430\) 0.627207 0.0302466
\(431\) −1.53751 −0.0740592 −0.0370296 0.999314i \(-0.511790\pi\)
−0.0370296 + 0.999314i \(0.511790\pi\)
\(432\) 7.84223 0.377310
\(433\) 18.2571 0.877379 0.438690 0.898639i \(-0.355443\pi\)
0.438690 + 0.898639i \(0.355443\pi\)
\(434\) 7.66699 0.368027
\(435\) −8.68403 −0.416367
\(436\) −9.27048 −0.443975
\(437\) −46.3806 −2.21869
\(438\) −12.5261 −0.598522
\(439\) −31.3633 −1.49689 −0.748445 0.663197i \(-0.769199\pi\)
−0.748445 + 0.663197i \(0.769199\pi\)
\(440\) 0 0
\(441\) 3.21497 0.153094
\(442\) −0.256918 −0.0122203
\(443\) 2.20624 0.104822 0.0524108 0.998626i \(-0.483309\pi\)
0.0524108 + 0.998626i \(0.483309\pi\)
\(444\) −56.0334 −2.65923
\(445\) −4.93482 −0.233933
\(446\) 2.53298 0.119940
\(447\) 20.3156 0.960897
\(448\) 13.2546 0.626220
\(449\) −4.14789 −0.195751 −0.0978755 0.995199i \(-0.531205\pi\)
−0.0978755 + 0.995199i \(0.531205\pi\)
\(450\) 1.49815 0.0706234
\(451\) 0 0
\(452\) 32.3488 1.52156
\(453\) −43.1751 −2.02854
\(454\) −1.63401 −0.0766881
\(455\) −2.79558 −0.131059
\(456\) 25.3387 1.18659
\(457\) 36.8736 1.72487 0.862436 0.506166i \(-0.168938\pi\)
0.862436 + 0.506166i \(0.168938\pi\)
\(458\) 6.73982 0.314931
\(459\) −1.68102 −0.0784632
\(460\) −13.1106 −0.611287
\(461\) −20.3735 −0.948889 −0.474445 0.880285i \(-0.657351\pi\)
−0.474445 + 0.880285i \(0.657351\pi\)
\(462\) 0 0
\(463\) 29.0166 1.34851 0.674257 0.738497i \(-0.264464\pi\)
0.674257 + 0.738497i \(0.264464\pi\)
\(464\) −10.3970 −0.482671
\(465\) −19.0217 −0.882111
\(466\) −0.526113 −0.0243717
\(467\) 0.557245 0.0257862 0.0128931 0.999917i \(-0.495896\pi\)
0.0128931 + 0.999917i \(0.495896\pi\)
\(468\) −7.31756 −0.338255
\(469\) −3.61529 −0.166939
\(470\) −4.67954 −0.215851
\(471\) −44.9655 −2.07190
\(472\) −13.7617 −0.633434
\(473\) 0 0
\(474\) 2.74300 0.125990
\(475\) −6.56466 −0.301207
\(476\) −3.50815 −0.160796
\(477\) −37.5646 −1.71997
\(478\) 3.77105 0.172484
\(479\) −17.6209 −0.805120 −0.402560 0.915394i \(-0.631879\pi\)
−0.402560 + 0.915394i \(0.631879\pi\)
\(480\) 10.8780 0.496509
\(481\) 11.4594 0.522505
\(482\) −2.75018 −0.125267
\(483\) −52.0454 −2.36815
\(484\) 0 0
\(485\) −8.71138 −0.395564
\(486\) −8.11889 −0.368280
\(487\) −6.81012 −0.308596 −0.154298 0.988024i \(-0.549312\pi\)
−0.154298 + 0.988024i \(0.549312\pi\)
\(488\) 16.7737 0.759308
\(489\) 39.6402 1.79259
\(490\) 0.309740 0.0139926
\(491\) 30.9237 1.39557 0.697783 0.716310i \(-0.254170\pi\)
0.697783 + 0.716310i \(0.254170\pi\)
\(492\) −4.06266 −0.183159
\(493\) 2.22866 0.100374
\(494\) −2.49402 −0.112211
\(495\) 0 0
\(496\) −22.7740 −1.02258
\(497\) −17.1648 −0.769944
