Newspace parameters
| Level: | \( N \) | \(=\) | \( 784 = 2^{4} \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 784.j (of order \(4\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.26027151847\) |
| Analytic rank: | \(0\) |
| Dimension: | \(56\) |
| Relative dimension: | \(28\) over \(\Q(i)\) |
| Twist minimal: | no (minimal twist has level 112) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 195.1 | −1.39496 | + | 0.232566i | −0.957039 | − | 0.957039i | 1.89183 | − | 0.648841i | 0.804316 | + | 0.804316i | 1.55761 | + | 1.11246i | 0 | −2.48812 | + | 1.34508i | − | 1.16815i | −1.30904 | − | 0.934931i | |||
| 195.2 | −1.39496 | + | 0.232566i | 0.957039 | + | 0.957039i | 1.89183 | − | 0.648841i | −0.804316 | − | 0.804316i | −1.55761 | − | 1.11246i | 0 | −2.48812 | + | 1.34508i | − | 1.16815i | 1.30904 | + | 0.934931i | |||
| 195.3 | −1.30774 | − | 0.538353i | −0.145010 | − | 0.145010i | 1.42035 | + | 1.40805i | −1.33254 | − | 1.33254i | 0.111568 | + | 0.267701i | 0 | −1.09942 | − | 2.60601i | − | 2.95794i | 1.02524 | + | 2.45999i | |||
| 195.4 | −1.30774 | − | 0.538353i | 0.145010 | + | 0.145010i | 1.42035 | + | 1.40805i | 1.33254 | + | 1.33254i | −0.111568 | − | 0.267701i | 0 | −1.09942 | − | 2.60601i | − | 2.95794i | −1.02524 | − | 2.45999i | |||
| 195.5 | −1.10953 | + | 0.876896i | −1.81900 | − | 1.81900i | 0.462106 | − | 1.94588i | 2.28693 | + | 2.28693i | 3.61331 | + | 0.423158i | 0 | 1.19362 | + | 2.56423i | 3.61753i | −4.54282 | − | 0.532014i | ||||
| 195.6 | −1.10953 | + | 0.876896i | 1.81900 | + | 1.81900i | 0.462106 | − | 1.94588i | −2.28693 | − | 2.28693i | −3.61331 | − | 0.423158i | 0 | 1.19362 | + | 2.56423i | 3.61753i | 4.54282 | + | 0.532014i | ||||
| 195.7 | −1.07857 | − | 0.914706i | −1.91404 | − | 1.91404i | 0.326624 | + | 1.97315i | −0.329897 | − | 0.329897i | 0.313640 | + | 3.81521i | 0 | 1.45257 | − | 2.42694i | 4.32709i | 0.0540578 | + | 0.657575i | ||||
| 195.8 | −1.07857 | − | 0.914706i | 1.91404 | + | 1.91404i | 0.326624 | + | 1.97315i | 0.329897 | + | 0.329897i | −0.313640 | − | 3.81521i | 0 | 1.45257 | − | 2.42694i | 4.32709i | −0.0540578 | − | 0.657575i | ||||
| 195.9 | −0.795020 | + | 1.16959i | −0.648349 | − | 0.648349i | −0.735886 | − | 1.85970i | −2.23699 | − | 2.23699i | 1.27375 | − | 0.242853i | 0 | 2.76013 | + | 0.617811i | − | 2.15929i | 4.39482 | − | 0.837912i | |||
| 195.10 | −0.795020 | + | 1.16959i | 0.648349 | + | 0.648349i | −0.735886 | − | 1.85970i | 2.23699 | + | 2.23699i | −1.27375 | + | 0.242853i | 0 | 2.76013 | + | 0.617811i | − | 2.15929i | −4.39482 | + | 0.837912i | |||
| 195.11 | −0.436725 | − | 1.34509i | −2.03150 | − | 2.03150i | −1.61854 | + | 1.17487i | −2.47931 | − | 2.47931i | −1.84535 | + | 3.61976i | 0 | 2.28717 | + | 1.66399i | 5.25398i | −2.25212 | + | 4.41768i | ||||
| 195.12 | −0.436725 | − | 1.34509i | 2.03150 | + | 2.03150i | −1.61854 | + | 1.17487i | 2.47931 | + | 2.47931i | 1.84535 | − | 3.61976i | 0 | 2.28717 | + | 1.66399i | 5.25398i | 2.25212 | − | 4.41768i | ||||
| 195.13 | 0.0617395 | − | 1.41287i | −0.771824 | − | 0.771824i | −1.99238 | − | 0.174459i | 1.02430 | + | 1.02430i | −1.13814 | + | 1.04283i | 0 | −0.369496 | + | 2.80419i | − | 1.80857i | 1.51044 | − | 1.38396i | |||
| 195.14 | 0.0617395 | − | 1.41287i | 0.771824 | + | 0.771824i | −1.99238 | − | 0.174459i | −1.02430 | − | 1.02430i | 1.13814 | − | 1.04283i | 0 | −0.369496 | + | 2.80419i | − | 1.80857i | −1.51044 | + | 1.38396i | |||
| 195.15 | 0.266279 | + | 1.38892i | −0.180750 | − | 0.180750i | −1.85819 | + | 0.739679i | 0.365541 | + | 0.365541i | 0.202917 | − | 0.299177i | 0 | −1.52215 | − | 2.38392i | − | 2.93466i | −0.410371 | + | 0.605043i | |||
