Properties

Label 896.2.z.a.159.13
Level $896$
Weight $2$
Character 896.159
Analytic conductor $7.155$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [896,2,Mod(31,896)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(896, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("896.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 159.13
Character \(\chi\) \(=\) 896.159
Dual form 896.2.z.a.479.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.29647 + 0.615336i) q^{3} +(0.223959 + 0.835825i) q^{5} +(1.25761 + 2.32775i) q^{7} +(2.29704 + 1.32620i) q^{9} +(-2.03316 - 0.544785i) q^{11} +(0.336492 + 0.336492i) q^{13} +2.05725i q^{15} +(-0.0488652 + 0.0282123i) q^{17} +(2.11632 + 7.89820i) q^{19} +(1.45571 + 6.11945i) q^{21} +(3.59814 - 6.23216i) q^{23} +(3.68168 - 2.12562i) q^{25} +(-0.584366 - 0.584366i) q^{27} +(-4.81700 + 4.81700i) q^{29} +(1.84955 + 3.20351i) q^{31} +(-4.33387 - 2.50216i) q^{33} +(-1.66394 + 1.57246i) q^{35} +(-3.27008 + 0.876214i) q^{37} +(0.565687 + 0.979798i) q^{39} -4.95983 q^{41} +(4.99825 - 4.99825i) q^{43} +(-0.594027 + 2.21694i) q^{45} +(5.50377 - 9.53281i) q^{47} +(-3.83684 + 5.85480i) q^{49} +(-0.129577 + 0.0347202i) q^{51} +(0.971464 - 3.62555i) q^{53} -1.82138i q^{55} +19.4402i q^{57} +(-2.27632 + 8.49533i) q^{59} +(-6.21929 + 1.66645i) q^{61} +(-0.198278 + 7.01478i) q^{63} +(-0.205888 + 0.356609i) q^{65} +(2.80281 - 10.4602i) q^{67} +(12.0979 - 12.0979i) q^{69} +13.1246 q^{71} +(-2.69592 - 4.66948i) q^{73} +(9.76283 - 2.61594i) q^{75} +(-1.28880 - 5.41782i) q^{77} +(-4.99619 - 2.88455i) q^{79} +(-4.96099 - 8.59269i) q^{81} +(4.52860 - 4.52860i) q^{83} +(-0.0345244 - 0.0345244i) q^{85} +(-14.0261 + 8.09800i) q^{87} +(1.28218 - 2.22080i) q^{89} +(-0.360094 + 1.20644i) q^{91} +(2.27619 + 8.49484i) q^{93} +(-6.12755 + 3.53774i) q^{95} +9.06313i q^{97} +(-3.94777 - 3.94777i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 6 q^{3} + 6 q^{5} + 8 q^{7} + 2 q^{11} - 12 q^{17} - 6 q^{19} + 10 q^{21} + 12 q^{23} + 24 q^{29} - 12 q^{33} - 2 q^{35} - 6 q^{37} + 4 q^{39} - 12 q^{45} - 8 q^{49} - 34 q^{51} - 6 q^{53} + 42 q^{59}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.29647 + 0.615336i 1.32587 + 0.355265i 0.851172 0.524887i \(-0.175892\pi\)
0.474693 + 0.880151i \(0.342559\pi\)
\(4\) 0 0
\(5\) 0.223959 + 0.835825i 0.100157 + 0.373792i 0.997751 0.0670318i \(-0.0213529\pi\)
−0.897593 + 0.440824i \(0.854686\pi\)
\(6\) 0 0
\(7\) 1.25761 + 2.32775i 0.475331 + 0.879807i
\(8\) 0 0
\(9\) 2.29704 + 1.32620i 0.765681 + 0.442066i
\(10\) 0 0
\(11\) −2.03316 0.544785i −0.613022 0.164259i −0.0610684 0.998134i \(-0.519451\pi\)
−0.551954 + 0.833875i \(0.686117\pi\)
\(12\) 0 0
\(13\) 0.336492 + 0.336492i 0.0933261 + 0.0933261i 0.752228 0.658902i \(-0.228979\pi\)
−0.658902 + 0.752228i \(0.728979\pi\)
\(14\) 0 0
\(15\) 2.05725i 0.531181i
\(16\) 0 0
\(17\) −0.0488652 + 0.0282123i −0.0118516 + 0.00684250i −0.505914 0.862584i \(-0.668845\pi\)
0.494063 + 0.869426i \(0.335511\pi\)
\(18\) 0 0
\(19\) 2.11632 + 7.89820i 0.485516 + 1.81197i 0.577724 + 0.816232i \(0.303941\pi\)
−0.0922079 + 0.995740i \(0.529392\pi\)
\(20\) 0 0
\(21\) 1.45571 + 6.11945i 0.317661 + 1.33537i
\(22\) 0 0