\(498\) 15.2788 0.684659
\(499\) −2.93250 −0.131277 −0.0656384 0.997843i \(-0.520908\pi\)
−0.0656384 + 0.997843i \(0.520908\pi\)
\(500\) −1.85566 −0.0829878
\(501\) −13.3713 −0.597387
\(502\) −6.55349 −0.292496
\(503\) −3.08164 −0.137404 −0.0687018 0.997637i \(-0.521886\pi\)
−0.0687018 + 0.997637i \(0.521886\pi\)
\(504\) 16.1483 0.719302
\(505\) −9.23797 −0.411084
\(506\) 0 0
\(507\) 2.63503 0.117026
\(508\) −7.82253 −0.347068
\(509\) 2.56237 0.113575 0.0567875 0.998386i \(-0.481914\pi\)
0.0567875 + 0.998386i \(0.481914\pi\)
\(510\) −0.676986 −0.0299774
\(511\) 34.9798 1.54741
\(512\) 22.2663 0.984041
\(513\) −16.3184 −0.720475
\(514\) 4.10418 0.181028
\(515\) −12.6179 −0.556011
\(516\) −8.07249 −0.355371
\(517\) 0 0
\(518\) −12.1709 −0.534759
\(519\) 1.89601 0.0832257
\(520\) −1.46483 −0.0642370
\(521\) 28.0833 1.23035 0.615176 0.788390i \(-0.289085\pi\)
0.615176 + 0.788390i \(0.289085\pi\)
\(522\) −4.93732 −0.216100
\(523\) 9.13242 0.399333 0.199667 0.979864i \(-0.436014\pi\)
0.199667 + 0.979864i \(0.436014\pi\)
\(524\) 2.14585 0.0937420
\(525\) −7.36644 −0.321498
\(526\) −5.29238 −0.230759
\(527\) 4.88170 0.212650
\(528\) 0 0
\(529\) 26.9171 1.17031
\(530\) −3.61909 −0.157203
\(531\) 37.0470 1.60770
\(532\) −34.0552 −1.47648
\(533\) 0.830856 0.0359884
\(534\) −4.94019 −0.213783
\(535\) −17.4313 −0.753621
\(536\) −1.89434 −0.0818230
\(537\) 25.6603 1.10732
\(538\) −1.88618 −0.0813192
\(539\) 0 0
\(540\) −4.61281 −0.198504
\(541\) −8.18441 −0.351875 −0.175938 0.984401i \(-0.556296\pi\)
−0.175938 + 0.984401i \(0.556296\pi\)
\(542\) 9.97416 0.428427
\(543\) −1.18034 −0.0506531
\(544\) −2.79171 −0.119693
\(545\) 4.99577 0.213995
\(546\) −2.79863 −0.119770
\(547\) 23.3374 0.997834 0.498917 0.866650i \(-0.333731\pi\)
0.498917 + 0.866650i \(0.333731\pi\)
\(548\) 11.9011 0.508389
\(549\) −45.1552 −1.92718
\(550\) 0 0
\(551\) 21.6346 0.921663
\(552\) −27.2707 −1.16072
\(553\) −7.65995 −0.325734
\(554\) −6.38437 −0.271246
\(555\) 30.1959 1.28174
\(556\) 1.43678 0.0609331
\(557\) −34.5346 −1.46328 −0.731640 0.681691i \(-0.761245\pi\)
−0.731640 + 0.681691i \(0.761245\pi\)
\(558\) −10.8148 −0.457828
\(559\) 1.65091 0.0698260
\(560\) −8.81955 −0.372694
\(561\) 0 0
\(562\) 3.98196 0.167969
\(563\) 8.69398 0.366408 0.183204 0.983075i \(-0.441353\pi\)
0.183204 + 0.983075i \(0.441353\pi\)
\(564\) 60.2282 2.53606
\(565\) −17.4325 −0.733390
\(566\) −3.69404 −0.155272
\(567\) 14.7606 0.619885
\(568\) −8.99398 −0.377379
\(569\) 44.6581 1.87217 0.936083 0.351780i \(-0.114423\pi\)
0.936083 + 0.351780i \(0.114423\pi\)
\(570\) −6.57181 −0.275263
