Properties

Label 784.2.j.a.195.19
Level $784$
Weight $2$
Character 784.195
Analytic conductor $6.260$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,2,Mod(195,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.195"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 195.19
Character \(\chi\) \(=\) 784.195
Dual form 784.2.j.a.587.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.945273 + 1.05188i) q^{2} +(-1.68113 - 1.68113i) q^{3} +(-0.212918 + 1.98863i) q^{4} +(-0.611867 - 0.611867i) q^{5} +(0.179226 - 3.35748i) q^{6} +(-2.29308 + 1.65584i) q^{8} +2.65240i q^{9} +(0.0652315 - 1.22199i) q^{10} +(1.48838 + 1.48838i) q^{11} +(3.70110 - 2.98521i) q^{12} +(-0.336492 + 0.336492i) q^{13} +2.05725i q^{15} +(-3.90933 - 0.846832i) q^{16} +0.0564247i q^{17} +(-2.79001 + 2.50724i) q^{18} +(5.78189 + 5.78189i) q^{19} +(1.34706 - 1.08650i) q^{20} +(-0.158677 + 2.97253i) q^{22} +7.19628 q^{23} +(6.63864 + 1.07128i) q^{24} -4.25124i q^{25} +(-0.672027 - 0.0358736i) q^{26} +(-0.584366 + 0.584366i) q^{27} +(4.81700 + 4.81700i) q^{29} +(-2.16399 + 1.94467i) q^{30} +3.69909 q^{31} +(-2.80462 - 4.91265i) q^{32} -5.00432i q^{33} +(-0.0593522 + 0.0533367i) q^{34} +(-5.27465 - 0.564743i) q^{36} +(-2.39386 + 2.39386i) q^{37} +(-0.616410 + 11.5473i) q^{38} +1.13137 q^{39} +(2.41621 + 0.389906i) q^{40} -4.95983 q^{41} +(4.99825 + 4.99825i) q^{43} +(-3.27674 + 2.64294i) q^{44} +(1.62291 - 1.62291i) q^{45} +(6.80244 + 7.56964i) q^{46} +11.0075 q^{47} +(5.14846 + 7.99573i) q^{48} +(4.47181 - 4.01858i) q^{50} +(0.0948572 - 0.0948572i) q^{51} +(-0.597514 - 0.740805i) q^{52} +(-2.65409 + 2.65409i) q^{53} +(-1.16707 - 0.0622996i) q^{54} -1.82138i q^{55} -19.4402i q^{57} +(-0.513543 + 9.62030i) q^{58} +(-6.21901 + 6.21901i) q^{59} +(-4.09113 - 0.438027i) q^{60} +(-4.55283 + 4.55283i) q^{61} +(3.49665 + 3.89102i) q^{62} +(2.51641 - 7.59393i) q^{64} +0.411776 q^{65} +(5.26396 - 4.73045i) q^{66} +(7.65741 - 7.65741i) q^{67} +(-0.112208 - 0.0120138i) q^{68} +(-12.0979 - 12.0979i) q^{69} -13.1246 q^{71} +(-4.39194 - 6.08215i) q^{72} +5.39185 q^{73} +(-4.78092 - 0.255211i) q^{74} +(-7.14689 + 7.14689i) q^{75} +(-12.7291 + 10.2670i) q^{76} +(1.06946 + 1.19007i) q^{78} +5.76911i q^{79} +(1.87384 + 2.91014i) q^{80} +9.92198 q^{81} +(-4.68840 - 5.21717i) q^{82} +(4.52860 + 4.52860i) q^{83} +(0.0345244 - 0.0345244i) q^{85} +(-0.532866 + 9.98228i) q^{86} -16.1960i q^{87} +(-5.87748 - 0.948455i) q^{88} -2.56436 q^{89} +(3.24121 + 0.173020i) q^{90} +(-1.53222 + 14.3108i) q^{92} +(-6.21866 - 6.21866i) q^{93} +(10.4051 + 11.5786i) q^{94} -7.07548i q^{95} +(-3.54388 + 12.9737i) q^{96} -9.06313i q^{97} +(-3.94777 + 3.94777i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{2} + 8 q^{4} + 4 q^{8} - 4 q^{11} - 16 q^{16} + 60 q^{18} - 28 q^{22} + 24 q^{23} - 24 q^{29} + 36 q^{30} + 24 q^{32} + 16 q^{36} - 12 q^{37} + 8 q^{39} - 52 q^{44} - 32 q^{46} + 68 q^{51} - 12 q^{53}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.945273 + 1.05188i 0.668409 + 0.743794i
\(3\) −1.68113 1.68113i −0.970601 0.970601i 0.0289791 0.999580i \(-0.490774\pi\)
−0.999580 + 0.0289791i \(0.990774\pi\)
\(4\) −0.212918 + 1.98863i −0.106459 + 0.994317i
\(5\) −0.611867 0.611867i −0.273635 0.273635i 0.556927 0.830562i \(-0.311980\pi\)
−0.830562 + 0.556927i \(0.811980\pi\)
\(6\) 0.179226 3.35748i 0.0731688 1.37069i
\(7\) 0 0
\(8\) −2.29308 + 1.65584i −0.810725 + 0.585427i
\(9\) 2.65240i 0.884132i
\(10\) 0.0652315 1.22199i 0.0206280 0.386428i
\(11\) 1.48838 + 1.48838i 0.448763 + 0.448763i 0.894943 0.446180i \(-0.147216\pi\)
−0.446180 + 0.894943i \(0.647216\pi\)
\(12\) 3.70110 2.98521i 1.06841 0.861756i
\(13\) −0.336492 + 0.336492i −0.0933261 + 0.0933261i −0.752228 0.658902i \(-0.771021\pi\)
0.658902 + 0.752228i \(0.271021\pi\)
\(14\) 0 0
\(15\) 2.05725i 0.531181i
\(16\) −3.90933 0.846832i −0.977333 0.211708i
\(17\) 0.0564247i 0.0136850i 0.999977 + 0.00684250i \(0.00217805\pi\)
−0.999977 + 0.00684250i \(0.997822\pi\)
\(18\) −2.79001 + 2.50724i −0.657612 + 0.590962i
\(19\) 5.78189 + 5.78189i 1.32646 + 1.32646i 0.908440 + 0.418016i \(0.137274\pi\)
0.418016 + 0.908440i \(0.362726\pi\)
\(20\) 1.34706 1.08650i 0.301211 0.242949i
\(21\) 0 0
\(22\) −0.158677 + 2.97253i −0.0338300 + 0.633745i
\(23\) 7.19628 1.50053 0.750264 0.661139i \(-0.229927\pi\)
0.750264 + 0.661139i \(0.229927\pi\)
\(24\) 6.63864 + 1.07128i 1.35511 + 0.218675i
\(25\) 4.25124i 0.850248i
\(26\) −0.672027 0.0358736i −0.131795 0.00703539i
\(27\) −0.584366 + 0.584366i −0.112461 + 0.112461i
\(28\) 0 0
\(29\) 4.81700 + 4.81700i 0.894494 + 0.894494i 0.994942 0.100448i \(-0.0320277\pi\)
−0.100448 + 0.994942i \(0.532028\pi\)
\(30\) −2.16399 + 1.94467i −0.395089 + 0.355046i
\(31\) 3.69909 0.664377 0.332188 0.943213i \(-0.392213\pi\)
0.332188 + 0.943213i \(0.392213\pi\)
\(32\) −2.80462 4.91265i −0.495791 0.868442i
\(33\) 5.00432i 0.871140i
\(34\) −0.0593522 + 0.0533367i −0.0101788 + 0.00914717i
\(35\) 0 0
\(36\) −5.27465 0.564743i −0.879108 0.0941239i
\(37\) −2.39386 + 2.39386i −0.393548 + 0.393548i −0.875950 0.482402i \(-0.839765\pi\)
0.482402 + 0.875950i \(0.339765\pi\)
\(38\) −0.616410 + 11.5473i −0.0999949 + 1.87322i
\(39\) 1.13137 0.181165
\(40\) 2.41621 + 0.389906i 0.382036 + 0.0616495i
\(41\) −4.95983 −0.774596 −0.387298 0.921955i \(-0.626592\pi\)
−0.387298 + 0.921955i \(0.626592\pi\)
\(42\) 0 0
\(43\) 4.99825 + 4.99825i 0.762225 + 0.762225i 0.976724 0.214499i \(-0.0688118\pi\)
−0.214499 + 0.976724i \(0.568812\pi\)
\(44\) −3.27674 + 2.64294i −0.493988 + 0.398438i
\(45\) 1.62291 1.62291i 0.241930 0.241930i
\(46\) 6.80244 + 7.56964i 1.00297 + 1.11608i
\(47\) 11.0075 1.60561 0.802807 0.596239i \(-0.203339\pi\)
0.802807 + 0.596239i \(0.203339\pi\)
\(48\) 5.14846 + 7.99573i 0.743116 + 1.15408i
\(49\) 0 0
\(50\) 4.47181 4.01858i 0.632409 0.568313i
\(51\) 0.0948572 0.0948572i 0.0132827 0.0132827i
\(52\) −0.597514 0.740805i −0.0828603 0.102731i
\(53\) −2.65409 + 2.65409i −0.364567 + 0.364567i −0.865491 0.500924i \(-0.832994\pi\)
0.500924 + 0.865491i \(0.332994\pi\)
\(54\) −1.16707 0.0622996i −0.158818 0.00847790i
\(55\) 1.82138i 0.245595i
\(56\) 0 0
\(57\) 19.4402i 2.57492i
\(58\) −0.513543 + 9.62030i −0.0674315 + 1.26321i
\(59\) −6.21901 + 6.21901i −0.809646 + 0.809646i −0.984580 0.174934i \(-0.944029\pi\)
0.174934 + 0.984580i \(0.444029\pi\)
\(60\) −4.09113 0.438027i −0.528162 0.0565490i
\(61\) −4.55283 + 4.55283i −0.582931 + 0.582931i −0.935708 0.352777i \(-0.885237\pi\)
0.352777 + 0.935708i \(0.385237\pi\)
\(62\) 3.49665 + 3.89102i 0.444075 + 0.494160i
\(63\) 0 0
\(64\) 2.51641 7.59393i 0.314551 0.949241i
\(65\) 0.411776 0.0510746
\(66\) 5.26396 4.73045i 0.647949 0.582278i
\(67\) 7.65741 7.65741i 0.935501 0.935501i −0.0625413 0.998042i \(-0.519921\pi\)
0.998042 + 0.0625413i \(0.0199205\pi\)
\(68\) −0.112208 0.0120138i −0.0136072 0.00145689i
\(69\) −12.0979 12.0979i −1.45641 1.45641i
\(70\) 0 0
\(71\) −13.1246 −1.55760 −0.778800 0.627272i \(-0.784171\pi\)