\(23\) 3.59814 6.23216i 0.750264 1.29949i −0.197431 0.980317i \(-0.563260\pi\)
0.947695 0.319178i \(-0.103407\pi\)
\(24\) 0 0
\(25\) 3.68168 2.12562i 0.736336 0.425124i
\(26\) 0 0
\(27\) −0.584366 0.584366i −0.112461 0.112461i
\(28\) 0 0
\(29\) −4.81700 + 4.81700i −0.894494 + 0.894494i −0.994942 0.100448i \(-0.967972\pi\)
0.100448 + 0.994942i \(0.467972\pi\)
\(30\) 0 0
\(31\) 1.84955 + 3.20351i 0.332188 + 0.575367i 0.982941 0.183923i \(-0.0588797\pi\)
−0.650752 + 0.759290i \(0.725546\pi\)
\(32\) 0 0
\(33\) −4.33387 2.50216i −0.754429 0.435570i
\(34\) 0 0
\(35\) −1.66394 + 1.57246i −0.281257 + 0.265794i
\(36\) 0 0
\(37\) −3.27008 + 0.876214i −0.537597 + 0.144049i −0.517394 0.855747i \(-0.673098\pi\)
−0.0202030 + 0.999796i \(0.506431\pi\)
\(38\) 0 0
\(39\) 0.565687 + 0.979798i 0.0905824 + 0.156893i
\(40\) 0 0
\(41\) −4.95983 −0.774596 −0.387298 0.921955i \(-0.626592\pi\)
−0.387298 + 0.921955i \(0.626592\pi\)
\(42\) 0 0
\(43\) 4.99825 4.99825i 0.762225 0.762225i −0.214499 0.976724i \(-0.568812\pi\)
0.976724 + 0.214499i \(0.0688118\pi\)
\(44\) 0 0
\(45\) −0.594027 + 2.21694i −0.0885524 + 0.330482i
\(46\) 0 0
\(47\) 5.50377 9.53281i 0.802807 1.39050i −0.114954 0.993371i \(-0.536672\pi\)
0.917761 0.397132i \(-0.129995\pi\)
\(48\) 0 0
\(49\) −3.83684 + 5.85480i −0.548120 + 0.836399i
\(50\) 0 0
\(51\) −0.129577 + 0.0347202i −0.0181445 + 0.00486179i
\(52\) 0 0
\(53\) 0.971464 3.62555i 0.133441 0.498008i −0.866559 0.499075i \(-0.833673\pi\)
0.999999 + 0.00106745i \(0.000339780\pi\)
\(54\) 0 0
\(55\) 1.82138i 0.245595i
\(56\) 0 0
\(57\) 19.4402i 2.57492i
\(58\) 0 0
\(59\) −2.27632 + 8.49533i −0.296351 + 1.10600i 0.643787 + 0.765204i \(0.277362\pi\)
−0.940138 + 0.340793i \(0.889305\pi\)
\(60\) 0 0
\(61\) −6.21929 + 1.66645i −0.796298 + 0.213367i −0.633958 0.773367i \(-0.718571\pi\)
−0.162340 + 0.986735i \(0.551904\pi\)
\(62\) 0 0
\(63\) −0.198278 + 7.01478i −0.0249807 + 0.883779i
\(64\) 0 0
\(65\) −0.205888 + 0.356609i −0.0255373 + 0.0442319i
\(66\) 0 0
\(67\) 2.80281 10.4602i 0.342417 1.27792i −0.553184 0.833059i \(-0.686587\pi\)
0.895601 0.444859i \(-0.146746\pi\)
\(68\) 0 0
\(69\) 12.0979 12.0979i 1.45641 1.45641i
\(70\) 0 0
\(71\) 13.1246 1.55760 0.778800 0.627272i \(-0.215829\pi\)
0.778800 + 0.627272i \(0.215829\pi\)
\(72\) 0 0
\(73\) −2.69592 4.66948i −0.315534 0.546521i 0.664017 0.747718i \(-0.268850\pi\)
−0.979551 + 0.201197i \(0.935517\pi\)
\(74\) 0 0
\(75\) 9.76283 2.61594i 1.12731 0.302063i
\(76\) 0 0
\(77\) −1.28880 5.41782i −0.146873 0.617418i
\(78\) 0 0
\(79\) −4.99619 2.88455i −0.562116 0.324538i 0.191878 0.981419i \(-0.438542\pi\)
−0.753994 + 0.656881i \(0.771875\pi\)
\(80\) 0 0
\(81\) −4.96099 8.59269i −0.551221 0.954743i
\(82\) 0 0
\(83\) 4.52860 4.52860i 0.497079 0.497079i −0.413449 0.910527i \(-0.635676\pi\)
0.910527 + 0.413449i \(0.135676\pi\)
\(84\) 0 0
\(85\) −0.0345244 0.0345244i −0.00374469 0.00374469i
\(86\) 0 0
\(87\) −14.0261 + 8.09800i −1.50376 + 0.868197i
\(88\) 0 0
\(89\) 1.28218 2.22080i 0.135911 0.235404i −0.790034 0.613063i \(-0.789937\pi\)
0.925945 + 0.377659i \(0.123271\pi\)
\(90\) 0 0
\(91\) −0.360094 + 1.20644i −0.0377481 + 0.126470i
\(92\) 0 0
\(93\) 2.27619 + 8.49484i 0.236030 + 0.880874i
\(94\) 0 0
\(95\) −6.12755 + 3.53774i −0.628673 + 0.362965i