\(571\) 10.3823 0.434487 0.217244 0.976117i \(-0.430293\pi\)
0.217244 + 0.976117i \(0.430293\pi\)
\(572\) 0 0
\(573\) 7.24321 0.302589
\(574\) −0.882441 −0.0368324
\(575\) 7.06520 0.294639
\(576\) −18.6965 −0.779021
\(577\) 19.2380 0.800887 0.400444 0.916321i \(-0.368856\pi\)
0.400444 + 0.916321i \(0.368856\pi\)
\(578\) −6.28483 −0.261415
\(579\) 49.8878 2.07327
\(580\) 6.11555 0.253934
\(581\) −42.6666 −1.77011
\(582\) −8.72087 −0.361492
\(583\) 0 0
\(584\) 18.3287 0.758446
\(585\) 3.94337 0.163038
\(586\) 8.01064 0.330916
\(587\) 8.90534 0.367563 0.183781 0.982967i \(-0.441166\pi\)
0.183781 + 0.982967i \(0.441166\pi\)
\(588\) −3.98652 −0.164402
\(589\) 47.3889 1.95263
\(590\) 3.56922 0.146943
\(591\) −50.9744 −2.09680
\(592\) 36.1524 1.48585
\(593\) −34.7057 −1.42519 −0.712595 0.701575i \(-0.752480\pi\)
−0.712595 + 0.701575i \(0.752480\pi\)
\(594\) 0 0
\(595\) 1.89051 0.0775034
\(596\) −14.3069 −0.586032
\(597\) 24.3273 0.995649
\(598\) 2.68418 0.109764
\(599\) −38.8140 −1.58590 −0.792948 0.609289i \(-0.791455\pi\)
−0.792948 + 0.609289i \(0.791455\pi\)
\(600\) −3.85986 −0.157578
\(601\) 4.91787 0.200604 0.100302 0.994957i \(-0.468019\pi\)
0.100302 + 0.994957i \(0.468019\pi\)
\(602\) −1.75341 −0.0714636
\(603\) 5.09963 0.207673
\(604\) 30.4052 1.23717
\(605\) 0 0
\(606\) −9.24803 −0.375675
\(607\) 4.06001 0.164791 0.0823954 0.996600i \(-0.473743\pi\)
0.0823954 + 0.996600i \(0.473743\pi\)
\(608\) −27.1004 −1.09906
\(609\) 24.2769 0.983751
\(610\) −4.35039 −0.176142
\(611\) −12.3173 −0.498304
\(612\) 4.94850 0.200031
\(613\) 28.6773 1.15827 0.579133 0.815233i \(-0.303391\pi\)
0.579133 + 0.815233i \(0.303391\pi\)
\(614\) 5.55645 0.224240
\(615\) 2.18933 0.0882822
\(616\) 0 0
\(617\) −19.3172 −0.777682 −0.388841 0.921305i \(-0.627125\pi\)
−0.388841 + 0.921305i \(0.627125\pi\)
\(618\) −12.6316 −0.508119
\(619\) 33.3454 1.34026 0.670132 0.742242i \(-0.266238\pi\)
0.670132 + 0.742242i \(0.266238\pi\)
\(620\) 13.3957 0.537982
\(621\) 17.5627 0.704766
\(622\) 3.04534 0.122107
\(623\) 13.7957 0.552713
\(624\) 8.31302 0.332787
\(625\) 1.00000 0.0400000
\(626\) 2.01308 0.0804588
\(627\) 0 0
\(628\) 31.6660 1.26361
\(629\) −7.74942 −0.308990
\(630\) −4.18820 −0.166862
\(631\) −8.79795 −0.350241 −0.175121 0.984547i \(-0.556032\pi\)
−0.175121 + 0.984547i \(0.556032\pi\)
\(632\) −4.01366 −0.159655
\(633\) −66.9524 −2.66112
\(634\) 3.77860 0.150067
\(635\) 4.21549 0.167286
\(636\) 46.5796 1.84700
\(637\) 0.815286 0.0323028
\(638\) 0 0
\(639\) 24.2121 0.957816
\(640\) −10.0577 −0.397566
\(641\) 31.7129 1.25258 0.626292 0.779589i \(-0.284572\pi\)
0.626292 + 0.779589i \(0.284572\pi\)