| 195.16 | 0.266279 | + | 1.38892i | 0.180750 | + | 0.180750i | −1.85819 | + | 0.739679i | −0.365541 | − | 0.365541i | −0.202917 | + | 0.299177i | 0 | −1.52215 | − | 2.38392i | − | 2.93466i | 0.410371 | − | 0.605043i | |||
| 195.17 | 0.714421 | − | 1.22049i | −1.43319 | − | 1.43319i | −0.979204 | − | 1.74389i | 1.82200 | + | 1.82200i | −2.77309 | + | 0.725295i | 0 | −2.82797 | − | 0.0507629i | 1.10805i | 3.52541 | − | 0.922061i | ||||
| 195.18 | 0.714421 | − | 1.22049i | 1.43319 | + | 1.43319i | −0.979204 | − | 1.74389i | −1.82200 | − | 1.82200i | 2.77309 | − | 0.725295i | 0 | −2.82797 | − | 0.0507629i | 1.10805i | −3.52541 | + | 0.922061i | ||||
| 195.19 | 0.945273 | + | 1.05188i | −1.68113 | − | 1.68113i | −0.212918 | + | 1.98863i | −0.611867 | − | 0.611867i | 0.179226 | − | 3.35748i | 0 | −2.29308 | + | 1.65584i | 2.65240i | 0.0652315 | − | 1.22199i | ||||
| 195.20 | 0.945273 | + | 1.05188i | 1.68113 | + | 1.68113i | −0.212918 | + | 1.98863i | 0.611867 | + | 0.611867i | −0.179226 | + | 3.35748i | 0 | −2.29308 | + | 1.65584i | 2.65240i | −0.0652315 | + | 1.22199i | ||||
| See all 56 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 7.b | odd | 2 | 1 | inner |
| 16.f | odd | 4 | 1 | inner |
| 112.j | even | 4 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 784.2.j.a | 56 | |
| 7.b | odd | 2 | 1 | inner | 784.2.j.a | 56 | |
| 7.c | even | 3 | 1 | 112.2.v.a | ✓ | 56 | |
| 7.c | even | 3 | 1 | 784.2.w.f | 56 | ||
| 7.d | odd | 6 | 1 | 112.2.v.a | ✓ | 56 | |
| 7.d | odd | 6 | 1 | 784.2.w.f | 56 | ||
| 16.f | odd | 4 | 1 | inner | 784.2.j.a | 56 | |
| 28.f | even | 6 | 1 | 448.2.z.a | 56 | ||
| 28.g | odd | 6 | 1 | 448.2.z.a | 56 | ||
| 56.j | odd | 6 | 1 | 896.2.z.b | 56 | ||
| 56.k | odd | 6 | 1 | 896.2.z.a | 56 | ||
| 56.m | even | 6 | 1 | 896.2.z.a | 56 | ||
| 56.p | even | 6 | 1 | 896.2.z.b | 56 | ||
| 112.j | even | 4 | 1 | inner | 784.2.j.a | 56 | |
| 112.u | odd | 12 | 1 | 112.2.v.a | ✓ | 56 | |
| 112.u | odd | 12 | 1 | 784.2.w.f | 56 | ||
| 112.u | odd | 12 | 1 | 896.2.z.b | 56 | ||
| 112.v | even | 12 | 1 | 112.2.v.a | ✓ | 56 | |
| 112.v | even | 12 | 1 | 784.2.w.f | 56 | ||
| 112.v | even | 12 | 1 | 896.2.z.b | 56 | ||
| 112.w | even | 12 | 1 | 448.2.z.a | 56 | ||
| 112.w | even | 12 | 1 | 896.2.z.a | 56 | ||
| 112.x | odd | 12 | 1 | 448.2.z.a | 56 | ||
| 112.x | odd | 12 | 1 | 896.2.z.a | 56 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 112.2.v.a | ✓ | 56 | 7.c | even | 3 | 1 | |
| 112.2.v.a | ✓ | 56 | 7.d | odd | 6 | 1 | |
| 112.2.v.a | ✓ | 56 | 112.u | odd | 12 | 1 | |
| 112.2.v.a | ✓ | 56 | 112.v | even | 12 | 1 | |
| 448.2.z.a | 56 | 28.f | even | 6 | 1 | ||
| 448.2.z.a | 56 | 28.g | odd | 6 | 1 | ||
| 448.2.z.a | 56 | 112.w | even | 12 | 1 | ||
| 448.2.z.a | 56 | 112.x | odd | 12 | 1 | ||
| 784.2.j.a | 56 | 1.a | even | 1 | 1 | trivial | |
| 784.2.j.a | 56 | 7.b | odd | 2 | 1 | inner | |
| 784.2.j.a | 56 | 16.f | odd | 4 | 1 | inner | |
| 784.2.j.a | 56 | 112.j | even | 4 | 1 | inner | |
| 784.2.w.f | 56 | 7.c | even | 3 | 1 | ||
| 784.2.w.f | 56 | 7.d | odd | 6 | 1 | ||
| 784.2.w.f | 56 | 112.u | odd | 12 | 1 | ||
| 784.2.w.f | 56 | 112.v | even | 12 | 1 | ||
| 896.2.z.a | 56 | 56.k | odd | 6 | 1 | ||
| 896.2.z.a | 56 | 56.m | even | 6 | 1 | ||
| 896.2.z.a | 56 | 112.w | even | 12 | 1 | ||
| 896.2.z.a | 56 | 112.x | odd | 12 | 1 | ||
| 896.2.z.b | 56 | 56.j | odd | 6 | 1 | ||
| 896.2.z.b | 56 | 56.p | even | 6 | 1 | ||
| 896.2.z.b | 56 | 112.u | odd | 12 | 1 | ||
| 896.2.z.b | 56 | 112.v | even | 12 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{56} + 338 T_{3}^{52} + 46331 T_{3}^{48} + 3355716 T_{3}^{44} + 140044569 T_{3}^{40} + \cdots + 4100625 \)
acting on \(S_{2}^{\mathrm{new}}(784, [\chi])\).