\(96\) 0 0
\(97\) 9.06313i 0.920222i 0.887861 + 0.460111i \(0.152190\pi\)
−0.887861 + 0.460111i \(0.847810\pi\)
\(98\) 0 0
\(99\) −3.94777 3.94777i −0.396766 0.396766i
\(100\) 0 0
\(101\) −9.27207 2.48444i −0.922605 0.247211i −0.233907 0.972259i \(-0.575151\pi\)
−0.688699 + 0.725048i \(0.741818\pi\)
\(102\) 0 0
\(103\) 1.18973 + 0.686893i 0.117228 + 0.0676816i 0.557467 0.830199i \(-0.311773\pi\)
−0.440239 + 0.897880i \(0.645106\pi\)
\(104\) 0 0
\(105\) −4.78878 + 2.58722i −0.467337 + 0.252487i
\(106\) 0 0
\(107\) −3.62137 13.5151i −0.350091 1.30656i −0.886551 0.462632i \(-0.846905\pi\)
0.536459 0.843926i \(-0.319761\pi\)
\(108\) 0 0
\(109\) 2.68896 + 0.720506i 0.257556 + 0.0690119i 0.385287 0.922797i \(-0.374103\pi\)
−0.127731 + 0.991809i \(0.540769\pi\)
\(110\) 0 0
\(111\) −8.04879 −0.763957
\(112\) 0 0
\(113\) 6.74317 0.634344 0.317172 0.948368i \(-0.397267\pi\)
0.317172 + 0.948368i \(0.397267\pi\)
\(114\) 0 0
\(115\) 6.01483 + 1.61167i 0.560886 + 0.150289i
\(116\) 0 0
\(117\) 0.326681 + 1.21919i 0.0302017 + 0.112714i
\(118\) 0 0
\(119\) −0.127125 0.0782659i −0.0116535 0.00717463i
\(120\) 0 0
\(121\) −5.68931 3.28473i −0.517210 0.298612i
\(122\) 0 0
\(123\) −11.3901 3.05197i −1.02701 0.275187i
\(124\) 0 0
\(125\) 5.66052 + 5.66052i 0.506293 + 0.506293i
\(126\) 0 0
\(127\) 8.62463i 0.765312i 0.923891 + 0.382656i \(0.124991\pi\)
−0.923891 + 0.382656i \(0.875009\pi\)
\(128\) 0 0
\(129\) 14.5539 8.40270i 1.28140 0.739817i
\(130\) 0 0
\(131\) −1.39401 5.20253i −0.121796 0.454547i 0.877910 0.478826i \(-0.158938\pi\)
−0.999705 + 0.0242790i \(0.992271\pi\)
\(132\) 0 0
\(133\) −15.7235 + 14.8591i −1.36340 + 1.28845i
\(134\) 0 0
\(135\) 0.357554 0.619302i 0.0307734 0.0533010i
\(136\) 0 0
\(137\) 9.31969 5.38073i 0.796235 0.459707i −0.0459178 0.998945i \(-0.514621\pi\)
0.842153 + 0.539239i \(0.181288\pi\)
\(138\) 0 0
\(139\) 13.2045 + 13.2045i 1.11999 + 1.11999i 0.991742 + 0.128251i \(0.0409362\pi\)
0.128251 + 0.991742i \(0.459064\pi\)
\(140\) 0 0
\(141\) 18.5051 18.5051i 1.55841 1.55841i
\(142\) 0 0
\(143\) −0.500828 0.867459i −0.0418813 0.0725406i
\(144\) 0 0
\(145\) −5.10498 2.94736i −0.423945 0.244765i
\(146\) 0 0
\(147\) −12.4138 + 11.0844i −1.02388 + 0.914225i
\(148\) 0 0
\(149\) 3.90087 1.04523i 0.319571 0.0856289i −0.0954676 0.995433i \(-0.530435\pi\)
0.415039 + 0.909804i \(0.363768\pi\)
\(150\) 0 0
\(151\) −3.94869 6.83934i −0.321340 0.556577i 0.659425 0.751771i \(-0.270800\pi\)
−0.980765 + 0.195193i \(0.937467\pi\)
\(152\) 0 0
\(153\) −0.149661 −0.0120993
\(154\) 0 0
\(155\) −2.26335 + 2.26335i −0.181797 + 0.181797i
\(156\) 0 0
\(157\) 4.18229 15.6085i 0.333783 1.24570i −0.571399 0.820672i \(-0.693599\pi\)
0.905182 0.425023i \(-0.139734\pi\)
\(158\) 0 0
\(159\) 4.46187 7.72818i 0.353849 0.612885i
\(160\) 0 0
\(161\) 19.0320 + 0.537953i 1.49993 + 0.0423966i
\(162\) 0 0
\(163\) −2.99018 + 0.801215i −0.234209 + 0.0627560i −0.374014 0.927423i \(-0.622019\pi\)
0.139806 + 0.990179i \(0.455352\pi\)
\(164\) 0 0
\(165\) 1.12076 4.18274i 0.0872511 0.325626i
\(166\) 0 0
\(167\) 5.62954i 0.435627i 0.975990 + 0.217813i \(0.0698924\pi\)
−0.975990 + 0.217813i \(0.930108\pi\)
\(168\) 0 0
\(169\) 12.7735i 0.982580i
\(170\) 0 0