−0.778800 + 0.627272i \(0.784171\pi\)
\(72\) −4.39194 6.08215i −0.517595 0.716788i
\(73\) 5.39185 0.631068 0.315534 0.948914i \(-0.397816\pi\)
0.315534 + 0.948914i \(0.397816\pi\)
\(74\) −4.78092 0.255211i −0.555770 0.0296677i
\(75\) −7.14689 + 7.14689i −0.825251 + 0.825251i
\(76\) −12.7291 + 10.2670i −1.46013 + 1.17770i
\(77\) 0 0
\(78\) 1.06946 + 1.19007i 0.121092 + 0.134749i
\(79\) 5.76911i 0.649075i 0.945873 + 0.324538i \(0.105209\pi\)
−0.945873 + 0.324538i \(0.894791\pi\)
\(80\) 1.87384 + 2.91014i 0.209502 + 0.325363i
\(81\) 9.92198 1.10244
\(82\) −4.68840 5.21717i −0.517747 0.576140i
\(83\) 4.52860 + 4.52860i 0.497079 + 0.497079i 0.910527 0.413449i \(-0.135676\pi\)
−0.413449 + 0.910527i \(0.635676\pi\)
\(84\) 0 0
\(85\) 0.0345244 0.0345244i 0.00374469 0.00374469i
\(86\) −0.532866 + 9.98228i −0.0574604 + 1.07642i
\(87\) 16.1960i 1.73639i
\(88\) −5.87748 0.948455i −0.626542 0.101106i
\(89\) −2.56436 −0.271821 −0.135911 0.990721i \(-0.543396\pi\)
−0.135911 + 0.990721i \(0.543396\pi\)
\(90\) 3.24121 + 0.173020i 0.341654 + 0.0182379i
\(91\) 0 0
\(92\) −1.53222 + 14.3108i −0.159745 + 1.49200i
\(93\) −6.21866 6.21866i −0.644845 0.644845i
\(94\) 10.4051 + 11.5786i 1.07321 + 1.19425i
\(95\) 7.07548i 0.725929i
\(96\) −3.54388 + 12.9737i −0.361695 + 1.32413i
\(97\) 9.06313i 0.920222i −0.887861 0.460111i \(-0.847810\pi\)
0.887861 0.460111i \(-0.152190\pi\)
\(98\) 0 0
\(99\) −3.94777 + 3.94777i −0.396766 + 0.396766i
\(100\) 8.45416 + 0.905165i 0.845416 + 0.0905165i
\(101\) −6.78762 6.78762i −0.675394 0.675394i 0.283561 0.958954i \(-0.408484\pi\)
−0.958954 + 0.283561i \(0.908484\pi\)
\(102\) 0.189445 + 0.0101128i 0.0187578 + 0.00100132i
\(103\) 1.37379i 0.135363i −0.997707 0.0676816i \(-0.978440\pi\)
0.997707 0.0676816i \(-0.0215602\pi\)
\(104\) 0.214426 1.32878i 0.0210262 0.130297i
\(105\) 0 0
\(106\) −5.30063 0.282954i −0.514843 0.0274829i
\(107\) −9.89377 9.89377i −0.956467 0.956467i 0.0426244 0.999091i \(-0.486428\pi\)
−0.999091 + 0.0426244i \(0.986428\pi\)
\(108\) −1.03767 1.28651i −0.0998497 0.123795i
\(109\) 1.96846 + 1.96846i 0.188544 + 0.188544i 0.795066 0.606522i \(-0.207436\pi\)
−0.606522 + 0.795066i \(0.707436\pi\)
\(110\) 1.91588 1.72170i 0.182672 0.164158i
\(111\) 8.04879 0.763957
\(112\) 0 0
\(113\) 6.74317 0.634344 0.317172 0.948368i \(-0.397267\pi\)
0.317172 + 0.948368i \(0.397267\pi\)
\(114\) 20.4488 18.3763i 1.91521 1.72110i
\(115\) −4.40316 4.40316i −0.410597 0.410597i
\(116\) −10.6049 + 8.55362i −0.984637 + 0.794184i
\(117\) −0.892510 0.892510i −0.0825126 0.0825126i
\(118\) −12.4203 0.663012i −1.14338 0.0610352i
\(119\) 0 0
\(120\) −3.40648 4.71744i −0.310968 0.430642i
\(121\) 6.56945i 0.597223i
\(122\) −9.09272 0.485380i −0.823216 0.0439443i
\(123\) 8.33813 + 8.33813i 0.751824 + 0.751824i
\(124\) −0.787604 + 7.35614i −0.0707289 + 0.660601i
\(125\) −5.66052 + 5.66052i −0.506293 + 0.506293i
\(126\) 0 0
\(127\) 8.62463i 0.765312i 0.923891 + 0.382656i \(0.124991\pi\)
−0.923891 + 0.382656i \(0.875009\pi\)
\(128\) 10.3666 4.53137i 0.916288 0.400520i
\(129\) 16.8054i 1.47963i
\(130\) 0.389241 + 0.433141i 0.0341387 + 0.0379890i
\(131\) −3.80852 3.80852i −0.332752 0.332752i 0.520879 0.853631i \(-0.325604\pi\)
−0.853631 + 0.520879i \(0.825604\pi\)
\(132\) 9.95176 + 1.06551i 0.866189 + 0.0927407i
\(133\) 0 0
\(134\) 15.2930 + 0.816361i 1.32112 + 0.0705228i
\(135\) 0.715108 0.0615467
\(136\) −0.0934301 0.129386i −0.00801156 0.0110948i
\(137\) 10.7615i 0.919413i −0.888071 0.459707i \(-0.847955\pi\)
0.888071 0.459707i \(-0.152045\pi\)
\(138\) 1.28976 24.1614i 0.109792 2.05675i
\(139\) 13.2045 13.2045i 1.11999 1.11999i 0.128251 0.991742i \(-0.459064\pi\)
0.991742 0.128251i \(-0.0409362\pi\)
\(140\) 0 0
\(141\) −18.5051 18.5051i −1.55841 1.55841i
\(142\) −12.4063 13.8055i −1.04111 1.15853i
\(143\) −1.00166 −0.0837626
\(144\) 2.24613 10.3691i 0.187178 0.864092i
\(145\) 5.89472i 0.489530i
\(146\) 5.09677 + 5.67160i 0.421812 + 0.469385i
\(147\) 0 0
\(148\) −4.25082 5.27021i −0.349415 0.433209i
\(149\) 2.85563 2.85563i 0.233942 0.233942i −0.580394 0.814336i \(-0.697101\pi\)
0.814336 + 0.580394i \(0.197101\pi\)
\(150\) −14.2734 0.761934i −1.16542 0.0622116i
\(151\) −7.89738 −0.642680 −0.321340 0.946964i \(-0.604133\pi\)
−0.321340 + 0.946964i \(0.604133\pi\)
\(152\) −22.8322 3.68445i −1.85193 0.298848i
\(153\) −0.149661 −0.0120993
\(154\) 0 0
\(155\) −2.26335 2.26335i −0.181797 0.181797i
\(156\) −0.240890 + 2.24989i −0.0192866 + 0.180135i
\(157\) −11.4262 + 11.4262i −0.911912 + 0.911912i −0.996423 0.0845104i \(-0.973067\pi\)
0.0845104 + 0.996423i \(0.473067\pi\)
\(158\) −6.06843 + 5.45338i −0.482778 + 0.433848i
\(159\) 8.92373 0.707698
\(160\) −1.28983 + 4.72194i −0.101970 + 0.373302i
\(161\) 0 0
\(162\) 9.37898 + 10.4368i 0.736882 + 0.819990i
\(163\) 2.18896 2.18896i 0.171453 0.171453i −0.616165 0.787617i \(-0.711314\pi\)
0.787617 + 0.616165i \(0.211314\pi\)
\(164\) 1.05604 9.86330i 0.0824627 0.770194i
\(165\) −3.06198 + 3.06198i −0.238374 + 0.238374i
\(166\) −0.482797 + 9.04433i −0.0374723 + 0.701976i
\(167\) 5.62954i 0.435627i 0.975990 + 0.217813i \(0.0698924\pi\)
−0.975990 + 0.217813i \(0.930108\pi\)
\(168\) 0 0
\(169\) 12.7735i 0.982580i
\(170\) 0.0689506 + 0.00368066i 0.00528827 + 0.000282294i
\(171\) −15.3359 + 15.3359i −1.17276 + 1.17276i
\(172\) −11.0039 + 8.87547i −0.839040 + 0.676748i
\(173\) −1.24249 + 1.24249i −0.0944648 + 0.0944648i −0.752760 0.658295i \(-0.771278\pi\)
0.658295 + 0.752760i \(0.271278\pi\)
\(174\) 17.0363 15.3096i 1.29152 1.16062i
\(175\) 0 0
\(176\) −4.55816 7.07898i −0.343584 0.533598i
\(177\) 20.9099 1.57169
\(178\) −2.42402 2.69740i −0.181688 0.202179i
\(179\) −5.41675 + 5.41675i −0.404867 + 0.404867i −0.879944 0.475077i \(-0.842420\pi\)
0.475077 + 0.879944i \(0.342420\pi\)
\(180\) 2.88183 + 3.57293i 0.214799 + 0.266310i
\(181\) −0.00448004 0.00448004i −0.000332999 0.000332999i 0.706940 0.707273i \(-0.250075\pi\)
−0.707273 + 0.706940i \(0.750075\pi\)
\(182\) 0 0
\(183\) 15.3078 1.13159
\(184\) −16.5016 + 11.9159i −1.21652 + 0.878449i
\(185\) 2.92945 0.215377
\(186\) 0.662975 12.4196i 0.0486117 0.910652i
\(187\) −0.0839813 + 0.0839813i −0.00614132 + 0.00614132i
\(188\) −2.34370 + 21.8900i −0.170932 + 1.59649i
\(189\) 0 0
\(190\) 7.44259 6.68826i 0.539942 0.485218i
\(191\) 15.4015i 1.11441i 0.830375 + 0.557206i \(0.188126\pi\)
−0.830375 + 0.557206i \(0.811874\pi\)
\(192\) −16.9968 + 8.53597i −1.22664 + 0.616031i
\(193\) −1.55065 −0.111618 −0.0558091 0.998441i \(-0.517774\pi\)
−0.0558091 + 0.998441i \(0.517774\pi\)
\(194\) 9.53336 8.56713i 0.684455 0.615084i
\(195\) −0.692250 0.692250i −0.0495730 0.0495730i
\(196\) 0 0
\(197\) 1.05178 1.05178i 0.0749363 0.0749363i −0.668645 0.743582i \(-0.733126\pi\)
0.743582 + 0.668645i \(0.233126\pi\)
\(198\) −7.88432 0.420874i −0.560314 0.0299102i
\(199\) 12.6591i 0.897378i −0.893688 0.448689i \(-0.851891\pi\)
0.893688 0.448689i \(-0.148109\pi\)