\(642\) −17.4503 −0.688708
\(643\) −3.87237 −0.152711 −0.0763556 0.997081i \(-0.524328\pi\)
−0.0763556 + 0.997081i \(0.524328\pi\)
\(644\) 36.6519 1.44429
\(645\) 4.35019 0.171289
\(646\) 1.68658 0.0663575
\(647\) 10.5551 0.414962 0.207481 0.978239i \(-0.433473\pi\)
0.207481 + 0.978239i \(0.433473\pi\)
\(648\) 7.73423 0.303829
\(649\) 0 0
\(650\) 0.379916 0.0149015
\(651\) 53.1768 2.08416
\(652\) −27.9158 −1.09327
\(653\) 19.8722 0.777660 0.388830 0.921310i \(-0.372879\pi\)
0.388830 + 0.921310i \(0.372879\pi\)
\(654\) 5.00121 0.195563
\(655\) −1.15638 −0.0451835
\(656\) 2.62120 0.102341
\(657\) −49.3414 −1.92499
\(658\) 13.0820 0.509991
\(659\) 7.62120 0.296880 0.148440 0.988921i \(-0.452575\pi\)
0.148440 + 0.988921i \(0.452575\pi\)
\(660\) 0 0
\(661\) 17.9251 0.697204 0.348602 0.937271i \(-0.386656\pi\)
0.348602 + 0.937271i \(0.386656\pi\)
\(662\) −3.41402 −0.132690
\(663\) −1.78193 −0.0692046
\(664\) −22.3564 −0.867598
\(665\) 18.3520 0.711662
\(666\) 17.1679 0.665243
\(667\) −23.2842 −0.901567
\(668\) 9.41649 0.364335
\(669\) 17.5682 0.679228
\(670\) 0.491314 0.0189811
\(671\) 0 0
\(672\) −30.4103 −1.17310
\(673\) 10.7782 0.415467 0.207734 0.978185i \(-0.433391\pi\)
0.207734 + 0.978185i \(0.433391\pi\)
\(674\) −13.5970 −0.523736
\(675\) 2.48580 0.0956784
\(676\) −1.85566 −0.0713717
\(677\) −29.7453 −1.14320 −0.571602 0.820531i \(-0.693678\pi\)
−0.571602 + 0.820531i \(0.693678\pi\)
\(678\) −17.4515 −0.670220
\(679\) 24.3534 0.934598
\(680\) 0.990589 0.0379874
\(681\) −11.3332 −0.434290
\(682\) 0 0
\(683\) −27.1818 −1.04008 −0.520042 0.854141i \(-0.674084\pi\)
−0.520042 + 0.854141i \(0.674084\pi\)
\(684\) 48.0373 1.83675
\(685\) −6.41338 −0.245043
\(686\) 6.56870 0.250794
\(687\) 46.7461 1.78348
\(688\) 5.20831 0.198565
\(689\) −9.52603 −0.362913
\(690\) 7.07290 0.269261
\(691\) 1.93123 0.0734675 0.0367337 0.999325i \(-0.488305\pi\)
0.0367337 + 0.999325i \(0.488305\pi\)
\(692\) −1.33523 −0.0507578
\(693\) 0 0
\(694\) −13.4669 −0.511197
\(695\) −0.774269 −0.0293697
\(696\) 12.7206 0.482174
\(697\) −0.561866 −0.0212822
\(698\) 0.509400 0.0192811
\(699\) −3.64902 −0.138019
\(700\) 5.18766 0.196075
\(701\) 44.3304 1.67434 0.837169 0.546944i \(-0.184209\pi\)
0.837169 + 0.546944i \(0.184209\pi\)
\(702\) 0.944395 0.0356439
\(703\) −75.2272 −2.83725
\(704\) 0 0
\(705\) −32.4564 −1.22238
\(706\) −1.11722 −0.0420470
\(707\) 25.8255 0.971268
\(708\) −45.9378 −1.72645
\(709\) 18.5864 0.698025 0.349013 0.937118i \(-0.386517\pi\)
0.349013 + 0.937118i \(0.386517\pi\)
\(710\) 2.33267 0.0875434
\(711\) 10.8049 0.405216
\(712\) 7.22866 0.270906
\(713\) −51.0022 −1.91005