\(171\) −5.61331 + 20.9492i −0.429261 + 1.60202i
\(172\) 0 0
\(173\) −1.69727 + 0.454783i −0.129041 + 0.0345765i −0.322762 0.946480i \(-0.604611\pi\)
0.193720 + 0.981057i \(0.437945\pi\)
\(174\) 0 0
\(175\) 9.57802 + 5.89684i 0.724030 + 0.445759i
\(176\) 0 0
\(177\) −10.4550 + 18.1085i −0.785843 + 1.36112i
\(178\) 0 0
\(179\) −1.98267 + 7.39942i −0.148192 + 0.553059i 0.851401 + 0.524515i \(0.175754\pi\)
−0.999593 + 0.0285433i \(0.990913\pi\)
\(180\) 0 0
\(181\) 0.00448004 0.00448004i 0.000332999 0.000332999i −0.706940 0.707273i \(-0.749925\pi\)
0.707273 + 0.706940i \(0.249925\pi\)
\(182\) 0 0
\(183\) −15.3078 −1.13159
\(184\) 0 0
\(185\) −1.46472 2.53698i −0.107689 0.186522i
\(186\) 0 0
\(187\) 0.114721 0.0307393i 0.00838920 0.00224788i
\(188\) 0 0
\(189\) 0.625355 2.09516i 0.0454879 0.152401i
\(190\) 0 0
\(191\) −13.3381 7.70073i −0.965108 0.557206i −0.0673669 0.997728i \(-0.521460\pi\)
−0.897741 + 0.440523i \(0.854793\pi\)
\(192\) 0 0
\(193\) 0.775325 + 1.34290i 0.0558091 + 0.0966642i 0.892580 0.450889i \(-0.148893\pi\)
−0.836771 + 0.547553i \(0.815560\pi\)
\(194\) 0 0
\(195\) −0.692250 + 0.692250i −0.0495730 + 0.0495730i
\(196\) 0 0
\(197\) −1.05178 1.05178i −0.0749363 0.0749363i 0.668645 0.743582i \(-0.266874\pi\)
−0.743582 + 0.668645i \(0.766874\pi\)
\(198\) 0 0
\(199\) −10.9631 + 6.32954i −0.777152 + 0.448689i −0.835420 0.549612i \(-0.814776\pi\)
0.0582680 + 0.998301i \(0.481442\pi\)
\(200\) 0 0
\(201\) 12.8731 22.2969i 0.907998 1.57270i
\(202\) 0 0
\(203\) −17.2707 5.15487i −1.21216 0.361801i
\(204\) 0 0
\(205\) −1.11080 4.14556i −0.0775815 0.289538i
\(206\) 0 0
\(207\) 16.5302 9.54369i 1.14893 0.663332i
\(208\) 0 0
\(209\) 17.2113i 1.19053i
\(210\) 0 0
\(211\) 0.830513 + 0.830513i 0.0571749 + 0.0571749i 0.735116 0.677941i \(-0.237128\pi\)
−0.677941 + 0.735116i \(0.737128\pi\)
\(212\) 0 0
\(213\) 30.1402 + 8.07603i 2.06517 + 0.553360i
\(214\) 0 0
\(215\) 5.29706 + 3.05826i 0.361257 + 0.208572i
\(216\) 0 0
\(217\) −5.13096 + 8.33404i −0.348313 + 0.565752i
\(218\) 0 0
\(219\) −3.31780 12.3822i −0.224196 0.836712i
\(220\) 0 0
\(221\) −0.0259360 0.00694952i −0.00174464 0.000467476i
\(222\) 0 0
\(223\) 4.19686 0.281043 0.140521 0.990078i \(-0.455122\pi\)
0.140521 + 0.990078i \(0.455122\pi\)
\(224\) 0 0
\(225\) 11.2760 0.751731
\(226\) 0 0
\(227\) −12.4236 3.32889i −0.824583 0.220946i −0.178234 0.983988i \(-0.557038\pi\)
−0.646349 + 0.763042i \(0.723705\pi\)
\(228\) 0 0
\(229\) −5.23675 19.5438i −0.346054 1.29149i −0.891376 0.453265i \(-0.850259\pi\)
0.545322 0.838227i \(-0.316408\pi\)
\(230\) 0 0
\(231\) 0.374094 13.2349i 0.0246136 0.870792i
\(232\) 0 0
\(233\) −19.8589 11.4655i −1.30100 0.751132i −0.320423 0.947275i \(-0.603825\pi\)
−0.980575 + 0.196143i \(0.937158\pi\)
\(234\) 0 0
\(235\) 9.20038 + 2.46523i 0.600167 + 0.160814i
\(236\) 0 0
\(237\) −9.69862 9.69862i −0.629993 0.629993i
\(238\) 0 0
\(239\) 5.12967i 0.331811i 0.986142 + 0.165905i \(0.0530546\pi\)
−0.986142 + 0.165905i \(0.946945\pi\)
\(240\) 0 0
\(241\) −14.6795 + 8.47521i −0.945589 + 0.545936i −0.891708 0.452611i \(-0.850492\pi\)
−0.0538810 + 0.998547i \(0.517159\pi\)
\(242\) 0 0
\(243\) −5.46368 20.3907i −0.350495 1.30807i
\(244\) 0 0
\(245\) −5.75288 1.89570i −0.367538 0.121112i
\(246\) 0 0