\(200\) 7.03936 + 9.74842i 0.497758 + 0.689317i
\(201\) −25.7462 −1.81600
\(202\) 0.723633 13.5559i 0.0509146 0.953793i
\(203\) 0 0
\(204\) 0.168440 + 0.208833i 0.0117931 + 0.0146212i
\(205\) 3.03476 + 3.03476i 0.211957 + 0.211957i
\(206\) 1.44506 1.29860i 0.100682 0.0904780i
\(207\) 19.0874i 1.32666i
\(208\) 1.60041 1.03051i 0.110969 0.0714528i
\(209\) 17.2113i 1.19053i
\(210\) 0 0
\(211\) 0.830513 0.830513i 0.0571749 0.0571749i −0.677941 0.735116i \(-0.737128\pi\)
0.735116 + 0.677941i \(0.237128\pi\)
\(212\) −4.71291 5.84311i −0.323684 0.401307i
\(213\) 22.0641 + 22.0641i 1.51181 + 1.51181i
\(214\) 1.05478 19.7594i 0.0721033 1.35073i
\(215\) 6.11652i 0.417143i
\(216\) 0.372382 2.30761i 0.0253374 0.157013i
\(217\) 0 0
\(218\) −0.209859 + 3.93132i −0.0142134 + 0.266263i
\(219\) −9.06440 9.06440i −0.612515 0.612515i
\(220\) 3.62206 + 0.387804i 0.244199 + 0.0261458i
\(221\) −0.0189865 0.0189865i −0.00127717 0.00127717i
\(222\) 7.60830 + 8.46639i 0.510636 + 0.568227i
\(223\) −4.19686 −0.281043 −0.140521 0.990078i \(-0.544878\pi\)
−0.140521 + 0.990078i \(0.544878\pi\)
\(224\) 0 0
\(225\) 11.2760 0.751731
\(226\) 6.37414 + 7.09303i 0.424001 + 0.471822i
\(227\) 9.09470 + 9.09470i 0.603636 + 0.603636i 0.941276 0.337639i \(-0.109628\pi\)
−0.337639 + 0.941276i \(0.609628\pi\)
\(228\) 38.6595 + 4.13917i 2.56028 + 0.274123i
\(229\) 14.3071 + 14.3071i 0.945438 + 0.945438i 0.998587 0.0531488i \(-0.0169258\pi\)
−0.0531488 + 0.998587i \(0.516926\pi\)
\(230\) 0.469424 8.79380i 0.0309529 0.579846i
\(231\) 0 0
\(232\) −19.0219 3.06958i −1.24885 0.201528i
\(233\) 22.9311i 1.50226i −0.660152 0.751132i \(-0.729508\pi\)
0.660152 0.751132i \(-0.270492\pi\)
\(234\) 0.0951510 1.78248i 0.00622022 0.116525i
\(235\) −6.73514 6.73514i −0.439352 0.439352i
\(236\) −11.0432 13.6915i −0.718851 0.891239i
\(237\) 9.69862 9.69862i 0.629993 0.629993i
\(238\) 0 0
\(239\) 5.12967i 0.331811i 0.986142 + 0.165905i \(0.0530546\pi\)
−0.986142 + 0.165905i \(0.946945\pi\)
\(240\) 1.74215 8.04249i 0.112455 0.519141i
\(241\) 16.9504i 1.09187i 0.837827 + 0.545936i \(0.183826\pi\)
−0.837827 + 0.545936i \(0.816174\pi\)
\(242\) 6.91030 6.20993i 0.444211 0.399189i
\(243\) −14.9270 14.9270i −0.957570 0.957570i
\(244\) −8.08454 10.0233i −0.517560 0.641676i
\(245\) 0 0
\(246\) −0.888933 + 16.6525i −0.0566763 + 1.06173i
\(247\) −3.89112 −0.247586
\(248\) −8.48231 + 6.12510i −0.538627 + 0.388944i
\(249\) 15.2263i 0.964931i
\(250\) −11.3050 0.603472i −0.714988 0.0381669i
\(251\) −1.63771 + 1.63771i −0.103371 + 0.103371i −0.756901 0.653530i \(-0.773288\pi\)
0.653530 + 0.756901i \(0.273288\pi\)
\(252\) 0 0
\(253\) 10.7108 + 10.7108i 0.673381 + 0.673381i
\(254\) −9.07210 + 8.15263i −0.569234 + 0.511541i
\(255\) −0.116080 −0.00726921
\(256\) 14.5658 + 6.62110i 0.910359 + 0.413818i
\(257\) 8.09393i 0.504885i −0.967612 0.252443i \(-0.918766\pi\)
0.967612 0.252443i \(-0.0812339\pi\)
\(258\) 17.6773 15.8857i 1.10054 0.989000i
\(259\) 0 0
\(260\) −0.0876746 + 0.818873i −0.00543735 + 0.0507843i
\(261\) −12.7766 + 12.7766i −0.790851 + 0.790851i
\(262\) 0.406028 7.60621i 0.0250845 0.469913i
\(263\) −14.8366 −0.914863 −0.457431 0.889245i \(-0.651231\pi\)
−0.457431 + 0.889245i \(0.651231\pi\)
\(264\) 8.28634 + 11.4753i 0.509989 + 0.706255i
\(265\) 3.24790 0.199517
\(266\) 0 0
\(267\) 4.31102 + 4.31102i 0.263830 + 0.263830i
\(268\) 13.5974 + 16.8582i 0.830592 + 1.02978i
\(269\) −0.171356 + 0.171356i −0.0104478 + 0.0104478i −0.712311 0.701864i \(-0.752352\pi\)
0.701864 + 0.712311i \(0.252352\pi\)
\(270\) 0.675972 + 0.752211i 0.0411384 + 0.0457781i
\(271\) 22.4289 1.36246 0.681229 0.732070i \(-0.261446\pi\)
0.681229 + 0.732070i \(0.261446\pi\)
\(272\) 0.0477822 0.220583i 0.00289722 0.0133748i
\(273\) 0 0
\(274\) 11.3198 10.1725i 0.683854 0.614544i
\(275\) 6.32745 6.32745i 0.381560 0.381560i
\(276\) 26.6341 21.4824i 1.60318 1.29309i
\(277\) 13.7619 13.7619i 0.826875 0.826875i −0.160208 0.987083i \(-0.551217\pi\)
0.987083 + 0.160208i \(0.0512166\pi\)
\(278\) 26.3715 + 1.40774i 1.58166 + 0.0844307i
\(279\) 9.81146i 0.587397i
\(280\) 0 0
\(281\) 12.3856i 0.738865i −0.929258 0.369432i \(-0.879552\pi\)
0.929258 0.369432i \(-0.120448\pi\)
\(282\) 1.97284 36.9576i 0.117481 2.20079i
\(283\) 2.67193 2.67193i 0.158830 0.158830i −0.623218 0.782048i \(-0.714175\pi\)
0.782048 + 0.623218i \(0.214175\pi\)
\(284\) 2.79446 26.1000i 0.165821 1.54875i
\(285\) −11.8948 + 11.8948i −0.704588 + 0.704588i
\(286\) −0.946838 1.05362i −0.0559877 0.0623021i
\(287\) 0 0
\(288\) 13.0303 7.43896i 0.767818 0.438345i
\(289\) 16.9968 0.999813
\(290\) 6.20056 5.57212i 0.364109 0.327206i
\(291\) −15.2363 + 15.2363i −0.893168 + 0.893168i
\(292\) −1.14802 + 10.7224i −0.0671829 + 0.627482i
\(293\) 2.83797 + 2.83797i 0.165796 + 0.165796i 0.785129 0.619333i \(-0.212597\pi\)
−0.619333 + 0.785129i \(0.712597\pi\)
\(294\) 0 0
\(295\) 7.61041 0.443095
\(296\) 1.52546 9.45316i 0.0886658 0.549454i
\(297\) −1.73952 −0.100937
\(298\) 5.70314 + 0.304441i 0.330374 + 0.0176358i
\(299\) −2.42149 + 2.42149i −0.140038 + 0.140038i
\(300\) −12.6908 15.7342i −0.732706 0.908417i
\(301\) 0 0
\(302\) −7.46518 8.30713i −0.429573 0.478022i
\(303\) 22.8218i 1.31108i
\(304\) −17.7070 27.4996i −1.01557 1.57721i
\(305\) 5.57145 0.319021
\(306\) −0.141470 0.157426i −0.00808731 0.00899942i
\(307\) 17.5282 + 17.5282i 1.00038 + 1.00038i 1.00000 0.000384595i \(0.000122420\pi\)
0.000384595 1.00000i \(0.499878\pi\)
\(308\) 0 0
\(309\) −2.30951 + 2.30951i −0.131384 + 0.131384i
\(310\) 0.241297 4.52027i 0.0137048 0.256734i
\(311\) 22.4197i 1.27130i 0.771976 + 0.635651i \(0.219268\pi\)
−0.771976 + 0.635651i \(0.780732\pi\)
\(312\) −2.59433 + 1.87337i −0.146875 + 0.106059i
\(313\) 7.73860 0.437412 0.218706 0.975791i \(-0.429816\pi\)
0.218706 + 0.975791i \(0.429816\pi\)
\(314\) −22.8200 1.21816i −1.28781 0.0687446i
\(315\) 0 0
\(316\) −11.4726 1.22835i −0.645387 0.0690999i
\(317\) −2.29043 2.29043i −0.128643 0.128643i 0.639853 0.768497i \(-0.278995\pi\)
−0.768497 + 0.639853i \(0.778995\pi\)
\(318\) 8.43537 + 9.38673i 0.473032 + 0.526382i
\(319\) 14.3390i 0.802832i
\(320\) −6.18617 + 3.10676i −0.345818 + 0.173673i
\(321\) 33.2654i 1.85669i
\(322\) 0 0
\(323\) −0.326241 + 0.326241i −0.0181525 + 0.0181525i
\(324\) −2.11257 + 19.7312i −0.117365 + 1.09618i
\(325\) 1.43051 + 1.43051i 0.0793503 + 0.0793503i
\(326\) 4.37170 + 0.233366i 0.242126 + 0.0129250i
\(327\) 6.61847i 0.366002i
\(328\) 11.3733 8.21268i 0.627985 0.453469i
\(329\) 0 0
\(330\) −6.11524 0.326439i −0.336633 0.0179699i
\(331\) 2.94412 + 2.94412i 0.161824 + 0.161824i 0.783374 0.621550i \(-0.213497\pi\)
−0.621550 + 0.783374i \(0.713497\pi\)
\(332\) −9.96996 + 8.04152i −0.547173 + 0.441336i
\(333\) −6.34947 6.34947i −0.347949 0.347949i
\(334\) −5.92162 + 5.32145i −0.324016 + 0.291177i
\(335\) −9.37062 −0.511972
\(336\) 0 0
\(337\) −6.10926 −0.332793 −0.166396 0.986059i \(-0.553213\pi\)
−0.166396 + 0.986059i \(0.553213\pi\)