\(714\) 1.89257 0.0708276
\(715\) 0 0
\(716\) −18.0707 −0.675334
\(717\) 26.1553 0.976788
\(718\) 8.17025 0.304911
\(719\) −35.3240 −1.31736 −0.658681 0.752423i \(-0.728885\pi\)
−0.658681 + 0.752423i \(0.728885\pi\)
\(720\) 12.4406 0.463634
\(721\) 35.2744 1.31369
\(722\) 9.15397 0.340675
\(723\) −19.0748 −0.709398
\(724\) 0.831228 0.0308924
\(725\) −3.29561 −0.122396
\(726\) 0 0
\(727\) −51.0753 −1.89428 −0.947139 0.320822i \(-0.896041\pi\)
−0.947139 + 0.320822i \(0.896041\pi\)
\(728\) 4.09505 0.151773
\(729\) −40.4712 −1.49893
\(730\) −4.75370 −0.175942
\(731\) −1.11643 −0.0412925
\(732\) 55.9919 2.06952
\(733\) −18.9469 −0.699820 −0.349910 0.936783i \(-0.613788\pi\)
−0.349910 + 0.936783i \(0.613788\pi\)
\(734\) −7.97052 −0.294197
\(735\) 2.14830 0.0792413
\(736\) 29.1667 1.07510
\(737\) 0 0
\(738\) 1.24475 0.0458197
\(739\) −26.9568 −0.991622 −0.495811 0.868430i \(-0.665129\pi\)
−0.495811 + 0.868430i \(0.665129\pi\)
\(740\) −21.2648 −0.781711
\(741\) −17.2980 −0.635460
\(742\) 10.1175 0.371424
\(743\) 20.1200 0.738133 0.369066 0.929403i \(-0.379677\pi\)
0.369066 + 0.929403i \(0.379677\pi\)
\(744\) 27.8635 1.02153
\(745\) 7.70984 0.282467
\(746\) 5.83508 0.213637
\(747\) 60.1843 2.20203
\(748\) 0 0
\(749\) 48.7307 1.78058
\(750\) 1.00109 0.0365546
\(751\) −13.7673 −0.502376 −0.251188 0.967938i \(-0.580821\pi\)
−0.251188 + 0.967938i \(0.580821\pi\)
\(752\) −38.8588 −1.41703
\(753\) −45.4538 −1.65643
\(754\) −1.25206 −0.0455972
\(755\) −16.3851 −0.596313
\(756\) 12.8955 0.469004
\(757\) 46.5102 1.69044 0.845220 0.534418i \(-0.179469\pi\)
0.845220 + 0.534418i \(0.179469\pi\)
\(758\) 2.32503 0.0844490
\(759\) 0 0
\(760\) 9.61610 0.348812
\(761\) −17.2638 −0.625812 −0.312906 0.949784i \(-0.601303\pi\)
−0.312906 + 0.949784i \(0.601303\pi\)
\(762\) 4.22008 0.152877
\(763\) −13.9661 −0.505607
\(764\) −5.10088 −0.184543
\(765\) −2.66670 −0.0964147
\(766\) −14.2596 −0.515219
\(767\) 9.39476 0.339225
\(768\) 14.9180 0.538306
\(769\) 33.0347 1.19126 0.595631 0.803258i \(-0.296902\pi\)
0.595631 + 0.803258i \(0.296902\pi\)
\(770\) 0 0
\(771\) 28.4658 1.02517
\(772\) −35.1325 −1.26445
\(773\) 27.6163 0.993291 0.496645 0.867954i \(-0.334565\pi\)
0.496645 + 0.867954i \(0.334565\pi\)
\(774\) 2.47331 0.0889012
\(775\) −7.21879 −0.259307
\(776\) 12.7607 0.458082
\(777\) −84.4151 −3.02838
\(778\) −4.54019 −0.162774
\(779\) −5.45428 −0.195420
\(780\) −4.88972 −0.175080
\(781\) 0 0
\(782\) −1.81518 −0.0649106
\(783\) −8.19223 −0.292766
\(784\) 2.57208 0.0918599
\(785\) −17.0645 −0.609059
\(786\) −1.15764 −0.0412916
\(787\) −23.9788 −0.854752 −0.427376 0.904074i \(-0.640562\pi\)