\(247\) −1.94556 + 3.36981i −0.123793 + 0.214416i
\(248\) 0 0
\(249\) 13.1864 7.61317i 0.835654 0.482465i
\(250\) 0 0
\(251\) −1.63771 1.63771i −0.103371 0.103371i 0.653530 0.756901i \(-0.273288\pi\)
−0.756901 + 0.653530i \(0.773288\pi\)
\(252\) 0 0
\(253\) −10.7108 + 10.7108i −0.673381 + 0.673381i
\(254\) 0 0
\(255\) −0.0580400 0.100528i −0.00363460 0.00629532i
\(256\) 0 0
\(257\) −7.00954 4.04696i −0.437243 0.252443i 0.265184 0.964198i \(-0.414567\pi\)
−0.702428 + 0.711755i \(0.747901\pi\)
\(258\) 0 0
\(259\) −6.15208 6.50999i −0.382272 0.404511i
\(260\) 0 0
\(261\) −17.4531 + 4.67656i −1.08032 + 0.289472i
\(262\) 0 0
\(263\) −7.41829 12.8489i −0.457431 0.792295i 0.541393 0.840770i \(-0.317897\pi\)
−0.998824 + 0.0484751i \(0.984564\pi\)
\(264\) 0 0
\(265\) 3.24790 0.199517
\(266\) 0 0
\(267\) 4.31102 4.31102i 0.263830 0.263830i
\(268\) 0 0
\(269\) 0.0627208 0.234077i 0.00382415 0.0142719i −0.963987 0.265948i \(-0.914315\pi\)
0.967812 + 0.251676i \(0.0809817\pi\)
\(270\) 0 0
\(271\) 11.2144 19.4240i 0.681229 1.17992i −0.293377 0.955997i \(-0.594779\pi\)
0.974606 0.223926i \(-0.0718875\pi\)
\(272\) 0 0
\(273\) −1.56931 + 2.54898i −0.0949792 + 0.154271i
\(274\) 0 0
\(275\) −8.64346 + 2.31601i −0.521221 + 0.139661i
\(276\) 0 0
\(277\) −5.03722 + 18.7992i −0.302657 + 1.12953i 0.632286 + 0.774735i \(0.282117\pi\)
−0.934943 + 0.354797i \(0.884550\pi\)
\(278\) 0 0
\(279\) 9.81146i 0.587397i
\(280\) 0 0
\(281\) 12.3856i 0.738865i 0.929258 + 0.369432i \(0.120448\pi\)
−0.929258 + 0.369432i \(0.879552\pi\)
\(282\) 0 0
\(283\) 0.977993 3.64992i 0.0581357 0.216965i −0.930747 0.365664i \(-0.880842\pi\)
0.988883 + 0.148699i \(0.0475085\pi\)
\(284\) 0 0
\(285\) −16.2486 + 4.35380i −0.962485 + 0.257897i
\(286\) 0 0
\(287\) −6.23753 11.5453i −0.368190 0.681495i
\(288\) 0 0
\(289\) −8.49841 + 14.7197i −0.499906 + 0.865863i
\(290\) 0 0
\(291\) −5.57687 + 20.8132i −0.326922 + 1.22009i
\(292\) 0 0
\(293\) −2.83797 + 2.83797i −0.165796 + 0.165796i −0.785129 0.619333i \(-0.787403\pi\)
0.619333 + 0.785129i \(0.287403\pi\)
\(294\) 0 0
\(295\) −7.61041 −0.443095
\(296\) 0 0
\(297\) 0.869758 + 1.50647i 0.0504685 + 0.0874140i
\(298\) 0 0
\(299\) 3.30782 0.886326i 0.191296 0.0512576i
\(300\) 0 0
\(301\) 17.9205 + 5.34883i 1.03292 + 0.308302i
\(302\) 0 0
\(303\) −19.7642 11.4109i −1.13542 0.655538i
\(304\) 0 0
\(305\) −2.78573 4.82502i −0.159510 0.276280i
\(306\) 0 0
\(307\) 17.5282 17.5282i 1.00038 1.00038i 0.000384595 1.00000i \(-0.499878\pi\)
1.00000 0.000384595i \(-0.000122420\pi\)
\(308\) 0 0
\(309\) 2.30951 + 2.30951i 0.131384 + 0.131384i
\(310\) 0 0
\(311\) 19.4160 11.2098i 1.10098 0.635651i 0.164502 0.986377i \(-0.447398\pi\)
0.936478 + 0.350725i \(0.114065\pi\)
\(312\) 0 0
\(313\) −3.86930 + 6.70183i −0.218706 + 0.378810i −0.954413 0.298491i \(-0.903517\pi\)
0.735707 + 0.677300i \(0.236850\pi\)
\(314\) 0 0
\(315\) −5.90754 + 1.40530i −0.332852 + 0.0791794i
\(316\) 0 0
\(317\) 0.838356 + 3.12879i 0.0470868 + 0.175730i 0.985465 0.169881i \(-0.0543383\pi\)
−0.938378 + 0.345611i \(0.887672\pi\)
\(318\) 0 0
\(319\) 12.4180 7.16952i 0.695273 0.401416i
\(320\) 0 0
\(321\) 33.2654i 1.85669i
\(322\) 0 0
\(323\) −0.326241 0.326241i −0.0181525 0.0181525i
\(324\) 0 0