\(338\) −13.4363 + 12.0745i −0.730837 + 0.656766i
\(339\) −11.3362 11.3362i −0.615695 0.615695i
\(340\) 0.0613055 + 0.0760072i 0.00332476 + 0.00412207i
\(341\) 5.50565 + 5.50565i 0.298148 + 0.298148i
\(342\) −30.6281 1.63496i −1.65618 0.0884087i
\(343\) 0 0
\(344\) −19.7376 3.18508i −1.06418 0.171728i
\(345\) 14.8046i 0.797051i
\(346\) −2.48145 0.132463i −0.133403 0.00712123i
\(347\) −21.9718 21.9718i −1.17951 1.17951i −0.979869 0.199640i \(-0.936023\pi\)
−0.199640 0.979869i \(-0.563977\pi\)
\(348\) 32.2079 + 3.44842i 1.72653 + 0.184855i
\(349\) −5.02028 + 5.02028i −0.268730 + 0.268730i −0.828588 0.559859i \(-0.810855\pi\)
0.559859 + 0.828588i \(0.310855\pi\)
\(350\) 0 0
\(351\) 0.393269i 0.0209911i
\(352\) 3.13755 11.4862i 0.167232 0.612218i
\(353\) 22.5953i 1.20263i −0.799012 0.601314i \(-0.794644\pi\)
0.799012 0.601314i \(-0.205356\pi\)
\(354\) 19.7656 + 21.9948i 1.05053 + 1.16901i
\(355\) 8.03049 + 8.03049i 0.426214 + 0.426214i
\(356\) 0.545998 5.09957i 0.0289378 0.270276i
\(357\) 0 0
\(358\) −10.8181 0.577483i −0.571755 0.0305209i
\(359\) −11.6106 −0.612782 −0.306391 0.951906i \(-0.599121\pi\)
−0.306391 + 0.951906i \(0.599121\pi\)
\(360\) −1.03419 + 6.40874i −0.0545063 + 0.337770i
\(361\) 47.8604i 2.51897i
\(362\) 0.000477620 0.00894735i 2.51032e−5 0.000470262i
\(363\) −11.0441 + 11.0441i −0.579665 + 0.579665i
\(364\) 0 0
\(365\) −3.29909 3.29909i −0.172682 0.172682i
\(366\) 14.4701 + 16.1020i 0.756362 + 0.841667i
\(367\) 34.2580 1.78825 0.894126 0.447816i \(-0.147798\pi\)
0.894126 + 0.447816i \(0.147798\pi\)
\(368\) −28.1326 6.09404i −1.46651 0.317674i
\(369\) 13.1554i 0.684845i
\(370\) 2.76913 + 3.08144i 0.143960 + 0.160196i
\(371\) 0 0
\(372\) 13.6907 11.0426i 0.709830 0.572531i
\(373\) −17.7221 + 17.7221i −0.917617 + 0.917617i −0.996856 0.0792383i \(-0.974751\pi\)
0.0792383 + 0.996856i \(0.474751\pi\)
\(374\) −0.167724 0.00895330i −0.00867279 0.000462964i
\(375\) 19.0322 0.982816
\(376\) −25.2411 + 18.2267i −1.30171 + 0.939970i
\(377\) −3.24176 −0.166959
\(378\) 0 0
\(379\) −19.0292 19.0292i −0.977466 0.977466i 0.0222852 0.999752i \(-0.492906\pi\)
−0.999752 + 0.0222852i \(0.992906\pi\)
\(380\) 14.0706 + 1.50650i 0.721804 + 0.0772817i
\(381\) 14.4991 14.4991i 0.742812 0.742812i
\(382\) −16.2006 + 14.5586i −0.828892 + 0.744882i
\(383\) −22.7286 −1.16138 −0.580690 0.814125i \(-0.697217\pi\)
−0.580690 + 0.814125i \(0.697217\pi\)
\(384\) −25.0454 9.80982i −1.27810 0.500605i
\(385\) 0 0
\(386\) −1.46579 1.63110i −0.0746066 0.0830209i
\(387\) −13.2573 + 13.2573i −0.673908 + 0.673908i
\(388\) 18.0233 + 1.92970i 0.914992 + 0.0979659i
\(389\) −19.0824 + 19.0824i −0.967517 + 0.967517i −0.999489 0.0319722i \(-0.989821\pi\)
0.0319722 + 0.999489i \(0.489821\pi\)
\(390\) 0.0738011 1.38253i 0.00373707 0.0700072i
\(391\) 0.406048i 0.0205347i
\(392\) 0 0
\(393\) 12.8052i 0.645938i
\(394\) 2.10057 + 0.112131i 0.105825 + 0.00564908i
\(395\) 3.52993 3.52993i 0.177610 0.177610i
\(396\) −7.01012 8.69123i −0.352272 0.436751i
\(397\) 17.8975 17.8975i 0.898248 0.898248i −0.0970328 0.995281i \(-0.530935\pi\)
0.995281 + 0.0970328i \(0.0309352\pi\)
\(398\) 13.3159 11.9663i 0.667464 0.599815i
\(399\) 0 0
\(400\) −3.60009 + 16.6195i −0.180004 + 0.830975i
\(401\) −3.51654 −0.175607 −0.0878037 0.996138i \(-0.527985\pi\)
−0.0878037 + 0.996138i \(0.527985\pi\)
\(402\) −24.3372 27.0820i −1.21383 1.35073i
\(403\) −1.24472 + 1.24472i −0.0620037 + 0.0620037i
\(404\) 14.9433 12.0529i 0.743457 0.599654i
\(405\) −6.07093 6.07093i −0.301667 0.301667i
\(406\) 0 0
\(407\) −7.12595 −0.353220
\(408\) −0.0604468 + 0.374583i −0.00299256 + 0.0185446i
\(409\) −18.6724 −0.923292 −0.461646 0.887064i \(-0.652741\pi\)
−0.461646 + 0.887064i \(0.652741\pi\)
\(410\) −0.323537 + 6.06088i −0.0159784 + 0.299326i
\(411\) −18.0914 + 18.0914i −0.892383 + 0.892383i
\(412\) 2.73196 + 0.292504i 0.134594 + 0.0144106i
\(413\) 0 0
\(414\) −20.0777 + 18.0428i −0.986765 + 0.886754i
\(415\) 5.54180i 0.272036i
\(416\) 2.59680 + 0.709336i 0.127319 + 0.0347781i
\(417\) −44.3970 −2.17413
\(418\) −18.1043 + 16.2694i −0.885508 + 0.795760i
\(419\) −2.28986 2.28986i −0.111867 0.111867i 0.648958 0.760825i \(-0.275205\pi\)
−0.760825 + 0.648958i \(0.775205\pi\)
\(420\) 0 0
\(421\) −0.821840 + 0.821840i −0.0400540 + 0.0400540i −0.726850 0.686796i \(-0.759017\pi\)
0.686796 + 0.726850i \(0.259017\pi\)
\(422\) 1.65866 + 0.0885415i 0.0807425 + 0.00431013i
\(423\) 29.1964i 1.41958i
\(424\) 1.69129 10.4808i 0.0821364 0.508991i
\(425\) 0.239875 0.0116356
\(426\) −2.35227 + 44.0655i −0.113968 + 2.13498i
\(427\) 0 0
\(428\) 21.7816 17.5685i 1.05286 0.849207i
\(429\) 1.68391 + 1.68391i 0.0813001 + 0.0813001i
\(430\) 6.43387 5.78178i 0.310269 0.278822i
\(431\) 20.4370i 0.984414i −0.870478 0.492207i \(-0.836190\pi\)
0.870478 0.492207i \(-0.163810\pi\)
\(432\) 2.77934 1.78962i 0.133721 0.0861032i
\(433\) 34.7460i 1.66979i −0.550413 0.834893i \(-0.685530\pi\)
0.550413 0.834893i \(-0.314470\pi\)
\(434\) 0 0
\(435\) −9.90979 + 9.90979i −0.475138 + 0.475138i
\(436\) −4.33366 + 3.49542i −0.207545 + 0.167400i
\(437\) 41.6080 + 41.6080i 1.99038 + 1.99038i
\(438\) 0.966361 18.1030i 0.0461745 0.864996i
\(439\) 32.6135i 1.55656i −0.627919 0.778278i \(-0.716093\pi\)
0.627919 0.778278i \(-0.283907\pi\)
\(440\) 3.01591 + 4.17656i 0.143778 + 0.199110i
\(441\) 0 0
\(442\) 0.00202416 0.0379189i 9.62793e−5 0.00180362i
\(443\) −9.76396 9.76396i −0.463900 0.463900i 0.436032 0.899931i \(-0.356384\pi\)
−0.899931 + 0.436032i \(0.856384\pi\)
\(444\) −1.71373 + 16.0061i −0.0813301 + 0.759616i
\(445\) 1.56904 + 1.56904i 0.0743798 + 0.0743798i
\(446\) −3.96718 4.41461i −0.187852 0.209038i
\(447\) −9.60138 −0.454130
\(448\) 0 0
\(449\) −17.6685 −0.833830 −0.416915 0.908946i \(-0.636889\pi\)
−0.416915 + 0.908946i \(0.636889\pi\)
\(450\) 10.6589 + 11.8610i 0.502464 + 0.559133i
\(451\) −7.38211 7.38211i −0.347610 0.347610i
\(452\) −1.43574 + 13.4097i −0.0675317 + 0.630740i
\(453\) 13.2765 + 13.2765i 0.623786 + 0.623786i
\(454\) −0.969591 + 18.1635i −0.0455052 + 0.852457i
\(455\) 0 0
\(456\) 32.1898 + 44.5779i 1.50743 + 2.08755i
\(457\) 4.05357i 0.189618i −0.995495 0.0948090i \(-0.969776\pi\)
0.995495 0.0948090i \(-0.0302240\pi\)
\(458\) −1.52529 + 28.5735i −0.0712719 + 1.33515i
\(459\) −0.0329727 0.0329727i −0.00153903 0.00153903i
\(460\) 9.69379 7.81876i 0.451975 0.364552i
\(461\) −2.39386 + 2.39386i −0.111493 + 0.111493i −0.760653 0.649159i \(-0.775121\pi\)
0.649159 + 0.760653i \(0.275121\pi\)
\(462\) 0 0
\(463\) 30.7630i 1.42968i 0.699289 + 0.714839i \(0.253500\pi\)
−0.699289 + 0.714839i \(0.746500\pi\)
\(464\) −14.7521 22.9104i −0.684847 1.06359i
\(465\) 7.60998i 0.352904i
\(466\) 24.1208 21.6761i 1.11737 1.00413i
\(467\) 5.08862 + 5.08862i 0.235473 + 0.235473i 0.814973 0.579500i \(-0.196752\pi\)
−0.579500 + 0.814973i \(0.696752\pi\)
\(468\) 1.96491 1.58484i 0.0908279 0.0732595i
\(469\) 0 0
\(470\) 0.718038 13.4511i 0.0331206 0.620455i
\(471\) 38.4179 1.77021