−0.427376 + 0.904074i \(0.640562\pi\)
\(788\) 35.8976 1.27880
\(789\) −36.7070 −1.30680
\(790\) 1.04098 0.0370363
\(791\) 48.7340 1.73278
\(792\) 0 0
\(793\) −11.4509 −0.406635
\(794\) 6.93764 0.246208
\(795\) −25.1013 −0.890253
\(796\) −17.1320 −0.607227
\(797\) 26.4462 0.936774 0.468387 0.883523i \(-0.344835\pi\)
0.468387 + 0.883523i \(0.344835\pi\)
\(798\) 18.3720 0.650363
\(799\) 8.32956 0.294679
\(800\) 4.12822 0.145955
\(801\) −19.4598 −0.687578
\(802\) 4.35141 0.153654
\(803\) 0 0
\(804\) −6.32347 −0.223012
\(805\) −19.7514 −0.696144
\(806\) −2.74254 −0.0966017
\(807\) −13.0822 −0.460516
\(808\) 13.5320 0.476055
\(809\) 14.5914 0.513005 0.256502 0.966544i \(-0.417430\pi\)
0.256502 + 0.966544i \(0.417430\pi\)
\(810\) −2.00594 −0.0704816
\(811\) −12.2350 −0.429630 −0.214815 0.976655i \(-0.568915\pi\)
−0.214815 + 0.976655i \(0.568915\pi\)
\(812\) −17.0965 −0.599970
\(813\) 69.1789 2.42621
\(814\) 0 0
\(815\) 15.0436 0.526953
\(816\) −5.62168 −0.196798
\(817\) −10.8376 −0.379161
\(818\) 10.5088 0.367433
\(819\) −11.0240 −0.385210
\(820\) −1.54179 −0.0538416
\(821\) −31.0426 −1.08339 −0.541697 0.840574i \(-0.682218\pi\)
−0.541697 + 0.840574i \(0.682218\pi\)
\(822\) −6.42036 −0.223936
\(823\) 27.3242 0.952463 0.476232 0.879320i \(-0.342002\pi\)
0.476232 + 0.879320i \(0.342002\pi\)
\(824\) 18.4831 0.643888
\(825\) 0 0
\(826\) −9.97806 −0.347181
\(827\) −14.0412 −0.488261 −0.244130 0.969742i \(-0.578502\pi\)
−0.244130 + 0.969742i \(0.578502\pi\)
\(828\) −51.7001 −1.79670
\(829\) 36.8622 1.28028 0.640138 0.768260i \(-0.278877\pi\)
0.640138 + 0.768260i \(0.278877\pi\)
\(830\) 5.79834 0.201263
\(831\) −44.2808 −1.53608
\(832\) −4.74125 −0.164373
\(833\) −0.551337 −0.0191027
\(834\) −0.775112 −0.0268399
\(835\) −5.07446 −0.175609
\(836\) 0 0
\(837\) −17.9445 −0.620251
\(838\) −9.12141 −0.315094
\(839\) −26.0628 −0.899789 −0.449894 0.893082i \(-0.648538\pi\)
−0.449894 + 0.893082i \(0.648538\pi\)
\(840\) 10.7906 0.372310
\(841\) −18.1389 −0.625481
\(842\) −5.87189 −0.202359
\(843\) 27.6181 0.951219
\(844\) 47.1499 1.62296
\(845\) 1.00000 0.0344010
\(846\) −18.4531 −0.634432
\(847\) 0 0
\(848\) −30.0529 −1.03202
\(849\) −25.6212 −0.879316
\(850\) −0.256918 −0.00881221
\(851\) 80.9632 2.77538
\(852\) −30.0227 −1.02856
\(853\) −18.1474 −0.621355 −0.310678 0.950515i \(-0.600556\pi\)
−0.310678 + 0.950515i \(0.600556\pi\)
\(854\) 12.1619 0.416171
\(855\) −25.8868 −0.885312
\(856\) 25.5339 0.872730
\(857\) 38.3335 1.30945 0.654724 0.755868i \(-0.272785\pi\)
0.654724 + 0.755868i \(0.272785\pi\)
\(858\) 0 0
\(859\) −23.2643 −0.793767 −0.396883 0.917869i \(-0.629908\pi\)