\(325\) 1.95411 + 0.523602i 0.108395 + 0.0290442i
\(326\) 0 0
\(327\) 5.73176 + 3.30923i 0.316967 + 0.183001i
\(328\) 0 0
\(329\) 29.1116 + 0.822861i 1.60497 + 0.0453658i
\(330\) 0 0
\(331\) 1.07762 + 4.02175i 0.0592316 + 0.221055i 0.989197 0.146591i \(-0.0468303\pi\)
−0.929966 + 0.367647i \(0.880164\pi\)
\(332\) 0 0
\(333\) −8.67354 2.32407i −0.475307 0.127358i
\(334\) 0 0
\(335\) 9.37062 0.511972
\(336\) 0 0
\(337\) −6.10926 −0.332793 −0.166396 0.986059i \(-0.553213\pi\)
−0.166396 + 0.986059i \(0.553213\pi\)
\(338\) 0 0
\(339\) 15.4855 + 4.14932i 0.841055 + 0.225360i
\(340\) 0 0
\(341\) −2.01521 7.52086i −0.109130 0.407278i
\(342\) 0 0
\(343\) −18.4537 1.56817i −0.996409 0.0846732i
\(344\) 0 0
\(345\) 12.8211 + 7.40229i 0.690267 + 0.398526i
\(346\) 0 0
\(347\) 30.0141 + 8.04225i 1.61124 + 0.431730i 0.948412 0.317041i \(-0.102689\pi\)
0.662828 + 0.748772i \(0.269356\pi\)
\(348\) 0 0
\(349\) 5.02028 + 5.02028i 0.268730 + 0.268730i 0.828588 0.559859i \(-0.189145\pi\)
−0.559859 + 0.828588i \(0.689145\pi\)
\(350\) 0 0
\(351\) 0.393269i 0.0209911i
\(352\) 0 0
\(353\) 19.5681 11.2977i 1.04151 0.601314i 0.121247 0.992622i \(-0.461311\pi\)
0.920260 + 0.391308i \(0.127977\pi\)
\(354\) 0 0
\(355\) 2.93936 + 10.9699i 0.156005 + 0.582219i
\(356\) 0 0
\(357\) −0.243777 0.257959i −0.0129021 0.0136527i
\(358\) 0 0
\(359\) −5.80528 + 10.0550i −0.306391 + 0.530684i −0.977570 0.210611i \(-0.932455\pi\)
0.671179 + 0.741295i \(0.265788\pi\)
\(360\) 0 0
\(361\) −41.4483 + 23.9302i −2.18149 + 1.25948i
\(362\) 0 0
\(363\) −11.0441 11.0441i −0.579665 0.579665i
\(364\) 0 0
\(365\) 3.29909 3.29909i 0.172682 0.172682i
\(366\) 0 0
\(367\) 17.1290 + 29.6683i 0.894126 + 1.54867i 0.834883 + 0.550428i \(0.185535\pi\)
0.0592429 + 0.998244i \(0.481131\pi\)
\(368\) 0 0
\(369\) −11.3930 6.57772i −0.593093 0.342423i
\(370\) 0 0
\(371\) 9.66110 2.29820i 0.501579 0.119317i
\(372\) 0 0
\(373\) −24.2089 + 6.48675i −1.25349 + 0.335871i −0.823683 0.567050i \(-0.808085\pi\)
−0.429805 + 0.902922i \(0.641418\pi\)
\(374\) 0 0
\(375\) 9.51608 + 16.4823i 0.491408 + 0.851144i
\(376\) 0 0
\(377\) −3.24176 −0.166959
\(378\) 0 0
\(379\) −19.0292 + 19.0292i −0.977466 + 0.977466i −0.999752 0.0222852i \(-0.992906\pi\)
0.0222852 + 0.999752i \(0.492906\pi\)
\(380\) 0 0
\(381\) −5.30705 + 19.8062i −0.271888 + 1.01470i
\(382\) 0 0
\(383\) −11.3643 + 19.6836i −0.580690 + 1.00578i 0.414708 + 0.909954i \(0.363884\pi\)
−0.995398 + 0.0958295i \(0.969450\pi\)
\(384\) 0 0
\(385\) 4.23972 2.29058i 0.216076 0.116739i
\(386\) 0 0
\(387\) 18.1099 4.85252i 0.920576 0.246667i
\(388\) 0 0
\(389\) 6.98465 26.0671i 0.354136 1.32165i −0.527433 0.849597i \(-0.676845\pi\)
0.881569 0.472056i \(-0.156488\pi\)
\(390\) 0 0
\(391\) 0.406048i 0.0205347i
\(392\) 0 0
\(393\) 12.8052i 0.645938i
\(394\) 0 0
\(395\) 1.29204 4.82197i 0.0650097 0.242620i
\(396\) 0 0
\(397\) 24.4484 6.55093i 1.22703 0.328782i 0.413608 0.910455i \(-0.364269\pi\)
0.813422 + 0.581673i \(0.197602\pi\)
\(398\) 0 0
\(399\) −45.2519 + 24.4482i −2.26543 + 1.22394i
\(400\) 0 0
\(401\) 1.75827 3.04541i 0.0878037 0.152080i −0.818779 0.574109i \(-0.805349\pi\)
0.906582 + 0.422029i \(0.138682\pi\)
\(402\) 0 0
\(403\) −0.455597 + 1.70031i −0.0226949 + 0.0846986i