\(472\) 3.96300 24.5583i 0.182412 1.13039i
\(473\) 14.8786i 0.684117i
\(474\) 19.3697 + 1.03398i 0.889678 + 0.0474921i
\(475\) 24.5802 24.5802i 1.12782 1.12782i
\(476\) 0 0
\(477\) −7.03969 7.03969i −0.322325 0.322325i
\(478\) −5.39581 + 4.84894i −0.246799 + 0.221785i
\(479\) 2.85508 0.130452 0.0652259 0.997871i \(-0.479223\pi\)
0.0652259 + 0.997871i \(0.479223\pi\)
\(480\) 10.1066 5.76981i 0.461300 0.263355i
\(481\) 1.61103i 0.0734567i
\(482\) −17.8299 + 16.0228i −0.812128 + 0.729817i
\(483\) 0 0
\(484\) 13.0642 + 1.39876i 0.593829 + 0.0635798i
\(485\) −5.54543 + 5.54543i −0.251805 + 0.251805i
\(486\) 1.59138 29.8116i 0.0721865 1.35228i
\(487\) 33.2105 1.50491 0.752457 0.658642i \(-0.228869\pi\)
0.752457 + 0.658642i \(0.228869\pi\)
\(488\) 2.90125 17.9788i 0.131333 0.813860i
\(489\) −7.35986 −0.332824
\(490\) 0 0
\(491\) −23.0686 23.0686i −1.04107 1.04107i −0.999120 0.0419533i \(-0.986642\pi\)
−0.0419533 0.999120i \(-0.513358\pi\)
\(492\) −18.3568 + 14.8061i −0.827589 + 0.667513i
\(493\) −0.271798 + 0.271798i −0.0122411 + 0.0122411i
\(494\) −3.67817 4.09300i −0.165489 0.184153i
\(495\) 4.83102 0.217138
\(496\) −14.4610 3.13251i −0.649317 0.140654i
\(497\) 0 0
\(498\) 16.0163 14.3931i 0.717710 0.644968i
\(499\) 14.6871 14.6871i 0.657486 0.657486i −0.297298 0.954785i \(-0.596086\pi\)
0.954785 + 0.297298i \(0.0960856\pi\)
\(500\) −10.0515 12.4619i −0.449516 0.557315i
\(501\) 9.46398 9.46398i 0.422820 0.422820i
\(502\) −3.27076 0.174597i −0.145981 0.00779266i
\(503\) 0.960903i 0.0428445i −0.999771 0.0214223i \(-0.993181\pi\)
0.999771 0.0214223i \(-0.00681944\pi\)
\(504\) 0 0
\(505\) 8.30624i 0.369623i
\(506\) −1.14188 + 21.3911i −0.0507629 + 0.950951i
\(507\) 21.4740 21.4740i 0.953694 0.953694i
\(508\) −17.1512 1.83634i −0.760963 0.0814743i
\(509\) −1.93431 + 1.93431i −0.0857366 + 0.0857366i −0.748674 0.662938i \(-0.769309\pi\)
0.662938 + 0.748674i \(0.269309\pi\)
\(510\) −0.109727 0.122103i −0.00485880 0.00540679i
\(511\) 0 0
\(512\) 6.80399 + 21.5802i 0.300697 + 0.953720i
\(513\) −6.75748 −0.298350
\(514\) 8.51387 7.65097i 0.375531 0.337470i
\(515\) −0.840574 + 0.840574i −0.0370401 + 0.0370401i
\(516\) 33.4198 + 3.57817i 1.47122 + 0.157520i
\(517\) 16.3834 + 16.3834i 0.720541 + 0.720541i
\(518\) 0 0
\(519\) 4.17758 0.183375
\(520\) −0.944235 + 0.681835i −0.0414074 + 0.0299004i
\(521\) −39.3498 −1.72394 −0.861972 0.506956i \(-0.830771\pi\)
−0.861972 + 0.506956i \(0.830771\pi\)
\(522\) −25.5168 1.36212i −1.11684 0.0596183i
\(523\) 2.77949 2.77949i 0.121538 0.121538i −0.643721 0.765260i \(-0.722610\pi\)
0.765260 + 0.643721i \(0.222610\pi\)
\(524\) 8.38465 6.76285i 0.366285 0.295436i
\(525\) 0 0
\(526\) −14.0246 15.6064i −0.611503 0.680470i
\(527\) 0.208720i 0.00909200i
\(528\) −4.23782 + 19.5635i −0.184427 + 0.851394i
\(529\) 28.7864 1.25158
\(530\) 3.07015 + 3.41641i 0.133359 + 0.148399i
\(531\) −16.4953 16.4953i −0.715834 0.715834i
\(532\) 0 0
\(533\) 1.66894 1.66894i 0.0722900 0.0722900i
\(534\) −0.459600 + 8.60977i −0.0198888 + 0.372581i
\(535\) 12.1073i 0.523446i
\(536\) −4.87961 + 30.2384i −0.210767 + 1.30610i
\(537\) 18.2125 0.785929
\(538\) −0.342225 0.0182684i −0.0147544 0.000787607i
\(539\) 0 0
\(540\) −0.152259 + 1.42209i −0.00655220 + 0.0611970i
\(541\) −27.0467 27.0467i −1.16283 1.16283i −0.983854 0.178974i \(-0.942722\pi\)
−0.178974 0.983854i \(-0.557278\pi\)
\(542\) 21.2014 + 23.5926i 0.910679 + 1.01339i
\(543\) 0.0150631i 0.000646418i
\(544\) 0.277195 0.158250i 0.0118846 0.00678490i
\(545\) 2.40887i 0.103185i
\(546\) 0 0
\(547\) 17.4654 17.4654i 0.746767 0.746767i −0.227104 0.973871i \(-0.572926\pi\)
0.973871 + 0.227104i \(0.0729256\pi\)
\(548\) 21.4006 + 2.29131i 0.914188 + 0.0978798i
\(549\) −12.0759 12.0759i −0.515388 0.515388i
\(550\) 12.6369 + 0.674574i 0.538840 + 0.0287639i
\(551\) 55.7026i 2.37301i
\(552\) 47.7735 + 7.70925i 2.03337 + 0.328128i
\(553\) 0 0
\(554\) 27.4847 + 1.46717i 1.16771 + 0.0623340i
\(555\) −4.92478 4.92478i −0.209045 0.209045i
\(556\) 23.4475 + 29.0704i 0.994394 + 1.23286i
\(557\) −16.3565 16.3565i −0.693048 0.693048i 0.269853 0.962901i \(-0.413025\pi\)
−0.962901 + 0.269853i \(0.913025\pi\)
\(558\) −10.3205 + 9.27451i −0.436902 + 0.392621i
\(559\) −3.36374 −0.142271
\(560\) 0 0
\(561\) 0.282367 0.0119215
\(562\) 13.0282 11.7078i 0.549563 0.493864i
\(563\) 12.2087 + 12.2087i 0.514535 + 0.514535i 0.915913 0.401378i \(-0.131468\pi\)
−0.401378 + 0.915913i \(0.631468\pi\)
\(564\) 40.7400 32.8598i 1.71546 1.38365i
\(565\) −4.12592 4.12592i −0.173579 0.173579i
\(566\) 5.33626 + 0.284856i 0.224300 + 0.0119734i
\(567\) 0 0
\(568\) 30.0957 21.7322i 1.26279 0.911861i
\(569\) 21.1145i 0.885167i 0.896727 + 0.442583i \(0.145938\pi\)
−0.896727 + 0.442583i \(0.854062\pi\)
\(570\) −23.7558 1.26811i −0.995021 0.0531154i
\(571\) 9.33006 + 9.33006i 0.390451 + 0.390451i 0.874848 0.484397i \(-0.160961\pi\)
−0.484397 + 0.874848i \(0.660961\pi\)
\(572\) 0.213270 1.99193i 0.00891729 0.0832866i
\(573\) 25.8919 25.8919i 1.08165 1.08165i
\(574\) 0 0
\(575\) 30.5931i 1.27582i
\(576\) 20.1421 + 6.67451i 0.839254 + 0.278105i
\(577\) 25.0806i 1.04412i −0.852908 0.522061i \(-0.825164\pi\)
0.852908 0.522061i \(-0.174836\pi\)
\(578\) 16.0666 + 17.8787i 0.668284 + 0.743655i
\(579\) 2.60684 + 2.60684i 0.108337 + 0.108337i
\(580\) 11.7224 + 1.25509i 0.486748 + 0.0521149i
\(581\) 0 0
\(582\) −30.4293 1.62435i −1.26133 0.0673315i
\(583\) −7.90058 −0.327209
\(584\) −12.3639 + 8.92802i −0.511623 + 0.369444i
\(585\) 1.09219i 0.0451567i
\(586\) −0.302557 + 5.66786i −0.0124985 + 0.234137i
\(587\) 0.705313 0.705313i 0.0291114 0.0291114i −0.692401 0.721513i \(-0.743447\pi\)
0.721513 + 0.692401i \(0.243447\pi\)
\(588\) 0 0
\(589\) 21.3877 + 21.3877i 0.881266 + 0.881266i
\(590\) 7.19391 + 8.00526i 0.296169 + 0.329572i
\(591\) −3.53636 −0.145467
\(592\) 11.3856 7.33120i 0.467945 0.301311i
\(593\) 43.0219i 1.76670i −0.468714 0.883350i \(-0.655283\pi\)
0.468714 0.883350i \(-0.344717\pi\)
\(594\) −1.64432 1.82977i −0.0674672 0.0750763i
\(595\) 0 0
\(596\) 5.07079 + 6.28682i 0.207708 + 0.257518i
\(597\) −21.2815 + 21.2815i −0.870996 + 0.870996i
\(598\) −4.83609 0.258156i −0.197763 0.0105568i
\(599\) 23.4964 0.960039 0.480019 0.877258i \(-0.340630\pi\)
0.480019 + 0.877258i \(0.340630\pi\)
\(600\) 4.55428 28.2224i 0.185928 1.15218i
\(601\) 42.4771 1.73268 0.866339 0.499456i \(-0.166467\pi\)
0.866339 + 0.499456i \(0.166467\pi\)
\(602\) 0 0
\(603\) 20.3105 + 20.3105i 0.827107 + 0.827107i
\(604\) 1.68150 15.7050i 0.0684191 0.639028i
\(605\) −4.01963 + 4.01963i −0.163421 + 0.163421i
\(606\) −24.0058 + 21.5728i −0.975170 + 0.876335i
\(607\) 21.1066 0.856689 0.428345 0.903615i \(-0.359097\pi\)
0.428345 + 0.903615i \(0.359097\pi\)
\(608\) 12.1884 44.6203i 0.494305 1.80959i
\(609\) 0 0
\(610\) 5.26655 + 5.86052i 0.213236 + 0.237286i
\(611\) −3.70395 + 3.70395i −0.149846 + 0.149846i
\(612\) 0.0318655 0.297620i 0.00128808 0.0120306i