−0.396883 + 0.917869i \(0.629908\pi\)
\(860\) −3.06353 −0.104466
\(861\) −6.12045 −0.208584
\(862\) −0.584125 −0.0198954
\(863\) −16.9430 −0.576748 −0.288374 0.957518i \(-0.593115\pi\)
−0.288374 + 0.957518i \(0.593115\pi\)
\(864\) 10.2619 0.349118
\(865\) 0.719542 0.0244652
\(866\) 6.93616 0.235700
\(867\) −43.5904 −1.48041
\(868\) −37.4487 −1.27109
\(869\) 0 0
\(870\) −3.29920 −0.111853
\(871\) 1.29322 0.0438190
\(872\) −7.31795 −0.247817
\(873\) −34.3522 −1.16265
\(874\) −17.6207 −0.596031
\(875\) −2.79558 −0.0945080
\(876\) 61.1827 2.06717
\(877\) −42.3752 −1.43091 −0.715455 0.698659i \(-0.753780\pi\)
−0.715455 + 0.698659i \(0.753780\pi\)
\(878\) −11.9154 −0.402126
\(879\) 55.5603 1.87400
\(880\) 0 0
\(881\) 49.7712 1.67683 0.838417 0.545029i \(-0.183481\pi\)
0.838417 + 0.545029i \(0.183481\pi\)
\(882\) 1.22142 0.0411273
\(883\) −7.00971 −0.235896 −0.117948 0.993020i \(-0.537632\pi\)
−0.117948 + 0.993020i \(0.537632\pi\)
\(884\) 1.25489 0.0422066
\(885\) 24.7555 0.832145
\(886\) 0.838186 0.0281594
\(887\) 49.4984 1.66199 0.830997 0.556277i \(-0.187771\pi\)
0.830997 + 0.556277i \(0.187771\pi\)
\(888\) −44.2318 −1.48432
\(889\) −11.7847 −0.395248
\(890\) −1.87482 −0.0628440
\(891\) 0 0
\(892\) −12.3721 −0.414248
\(893\) 80.8588 2.70584
\(894\) 7.71824 0.258136
\(895\) 9.73814 0.325510
\(896\) 28.1172 0.939330
\(897\) 18.6170 0.621604
\(898\) −1.57585 −0.0525868
\(899\) 23.7903 0.793452
\(900\) −7.31756 −0.243919
\(901\) 6.44197 0.214613
\(902\) 0 0
\(903\) −12.1613 −0.404703
\(904\) 25.5356 0.849302
\(905\) −0.447941 −0.0148901
\(906\) −16.4029 −0.544950
\(907\) −44.1074 −1.46456 −0.732282 0.681002i \(-0.761545\pi\)
−0.732282 + 0.681002i \(0.761545\pi\)
\(908\) 7.98119 0.264865
\(909\) −36.4287 −1.20826
\(910\) −1.06209 −0.0352078
\(911\) −36.9744 −1.22502 −0.612508 0.790465i \(-0.709839\pi\)
−0.612508 + 0.790465i \(0.709839\pi\)
\(912\) −54.5721 −1.80706
\(913\) 0 0
\(914\) 14.0089 0.463372
\(915\) −30.1735 −0.997506
\(916\) −32.9200 −1.08771
\(917\) 3.23276 0.106755
\(918\) −0.638646 −0.0210785
\(919\) 46.0940 1.52050 0.760251 0.649630i \(-0.225076\pi\)
0.760251 + 0.649630i \(0.225076\pi\)
\(920\) −10.3493 −0.341207
\(921\) 38.5385 1.26989
\(922\) −7.74022 −0.254911
\(923\) 6.13995 0.202099
\(924\) 0 0
\(925\) 11.4594 0.376783
\(926\) 11.0239 0.362267
\(927\) −49.7570 −1.63423
\(928\) −13.6050 −0.446607
\(929\) −14.0716 −0.461675 −0.230838 0.972992i \(-0.574147\pi\)
−0.230838 + 0.972992i \(0.574147\pi\)
\(930\) −7.22665 −0.236971
\(931\) −5.35207 −0.175407
\(932\) 2.56975 0.0841748
\(933\) 21.1219 0.691500