\(404\) 0 0
\(405\) 6.07093 6.07093i 0.301667 0.301667i
\(406\) 0 0
\(407\) 7.12595 0.353220
\(408\) 0 0
\(409\) 9.33621 + 16.1708i 0.461646 + 0.799594i 0.999043 0.0437352i \(-0.0139258\pi\)
−0.537397 + 0.843329i \(0.680592\pi\)
\(410\) 0 0
\(411\) 24.7133 6.62191i 1.21902 0.326635i
\(412\) 0 0
\(413\) −22.6377 + 5.38510i −1.11393 + 0.264983i
\(414\) 0 0
\(415\) 4.79934 + 2.77090i 0.235590 + 0.136018i
\(416\) 0 0
\(417\) 22.1985 + 38.4490i 1.08707 + 1.88285i
\(418\) 0 0
\(419\) −2.28986 + 2.28986i −0.111867 + 0.111867i −0.760825 0.648958i \(-0.775205\pi\)
0.648958 + 0.760825i \(0.275205\pi\)
\(420\) 0 0
\(421\) 0.821840 + 0.821840i 0.0400540 + 0.0400540i 0.726850 0.686796i \(-0.240983\pi\)
−0.686796 + 0.726850i \(0.740983\pi\)
\(422\) 0 0
\(423\) 25.2848 14.5982i 1.22939 0.709788i
\(424\) 0 0
\(425\) −0.119937 + 0.207738i −0.00581782 + 0.0100768i
\(426\) 0 0
\(427\) −11.7005 12.3812i −0.566228 0.599168i
\(428\) 0 0
\(429\) −0.616355 2.30027i −0.0297579 0.111058i
\(430\) 0 0
\(431\) −17.6989 + 10.2185i −0.852528 + 0.492207i −0.861503 0.507753i \(-0.830476\pi\)
0.00897512 + 0.999960i \(0.497143\pi\)
\(432\) 0 0
\(433\) 34.7460i 1.66979i 0.550413 + 0.834893i \(0.314470\pi\)
−0.550413 + 0.834893i \(0.685530\pi\)
\(434\) 0 0
\(435\) −9.90979 9.90979i −0.475138 0.475138i
\(436\) 0 0
\(437\) 56.8376 + 15.2296i 2.71891 + 0.728531i
\(438\) 0 0
\(439\) 28.2441 + 16.3067i 1.34802 + 0.778278i 0.987969 0.154655i \(-0.0494266\pi\)
0.360049 + 0.932933i \(0.382760\pi\)
\(440\) 0 0
\(441\) −16.5780 + 8.36030i −0.789429 + 0.398110i
\(442\) 0 0
\(443\) −3.57386 13.3378i −0.169799 0.633699i −0.997379 0.0723511i \(-0.976950\pi\)
0.827580 0.561347i \(-0.189717\pi\)
\(444\) 0 0
\(445\) 2.14335 + 0.574310i 0.101605 + 0.0272249i
\(446\) 0 0
\(447\) 9.60138 0.454130
\(448\) 0 0
\(449\) −17.6685 −0.833830 −0.416915 0.908946i \(-0.636889\pi\)
−0.416915 + 0.908946i \(0.636889\pi\)
\(450\) 0 0
\(451\) 10.0842 + 2.70204i 0.474844 + 0.127234i
\(452\) 0 0
\(453\) −4.85955 18.1361i −0.228321 0.852107i
\(454\) 0 0
\(455\) −1.08902 0.0307821i −0.0510542 0.00144309i
\(456\) 0 0
\(457\) −3.51049 2.02678i −0.164214 0.0948090i 0.415641 0.909529i \(-0.363557\pi\)
−0.579855 + 0.814720i \(0.696891\pi\)
\(458\) 0 0
\(459\) 0.0450415 + 0.0120688i 0.00210236 + 0.000563325i
\(460\) 0 0
\(461\) 2.39386 + 2.39386i 0.111493 + 0.111493i 0.760653 0.649159i \(-0.224879\pi\)
−0.649159 + 0.760653i \(0.724879\pi\)
\(462\) 0 0
\(463\) 30.7630i 1.42968i 0.699289 + 0.714839i \(0.253500\pi\)
−0.699289 + 0.714839i \(0.746500\pi\)
\(464\) 0 0
\(465\) −6.59043 + 3.80499i −0.305624 + 0.176452i
\(466\) 0 0
\(467\) 1.86256 + 6.95118i 0.0861891 + 0.321662i 0.995537 0.0943750i \(-0.0300853\pi\)
−0.909348 + 0.416037i \(0.863419\pi\)
\(468\) 0 0
\(469\) 27.8736 6.63062i 1.28708 0.306174i
\(470\) 0 0
\(471\) 19.2090 33.2709i 0.885103 1.53304i
\(472\) 0 0
\(473\) −12.8852 + 7.43929i −0.592463 + 0.342059i
\(474\) 0 0
\(475\) 24.5802 + 24.5802i 1.12782 + 1.12782i
\(476\) 0 0
\(477\) 7.03969 7.03969i 0.322325 0.322325i
\(478\) 0 0
\(479\) 1.42754 + 2.47257i 0.0652259 + 0.112975i 0.896794 0.442448i \(-0.145890\pi\)
−0.831568 + 0.555423i \(0.812557\pi\)
\(480\) 0 0
\(481\) −1.39519 0.805515i −0.0636153 0.0367283i