\(613\) −7.89607 + 7.89607i −0.318919 + 0.318919i −0.848352 0.529433i \(-0.822405\pi\)
0.529433 + 0.848352i \(0.322405\pi\)
\(614\) −1.86869 + 35.0065i −0.0754141 + 1.41275i
\(615\) 10.2036i 0.411451i
\(616\) 0 0
\(617\) 18.9275i 0.761992i 0.924577 + 0.380996i \(0.124419\pi\)
−0.924577 + 0.380996i \(0.875581\pi\)
\(618\) −4.61246 0.246219i −0.185540 0.00990437i
\(619\) −6.00291 + 6.00291i −0.241277 + 0.241277i −0.817378 0.576101i \(-0.804573\pi\)
0.576101 + 0.817378i \(0.304573\pi\)
\(620\) 4.98289 4.01907i 0.200118 0.161410i
\(621\) −4.20526 + 4.20526i −0.168751 + 0.168751i
\(622\) −23.5829 + 21.1927i −0.945588 + 0.849750i
\(623\) 0 0
\(624\) −4.42291 0.958083i −0.177058 0.0383540i
\(625\) −14.3292 −0.573169
\(626\) 7.31509 + 8.14011i 0.292370 + 0.325344i
\(627\) 28.9344 28.9344i 1.15553 1.15553i
\(628\) −20.2897 25.1554i −0.809649 1.00381i
\(629\) −0.135073 0.135073i −0.00538571 0.00538571i
\(630\) 0 0
\(631\) 8.88067 0.353534 0.176767 0.984253i \(-0.443436\pi\)
0.176767 + 0.984253i \(0.443436\pi\)
\(632\) −9.55271 13.2290i −0.379986 0.526222i
\(633\) −2.79240 −0.110988
\(634\) 0.244184 4.57435i 0.00969779 0.181671i
\(635\) 5.27712 5.27712i 0.209416 0.209416i
\(636\) −1.90002 + 17.7460i −0.0753409 + 0.703676i
\(637\) 0 0
\(638\) −15.0830 + 13.5543i −0.597142 + 0.536620i
\(639\) 34.8116i 1.37713i
\(640\) −9.11558 3.57039i −0.360325 0.141132i
\(641\) −2.05235 −0.0810628 −0.0405314 0.999178i \(-0.512905\pi\)
−0.0405314 + 0.999178i \(0.512905\pi\)
\(642\) −34.9914 + 31.4449i −1.38100 + 1.24103i
\(643\) −20.1070 20.1070i −0.792942 0.792942i 0.189029 0.981971i \(-0.439466\pi\)
−0.981971 + 0.189029i \(0.939466\pi\)
\(644\) 0 0
\(645\) −10.2827 + 10.2827i −0.404880 + 0.404880i
\(646\) −0.651554 0.0347808i −0.0256351 0.00136843i
\(647\) 12.3406i 0.485157i −0.970132 0.242579i \(-0.922007\pi\)
0.970132 0.242579i \(-0.0779933\pi\)
\(648\) −22.7519 + 16.4292i −0.893778 + 0.645399i
\(649\) −18.5125 −0.726679
\(650\) −0.152507 + 2.85695i −0.00598183 + 0.112059i
\(651\) 0 0
\(652\) 3.88697 + 4.81911i 0.152226 + 0.188731i
\(653\) 30.1729 + 30.1729i 1.18076 + 1.18076i 0.979548 + 0.201209i \(0.0644870\pi\)
0.201209 + 0.979548i \(0.435513\pi\)
\(654\) 6.96186 6.25626i 0.272230 0.244639i
\(655\) 4.66061i 0.182105i
\(656\) 19.3896 + 4.20015i 0.757038 + 0.163988i
\(657\) 14.3013i 0.557948i
\(658\) 0 0
\(659\) 19.4114 19.4114i 0.756162 0.756162i −0.219460 0.975622i \(-0.570429\pi\)
0.975622 + 0.219460i \(0.0704294\pi\)
\(660\) −5.43720 6.74110i −0.211643 0.262397i
\(661\) −23.3763 23.3763i −0.909234 0.909234i 0.0869762 0.996210i \(-0.472280\pi\)
−0.996210 + 0.0869762i \(0.972280\pi\)
\(662\) −0.313875 + 5.87987i −0.0121991 + 0.228528i
\(663\) 0.0638374i 0.00247924i
\(664\) −17.8831 2.88581i −0.693998 0.111991i
\(665\) 0 0
\(666\) 0.676921 12.6809i 0.0262302 0.491374i
\(667\) 34.6644 + 34.6644i 1.34221 + 1.34221i
\(668\) −11.1951 1.19863i −0.433151 0.0463764i
\(669\) 7.05548 + 7.05548i 0.272780 + 0.272780i
\(670\) −8.85780 9.85680i −0.342206 0.380802i
\(671\) −13.5527 −0.523196
\(672\) 0 0
\(673\) −2.56169 −0.0987460 −0.0493730 0.998780i \(-0.515722\pi\)
−0.0493730 + 0.998780i \(0.515722\pi\)
\(674\) −5.77492 6.42623i −0.222442 0.247529i
\(675\) 2.48428 + 2.48428i 0.0956200 + 0.0956200i
\(676\) −25.4019 2.71972i −0.976997 0.104605i
\(677\) −17.0026 17.0026i −0.653463 0.653463i 0.300363 0.953825i \(-0.402892\pi\)
−0.953825 + 0.300363i \(0.902892\pi\)
\(678\) 1.20855 22.6401i 0.0464142 0.869487i
\(679\) 0 0
\(680\) −0.0220003 + 0.136334i −0.000843674 + 0.00522816i
\(681\) 30.5787i 1.17178i
\(682\) −0.586961 + 10.9957i −0.0224759 + 0.421045i
\(683\) −10.1770 10.1770i −0.389412 0.389412i 0.485066 0.874478i \(-0.338796\pi\)
−0.874478 + 0.485066i \(0.838796\pi\)
\(684\) −27.2321 33.7627i −1.04125 1.29095i
\(685\) −6.58458 + 6.58458i −0.251584 + 0.251584i
\(686\) 0 0
\(687\) 48.1041i 1.83529i
\(688\) −15.3071 23.7725i −0.583579 0.906317i
\(689\) 1.78616i 0.0680472i
\(690\) −15.5727 + 13.9944i −0.592842 + 0.532756i
\(691\) −31.1163 31.1163i −1.18372 1.18372i −0.978773 0.204947i \(-0.934298\pi\)
−0.204947 0.978773i \(-0.565702\pi\)
\(692\) −2.20631 2.73541i −0.0838713 0.103985i
\(693\) 0 0
\(694\) 2.34243 43.8812i 0.0889174 1.66571i
\(695\) −16.1588 −0.612938
\(696\) 26.8179 + 37.1387i 1.01653 + 1.40774i
\(697\) 0.279857i 0.0106003i
\(698\) −10.0263 0.535215i −0.379501 0.0202582i
\(699\) −38.5501 + 38.5501i −1.45810 + 1.45810i
\(700\) 0 0
\(701\) 15.8844 + 15.8844i 0.599946 + 0.599946i 0.940298 0.340352i \(-0.110546\pi\)
−0.340352 + 0.940298i \(0.610546\pi\)
\(702\) 0.413673 0.371747i 0.0156131 0.0140307i
\(703\) −27.6821 −1.04405
\(704\) 15.0480 7.55727i 0.567143 0.284825i
\(705\) 22.6453i 0.852872i
\(706\) 23.7677 21.3588i 0.894508 0.803848i
\(707\) 0 0
\(708\) −4.45210 + 41.5822i −0.167320 + 1.56275i
\(709\) 18.5464 18.5464i 0.696523 0.696523i −0.267136 0.963659i \(-0.586077\pi\)
0.963659 + 0.267136i \(0.0860771\pi\)
\(710\) −0.856135 + 16.0381i −0.0321302 + 0.601901i
\(711\) −15.3020 −0.573869
\(712\) 5.88027 4.24616i 0.220372 0.159131i
\(713\) 26.6197 0.996916
\(714\) 0 0
\(715\) 0.612879 + 0.612879i 0.0229204 + 0.0229204i
\(716\) −9.61862 11.9253i −0.359465 0.445668i
\(717\) 8.62364 8.62364i 0.322056 0.322056i
\(718\) −10.9751 12.2130i −0.409589 0.455783i
\(719\) −15.7107 −0.585909 −0.292954 0.956126i \(-0.594638\pi\)
−0.292954 + 0.956126i \(0.594638\pi\)
\(720\) −7.71884 + 4.97017i −0.287664 + 0.185227i
\(721\) 0 0
\(722\) −50.3436 + 45.2411i −1.87359 + 1.68370i
\(723\) 28.4958 28.4958i 1.05977 1.05977i
\(724\) 0.00986305 0.00795529i 0.000366557 0.000295656i
\(725\) 20.4782 20.4782i 0.760541 0.760541i
\(726\) −22.0568 1.17742i −0.818605 0.0436981i
\(727\) 24.4125i 0.905411i 0.891660 + 0.452705i \(0.149541\pi\)
−0.891660 + 0.452705i \(0.850459\pi\)
\(728\) 0 0
\(729\) 20.4227i 0.756395i
\(730\) 0.351718 6.58880i 0.0130177 0.243863i
\(731\) −0.282024 + 0.282024i −0.0104311 + 0.0104311i
\(732\) −3.25931 + 30.4416i −0.120468 + 1.12516i
\(733\) −5.76415 + 5.76415i −0.212904 + 0.212904i −0.805500 0.592596i \(-0.798103\pi\)
0.592596 + 0.805500i \(0.298103\pi\)
\(734\) 32.3831 + 36.0354i 1.19528 + 1.33009i
\(735\) 0 0
\(736\) −20.1828 35.3528i −0.743948 1.30312i
\(737\) 22.7942 0.839637
\(738\) 13.8380 12.4355i 0.509384 0.457757i
\(739\) 5.30141 5.30141i 0.195016 0.195016i −0.602844 0.797859i \(-0.705966\pi\)
0.797859 + 0.602844i \(0.205966\pi\)
\(740\) −0.623732 + 5.82560i −0.0229289 + 0.214153i
\(741\) 6.54147 + 6.54147i 0.240307 + 0.240307i
\(742\) 0 0
\(743\) 5.21163 0.191196 0.0955980 0.995420i \(-0.469524\pi\)
0.0955980 + 0.995420i \(0.469524\pi\)
\(744\) 24.5569 + 3.96278i 0.900301 + 0.145282i
\(745\) −3.49453 −0.128030
\(746\) −35.3939 1.88937i −1.29586 0.0691746i
\(747\) −12.0117 + 12.0117i −0.439484 + 0.439484i
\(748\) −0.149127 0.184889i −0.00545262 0.00676022i
\(749\) 0 0
\(750\) 17.9906 + 20.0196i 0.656923 + 0.731013i
\(751\) 4.15721i 0.151699i −0.997119 0.0758493i \(-0.975833\pi\)