\(934\) 0.211706 0.00692724
\(935\) 0 0
\(936\) −5.77636 −0.188806
\(937\) 54.5327 1.78151 0.890753 0.454487i \(-0.150178\pi\)
0.890753 + 0.454487i \(0.150178\pi\)
\(938\) −1.37351 −0.0448466
\(939\) 13.9623 0.455644
\(940\) 22.8568 0.745505
\(941\) 13.9865 0.455946 0.227973 0.973668i \(-0.426790\pi\)
0.227973 + 0.973668i \(0.426790\pi\)
\(942\) −17.0831 −0.556597
\(943\) 5.87017 0.191159
\(944\) 29.6387 0.964659
\(945\) −6.94926 −0.226059
\(946\) 0 0
\(947\) 58.4058 1.89793 0.948966 0.315378i \(-0.102131\pi\)
0.948966 + 0.315378i \(0.102131\pi\)
\(948\) −13.3979 −0.435145
\(949\) −12.5125 −0.406173
\(950\) −2.49402 −0.0809166
\(951\) 26.2076 0.849841
\(952\) −2.76927 −0.0897527
\(953\) 36.9371 1.19651 0.598255 0.801306i \(-0.295861\pi\)
0.598255 + 0.801306i \(0.295861\pi\)
\(954\) −14.2714 −0.462054
\(955\) 2.74882 0.0889496
\(956\) −18.4193 −0.595724
\(957\) 0 0
\(958\) −6.69446 −0.216288
\(959\) 17.9291 0.578962
\(960\) −12.4933 −0.403221
\(961\) 21.1110 0.680999
\(962\) 4.35362 0.140366
\(963\) −68.7381 −2.21505
\(964\) 13.4330 0.432648
\(965\) 18.9326 0.609461
\(966\) −19.7729 −0.636182
\(967\) −29.4133 −0.945867 −0.472934 0.881098i \(-0.656805\pi\)
−0.472934 + 0.881098i \(0.656805\pi\)
\(968\) 0 0
\(969\) 11.6978 0.375787
\(970\) −3.30959 −0.106265
\(971\) 9.21880 0.295846 0.147923 0.988999i \(-0.452741\pi\)
0.147923 + 0.988999i \(0.452741\pi\)
\(972\) 39.6559 1.27197
\(973\) 2.16453 0.0693917
\(974\) −2.58727 −0.0829016
\(975\) 2.63503 0.0843884
\(976\) −36.1256 −1.15635
\(977\) 21.3092 0.681741 0.340870 0.940110i \(-0.389278\pi\)
0.340870 + 0.940110i \(0.389278\pi\)
\(978\) 15.0600 0.481564
\(979\) 0 0
\(980\) −1.51290 −0.0483277
\(981\) 19.7002 0.628978
\(982\) 11.7484 0.374906
\(983\) −36.6496 −1.16894 −0.584471 0.811415i \(-0.698698\pi\)
−0.584471 + 0.811415i \(0.698698\pi\)
\(984\) −3.20699 −0.102235
\(985\) −19.3449 −0.616380
\(986\) 0.846702 0.0269645
\(987\) 90.7346 2.88811
\(988\) 12.1818 0.387555
\(989\) 11.6640 0.370894
\(990\) 0 0
\(991\) −2.14700 −0.0682016 −0.0341008 0.999418i \(-0.510857\pi\)
−0.0341008 + 0.999418i \(0.510857\pi\)
\(992\) −29.8008 −0.946176
\(993\) −23.6790 −0.751431
\(994\) −6.52117 −0.206839
\(995\) 9.23227 0.292683
\(996\) −74.6277 −2.36467
\(997\) 1.81700 0.0575450 0.0287725 0.999586i \(-0.490840\pi\)
0.0287725 + 0.999586i \(0.490840\pi\)
\(998\) −1.11410 −0.0352663
\(999\) 28.4858 0.901251
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7865.2.a.bg.1.11 18
11.10 odd 2 7865.2.a.bh.1.8 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7865.2.a.bg.1.11 18 1.1 even 1 trivial
7865.2.a.bh.1.8 yes 18 11.10 odd 2