0.997119 0.0758493i \(-0.0241668\pi\)
\(752\) −43.0321 9.32154i −1.56922 0.339921i
\(753\) 5.50641 0.200665
\(754\) −3.06435 3.40996i −0.111597 0.124183i
\(755\) 4.83215 + 4.83215i 0.175860 + 0.175860i
\(756\) 0 0
\(757\) 5.25365 5.25365i 0.190947 0.190947i −0.605158 0.796105i \(-0.706890\pi\)
0.796105 + 0.605158i \(0.206890\pi\)
\(758\) 2.02872 38.0044i 0.0736864 1.38038i
\(759\) 36.0125i 1.30717i
\(760\) 11.7159 + 16.2246i 0.424979 + 0.588529i
\(761\) 9.49743 0.344282 0.172141 0.985072i \(-0.444932\pi\)
0.172141 + 0.985072i \(0.444932\pi\)
\(762\) 28.9570 + 1.54576i 1.04900 + 0.0559970i
\(763\) 0 0
\(764\) −30.6279 3.27925i −1.10808 0.118639i
\(765\) 0.0915724 + 0.0915724i 0.00331081 + 0.00331081i
\(766\) −21.4848 23.9079i −0.776276 0.863827i
\(767\) 4.18529i 0.151122i
\(768\) −13.3560 35.6178i −0.481943 1.28525i
\(769\) 21.7626i 0.784779i −0.919799 0.392390i \(-0.871648\pi\)
0.919799 0.392390i \(-0.128352\pi\)
\(770\) 0 0
\(771\) −13.6069 + 13.6069i −0.490042 + 0.490042i
\(772\) 0.330161 3.08367i 0.0118828 0.110984i
\(773\) −27.9293 27.9293i −1.00455 1.00455i −0.999990 0.00455925i \(-0.998549\pi\)
−0.00455925 0.999990i \(-0.501451\pi\)
\(774\) −26.4770 1.41337i −0.951695 0.0508026i
\(775\) 15.7257i 0.564885i
\(776\) 15.0071 + 20.7825i 0.538722 + 0.746047i
\(777\) 0 0
\(778\) −38.1106 2.03439i −1.36633 0.0729363i
\(779\) −28.6772 28.6772i −1.02747 1.02747i
\(780\) 1.52402 1.22924i 0.0545688 0.0440138i
\(781\) −19.5343 19.5343i −0.698994 0.698994i
\(782\) −0.427115 + 0.383826i −0.0152736 + 0.0137256i
\(783\) −5.62978 −0.201192
\(784\) 0 0
\(785\) 13.9827 0.499062
\(786\) −13.4696 + 12.1044i −0.480445 + 0.431751i
\(787\) −18.9875 18.9875i −0.676830 0.676830i 0.282452 0.959281i \(-0.408852\pi\)
−0.959281 + 0.282452i \(0.908852\pi\)
\(788\) 1.86767 + 2.31555i 0.0665328 + 0.0824881i
\(789\) 24.9422 + 24.9422i 0.887967 + 0.887967i
\(790\) 7.04981 + 0.376327i 0.250821 + 0.0133891i
\(791\) 0 0
\(792\) 2.51568 15.5894i 0.0893908 0.553946i
\(793\) 3.06398i 0.108805i
\(794\) 35.7441 + 1.90806i 1.26851 + 0.0677145i
\(795\) −5.46014 5.46014i −0.193651 0.193651i
\(796\) 25.1743 + 2.69534i 0.892278 + 0.0955340i
\(797\) −28.0289 + 28.0289i −0.992834 + 0.992834i −0.999975 0.00714087i \(-0.997727\pi\)
0.00714087 + 0.999975i \(0.497727\pi\)
\(798\) 0 0
\(799\) 0.621097i 0.0219728i
\(800\) −20.8848 + 11.9231i −0.738391 + 0.421545i
\(801\) 6.80169i 0.240326i
\(802\) −3.32409 3.69899i −0.117378 0.130616i
\(803\) 8.02512 + 8.02512i 0.283200 + 0.283200i
\(804\) 5.48183 51.1998i 0.193329 1.80568i
\(805\) 0 0
\(806\) −2.48589 0.132700i −0.0875618 0.00467415i
\(807\) 0.576145 0.0202813
\(808\) 26.8037 + 4.32535i 0.942952 + 0.152165i
\(809\) 17.0008i 0.597715i −0.954298 0.298857i \(-0.903394\pi\)
0.954298 0.298857i \(-0.0966055\pi\)
\(810\) 0.647225 12.1246i 0.0227412 0.426015i
\(811\) −0.379489 + 0.379489i −0.0133256 + 0.0133256i −0.713738 0.700413i \(-0.752999\pi\)
0.700413 + 0.713738i \(0.252999\pi\)
\(812\) 0 0
\(813\) −37.7059 37.7059i −1.32240 1.32240i
\(814\) −6.73597 7.49567i −0.236095 0.262723i
\(815\) −2.67870 −0.0938309
\(816\) −0.451157 + 0.290500i −0.0157936 + 0.0101695i
\(817\) 57.7986i 2.02212i
\(818\) −17.6505 19.6412i −0.617136 0.686739i
\(819\) 0 0
\(820\) −6.68118 + 5.38887i −0.233317 + 0.188187i
\(821\) 22.5223 22.5223i 0.786033 0.786033i −0.194809 0.980841i \(-0.562409\pi\)
0.980841 + 0.194809i \(0.0624086\pi\)
\(822\) −36.1314 1.92874i −1.26023 0.0672724i
\(823\) −45.4065 −1.58277 −0.791386 0.611316i \(-0.790640\pi\)
−0.791386 + 0.611316i \(0.790640\pi\)
\(824\) 2.27477 + 3.15020i 0.0792453 + 0.109742i
\(825\) −21.2746 −0.740685
\(826\) 0 0
\(827\) −5.61746 5.61746i −0.195338 0.195338i 0.602660 0.797998i \(-0.294108\pi\)
−0.797998 + 0.602660i \(0.794108\pi\)
\(828\) −37.9578 4.06405i −1.31913 0.141235i
\(829\) −37.6519 + 37.6519i −1.30770 + 1.30770i −0.384633 + 0.923069i \(0.625672\pi\)
−0.923069 + 0.384633i \(0.874328\pi\)
\(830\) 5.82933 5.23852i 0.202339 0.181832i
\(831\) −46.2712 −1.60513
\(832\) 1.70854 + 3.40205i 0.0592331 + 0.117945i
\(833\) 0 0
\(834\) −41.9673 46.7005i −1.45321 1.61711i
\(835\) 3.44452 3.44452i 0.119203 0.119203i
\(836\) −34.2269 3.66459i −1.18376 0.126743i
\(837\) −2.16163 + 2.16163i −0.0747167 + 0.0747167i
\(838\) 0.244123 4.57321i 0.00843310 0.157979i
\(839\) 42.8593i 1.47967i −0.672790 0.739834i \(-0.734904\pi\)
0.672790 0.739834i \(-0.265096\pi\)
\(840\) 0 0
\(841\) 17.4069i 0.600238i
\(842\) −1.64134 0.0876168i −0.0565644 0.00301948i
\(843\) −20.8218 + 20.8218i −0.717143 + 0.717143i
\(844\) 1.47476 + 1.82842i 0.0507632 + 0.0629367i
\(845\) 7.81571 7.81571i 0.268868 0.268868i
\(846\) −30.7112 + 27.5985i −1.05587 + 0.948857i
\(847\) 0 0
\(848\) 12.6233 8.12814i 0.433485 0.279122i
\(849\) −8.98371 −0.308320
\(850\) 0.226747 + 0.252320i 0.00777736 + 0.00865452i
\(851\) −17.2269 + 17.2269i −0.590530 + 0.590530i
\(852\) −48.5753 + 39.1796i −1.66416 + 1.34227i
\(853\) 1.26515 + 1.26515i 0.0433180 + 0.0433180i 0.728434 0.685116i \(-0.240249\pi\)
−0.685116 + 0.728434i \(0.740249\pi\)
\(854\) 0 0
\(855\) 18.7670 0.641818
\(856\) 39.0696 + 6.30471i 1.33537 + 0.215490i
\(857\) 39.3547 1.34433 0.672166 0.740401i \(-0.265364\pi\)
0.672166 + 0.740401i \(0.265364\pi\)
\(858\) −0.179523 + 3.36304i −0.00612881 + 0.114812i
\(859\) 21.1674 21.1674i 0.722224 0.722224i −0.246834 0.969058i \(-0.579390\pi\)
0.969058 + 0.246834i \(0.0793902\pi\)
\(860\) 12.1635 + 1.30232i 0.414773 + 0.0444087i
\(861\) 0 0
\(862\) 21.4973 19.3185i 0.732201 0.657991i
\(863\) 1.64391i 0.0559595i −0.999608 0.0279798i \(-0.991093\pi\)
0.999608 0.0279798i \(-0.00890740\pi\)
\(864\) 4.50971 + 1.23186i 0.153423 + 0.0419088i
\(865\) 1.52048 0.0516978
\(866\) 36.5487 32.8444i 1.24198 1.11610i
\(867\) −28.5739 28.5739i −0.970419 0.970419i
\(868\) 0 0
\(869\) −8.58662 + 8.58662i −0.291281 + 0.291281i
\(870\) −19.7914 1.05649i −0.670991 0.0358183i
\(871\) 5.15331i 0.174613i
\(872\) −7.77327 1.25438i −0.263236 0.0424787i
\(873\) 24.0390 0.813598
\(874\) −4.43586 + 83.0978i −0.150045 + 2.81082i
\(875\) 0 0
\(876\) 19.9558 16.0958i 0.674242 0.543827i
\(877\) 5.98528 + 5.98528i 0.202109 + 0.202109i 0.800903 0.598794i \(-0.204353\pi\)
−0.598794 + 0.800903i \(0.704353\pi\)
\(878\) 34.3056 30.8286i 1.15776 1.04042i
\(879\) 9.54198i 0.321843i
\(880\) −1.54240 + 7.12037i −0.0519944 + 0.240028i
\(881\) 21.6012i 0.727763i 0.931445 + 0.363881i \(0.118549\pi\)
−0.931445 + 0.363881i \(0.881451\pi\)
\(882\) 0 0
\(883\) 13.8898 13.8898i 0.467428 0.467428i −0.433652 0.901080i \(-0.642775\pi\)
0.901080 + 0.433652i \(0.142775\pi\)
\(884\) 0.0417997 0.0337146i 0.00140588 0.00113394i
\(885\) −12.7941 12.7941i −0.430069 0.430069i
\(886\) 1.04094 19.5001i 0.0349711 0.655120i
\(887\) 7.23196i 0.242825i 0.992602 + 0.121413i \(0.0387424\pi\)
−0.992602 + 0.121413i \(0.961258\pi\)
\(888\) −18.4565 + 13.3275i −0.619359 + 0.447241i
\(889\) 0 0
\(890\) −0.167277 + 3.13363i −0.00560713 + 0.105039i
\(891\) 14.7677 + 14.7677i 0.494736 + 0.494736i
\(892\) 0.893588 8.34603i 0.0299195 0.279446i
\(893\) 63.6443 + 63.6443i 2.12978 + 2.12978i
\(894\) −9.07592 10.0995i −0.303544 0.337779i
\(895\) 6.62866 0.221572
\(896\) 0 0
\(897\) 8.14168 0.271843
\(898\) −16.7016 18.5852i −0.557339 0.620197i
\(899\) 17.8185 + 17.8185i 0.594281 + 0.594281i
\(900\) −2.40086 + 22.4238i −0.0800286 + 0.747459i
\(901\) −0.149756 0.149756i −0.00498910 0.00498910i
\(902\) 0.787012 14.7432i 0.0262046 0.490896i
\(903\) 0 0
\(904\) −15.4626 + 11.1656i −0.514279 + 0.371362i
\(905\) 0.00548238i 0.000182240i
\(906\) −1.41542 + 26.5153i −0.0470241 + 0.880912i
\(907\) 14.6222 + 14.6222i 0.485523 + 0.485523i 0.906890 0.421367i \(-0.138450\pi\)
−0.421367 + 0.906890i \(0.638450\pi\)
\(908\) −20.0225 + 16.1496i −0.664468 + 0.535943i
\(909\) 18.0035 18.0035i 0.597137 0.597137i
\(910\) 0 0
\(911\) 0.154520i 0.00511948i −0.999997 0.00255974i \(-0.999185\pi\)
0.999997 0.00255974i \(-0.000814791\pi\)
\(912\) −16.4626 + 75.9982i −0.545131 + 2.51655i
\(913\) 13.4806i 0.446141i
\(914\) 4.26388 3.83173i 0.141037 0.126742i
\(915\) −9.36634 9.36634i −0.309642 0.309642i
\(916\) −31.4978 + 25.4053i −1.04072 + 0.839415i
\(917\) 0 0
\(918\) 0.00351524 0.0658516i 0.000116020 0.00217343i
\(919\) 35.9584 1.18616 0.593079 0.805144i \(-0.297912\pi\)
0.593079 + 0.805144i \(0.297912\pi\)
\(920\) 17.3877 + 2.80587i 0.573256 + 0.0925068i
\(921\) 58.9342i 1.94195i
\(922\) −4.78092 0.255211i −0.157451 0.00840493i
\(923\) 4.41631 4.41631i 0.145365 0.145365i
\(924\) 0 0
\(925\) 10.1769 + 10.1769i 0.334614 + 0.334614i
\(926\) −32.3591 + 29.0794i −1.06339 + 0.955610i
\(927\) 3.64383 0.119679
\(928\) 10.1544 37.1740i 0.333334 1.22030i
\(929\) 16.1210i 0.528913i 0.964398 + 0.264456i \(0.0851925\pi\)
−0.964398 + 0.264456i \(0.914807\pi\)
\(930\) −8.00481 + 7.19351i −0.262488 + 0.235884i
\(931\) 0 0
\(932\) 45.6015 + 4.88244i 1.49373 + 0.159929i
\(933\) 37.6904 37.6904i 1.23393 1.23393i
\(934\) −0.542500 + 10.1628i −0.0177512 + 0.332536i
\(935\) 0.102771 0.00336096
\(936\) 3.52445 + 0.568743i 0.115200 + 0.0185900i
\(937\) −8.23172 −0.268919 −0.134459 0.990919i \(-0.542930\pi\)
−0.134459 + 0.990919i \(0.542930\pi\)
\(938\) 0 0
\(939\) −13.0096 13.0096i −0.424552 0.424552i
\(940\) 14.8278 11.9597i 0.483629 0.390083i
\(941\) 16.7749 16.7749i 0.546847 0.546847i −0.378680 0.925528i \(-0.623622\pi\)
0.925528 + 0.378680i \(0.123622\pi\)
\(942\) 36.3154 + 40.4112i 1.18322 + 1.31667i
\(943\) −35.6923 −1.16230
\(944\) 29.5786 19.0457i 0.962703 0.619885i
\(945\) 0 0
\(946\) −15.6505 + 14.0643i −0.508842 + 0.457270i
\(947\) −23.3813 + 23.3813i −0.759791 + 0.759791i −0.976284 0.216493i \(-0.930538\pi\)
0.216493 + 0.976284i \(0.430538\pi\)
\(948\) 17.2220 + 21.3520i 0.559345 + 0.693482i
\(949\) −1.81431 + 1.81431i −0.0588951 + 0.0588951i
\(950\) 49.0905 + 2.62051i 1.59270 + 0.0850205i
\(951\) 7.70103i 0.249723i
\(952\) 0 0
\(953\) 21.4014i 0.693259i −0.938002 0.346630i \(-0.887326\pi\)
0.938002 0.346630i \(-0.112674\pi\)
\(954\) 0.750506 14.0594i 0.0242985 0.455189i
\(955\) 9.42364 9.42364i 0.304942 0.304942i
\(956\) −10.2010 1.09220i −0.329925 0.0353242i
\(957\) 24.1058 24.1058i 0.779229 0.779229i
\(958\) 2.69883 + 3.00321i 0.0871952 + 0.0970293i
\(959\) 0 0
\(960\) 15.6226 + 5.17689i 0.504218 + 0.167083i
\(961\) −17.3167 −0.558603
\(962\) 1.69462 1.52286i 0.0546366 0.0490991i
\(963\) 26.2422 26.2422i 0.845643 0.845643i
\(964\) −33.7082 3.60905i −1.08567 0.116240i
\(965\) 0.948791 + 0.948791i 0.0305426 + 0.0305426i
\(966\) 0 0
\(967\) −4.85592 −0.156156 −0.0780779 0.996947i \(-0.524878\pi\)
−0.0780779 + 0.996947i \(0.524878\pi\)
\(968\) 10.8779 + 15.0643i 0.349630 + 0.484184i
\(969\) 1.09691 0.0352377
\(970\) −11.0751 0.591201i −0.355600 0.0189823i
\(971\) −43.5659 + 43.5659i −1.39810 + 1.39810i −0.592601 + 0.805496i \(0.701899\pi\)
−0.805496 + 0.592601i \(0.798101\pi\)
\(972\) 32.8627 26.5062i 1.05407 0.850187i
\(973\) 0 0
\(974\) 31.3930 + 34.9336i 1.00590 + 1.11935i
\(975\) 4.80974i 0.154035i
\(976\) 21.6540 13.9431i 0.693129 0.446306i
\(977\) 13.9651 0.446783 0.223392 0.974729i \(-0.428287\pi\)
0.223392 + 0.974729i \(0.428287\pi\)
\(978\) −6.95707 7.74171i −0.222463 0.247553i
\(979\) −3.81673 3.81673i −0.121983 0.121983i
\(980\) 0 0
\(981\) −5.22113 + 5.22113i −0.166698 + 0.166698i
\(982\) 2.45936 46.0717i 0.0784814 1.47021i
\(983\) 56.4387i 1.80012i −0.435770 0.900058i \(-0.643524\pi\)
0.435770 0.900058i \(-0.356476\pi\)
\(984\) −32.9265 5.31339i −1.04966 0.169385i
\(985\) −1.28710 −0.0410104
\(986\) −0.542822 0.0289765i −0.0172870 0.000922800i
\(987\) 0 0
\(988\) 0.828489 7.73801i 0.0263577 0.246179i
\(989\) 35.9688 + 35.9688i 1.14374 + 1.14374i
\(990\) 4.56663 + 5.08167i 0.145137 + 0.161506i
\(991\) 45.6839i 1.45120i −0.688118 0.725598i \(-0.741563\pi\)
0.688118 0.725598i \(-0.258437\pi\)
\(992\) −10.3745 18.1724i −0.329392 0.576973i
\(993\) 9.89891i 0.314132i
\(994\) 0 0
\(995\) −7.74566 + 7.74566i −0.245554 + 0.245554i
\(996\) 30.2796 + 3.24196i 0.959447 + 0.102726i
\(997\) −9.70185 9.70185i −0.307261 0.307261i 0.536585 0.843846i \(-0.319714\pi\)
−0.843846 + 0.536585i \(0.819714\pi\)
\(998\) 29.3325 + 1.56580i 0.928504 + 0.0495647i
\(999\) 2.79778i 0.0885180i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.j.a.195.19 56
7.2 even 3 112.2.v.a.3.10 56
7.3 odd 6 112.2.v.a.19.1 yes 56
7.4 even 3 784.2.w.f.19.1 56
7.5 odd 6 784.2.w.f.227.10 56
7.6 odd 2 inner 784.2.j.a.195.20 56
16.11 odd 4 inner 784.2.j.a.587.20 56
28.3 even 6 448.2.z.a.47.2 56
28.23 odd 6 448.2.z.a.367.2 56
56.3 even 6 896.2.z.a.607.13 56
56.37 even 6 896.2.z.b.479.2 56
56.45 odd 6 896.2.z.b.607.2 56
56.51 odd 6 896.2.z.a.479.13 56
112.3 even 12 896.2.z.b.159.2 56
112.11 odd 12 784.2.w.f.411.10 56
112.27 even 4 inner 784.2.j.a.587.19 56
112.37 even 12 448.2.z.a.143.2 56
112.45 odd 12 896.2.z.a.159.13 56
112.51 odd 12 896.2.z.b.31.2 56
112.59 even 12 112.2.v.a.75.10 yes 56
112.75 even 12 784.2.w.f.619.1 56
112.93 even 12 896.2.z.a.31.13 56
112.101 odd 12 448.2.z.a.271.2 56
112.107 odd 12 112.2.v.a.59.1 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.10 56 7.2 even 3
112.2.v.a.19.1 yes 56 7.3 odd 6
112.2.v.a.59.1 yes 56 112.107 odd 12
112.2.v.a.75.10 yes 56 112.59 even 12
448.2.z.a.47.2 56 28.3 even 6
448.2.z.a.143.2 56 112.37 even 12
448.2.z.a.271.2 56 112.101 odd 12
448.2.z.a.367.2 56 28.23 odd 6
784.2.j.a.195.19 56 1.1 even 1 trivial
784.2.j.a.195.20 56 7.6 odd 2 inner
784.2.j.a.587.19 56 112.27 even 4 inner
784.2.j.a.587.20 56 16.11 odd 4 inner
784.2.w.f.19.1 56 7.4 even 3
784.2.w.f.227.10 56 7.5 odd 6
784.2.w.f.411.10 56 112.11 odd 12
784.2.w.f.619.1 56 112.75 even 12
896.2.z.a.31.13 56 112.93 even 12
896.2.z.a.159.13 56 112.45 odd 12
896.2.z.a.479.13 56 56.51 odd 6
896.2.z.a.607.13 56 56.3 even 6
896.2.z.b.31.2 56 112.51 odd 12
896.2.z.b.159.2 56 112.3 even 12
896.2.z.b.479.2 56 56.37 even 6
896.2.z.b.607.2 56 56.45 odd 6