\(482\) 0 0
\(483\) 43.3752 + 12.9464i 1.97364 + 0.589084i
\(484\) 0 0
\(485\) −7.57520 + 2.02977i −0.343972 + 0.0921670i
\(486\) 0 0
\(487\) 16.6053 + 28.7612i 0.752457 + 1.30329i 0.946629 + 0.322326i \(0.104465\pi\)
−0.194172 + 0.980968i \(0.562202\pi\)
\(488\) 0 0
\(489\) −7.35986 −0.332824
\(490\) 0 0
\(491\) −23.0686 + 23.0686i −1.04107 + 1.04107i −0.0419533 + 0.999120i \(0.513358\pi\)
−0.999120 + 0.0419533i \(0.986642\pi\)
\(492\) 0 0
\(493\) 0.0994848 0.371282i 0.00448057 0.0167217i
\(494\) 0 0
\(495\) 2.41551 4.18379i 0.108569 0.188047i
\(496\) 0 0
\(497\) 16.5056 + 30.5507i 0.740376 + 1.37039i
\(498\) 0 0
\(499\) −20.0630 + 5.37586i −0.898143 + 0.240657i −0.678219 0.734860i \(-0.737248\pi\)
−0.219924 + 0.975517i \(0.570581\pi\)
\(500\) 0 0
\(501\) −3.46406 + 12.9280i −0.154763 + 0.577582i
\(502\) 0 0
\(503\) 0.960903i 0.0428445i −0.999771 0.0214223i \(-0.993181\pi\)
0.999771 0.0214223i \(-0.00681944\pi\)
\(504\) 0 0
\(505\) 8.30624i 0.369623i
\(506\) 0 0
\(507\) 7.86003 29.3340i 0.349076 1.30277i
\(508\) 0 0
\(509\) −2.64231 + 0.708005i −0.117118 + 0.0313818i −0.316902 0.948458i \(-0.602643\pi\)
0.199784 + 0.979840i \(0.435976\pi\)
\(510\) 0 0
\(511\) 7.47896 12.1478i 0.330850 0.537388i
\(512\) 0 0
\(513\) 3.37874 5.85215i 0.149175 0.258379i
\(514\) 0 0
\(515\) −0.307672 + 1.14825i −0.0135576 + 0.0505978i
\(516\) 0 0
\(517\) −16.3834 + 16.3834i −0.720541 + 0.720541i
\(518\) 0 0
\(519\) −4.17758 −0.183375
\(520\) 0 0
\(521\) 19.6749 + 34.0779i 0.861972 + 1.49298i 0.870023 + 0.493012i \(0.164104\pi\)
−0.00805046 + 0.999968i \(0.502563\pi\)
\(522\) 0 0
\(523\) −3.79685 + 1.01736i −0.166025 + 0.0444861i −0.340874 0.940109i \(-0.610723\pi\)
0.174849 + 0.984595i \(0.444056\pi\)
\(524\) 0 0
\(525\) 18.3671 + 19.4356i 0.801605 + 0.848239i
\(526\) 0 0
\(527\) −0.180757 0.104360i −0.00787390 0.00454600i
\(528\) 0 0
\(529\) −14.3932 24.9297i −0.625791 1.08390i
\(530\) 0 0
\(531\) −16.4953 + 16.4953i −0.715834 + 0.715834i
\(532\) 0 0
\(533\) −1.66894 1.66894i −0.0722900 0.0722900i
\(534\) 0 0
\(535\) 10.4853 6.05367i 0.453317 0.261723i
\(536\) 0 0
\(537\) −9.10627 + 15.7725i −0.392964 + 0.680634i
\(538\) 0 0
\(539\) 10.9905 9.81351i 0.473396 0.422698i
\(540\) 0 0
\(541\) 9.89977 + 36.9465i 0.425624 + 1.58845i 0.762556 + 0.646923i \(0.223944\pi\)
−0.336931 + 0.941529i \(0.609389\pi\)
\(542\) 0 0
\(543\) 0.0130450 0.00753154i 0.000559815 0.000323209i
\(544\) 0 0
\(545\) 2.40887i 0.103185i
\(546\) 0 0
\(547\) 17.4654 + 17.4654i 0.746767 + 0.746767i 0.973871 0.227104i \(-0.0729256\pi\)
−0.227104 + 0.973871i \(0.572926\pi\)
\(548\) 0 0
\(549\) −16.4960 4.42009i −0.704033 0.188645i
\(550\) 0 0
\(551\) −48.2399 27.8513i −2.05509 1.18651i
\(552\) 0 0
\(553\) 0.431266 15.2575i 0.0183393 0.648816i
\(554\) 0 0
\(555\) −1.80260 6.72738i −0.0765159 0.285561i
\(556\) 0 0
\(557\) −22.3434 5.98690i −0.946721 0.253673i −0.247751 0.968824i \(-0.579691\pi\)
−0.698970 + 0.715151i \(0.746358\pi\)
\(558\) 0 0
\(559\) 3.36374 0.142271
\(560\) 0 0
\(561\) 0.282367 0.0119215
\(562\) 0 0
\(563\) −16.6774 4.46869i −0.702868 0.188333i −0.110353 0.993892i \(-0.535198\pi\)
−0.592515 + 0.805560i \(0.701865\pi\)
\(564\) 0 0
\(565\) 1.51019 + 5.63612i 0.0635343 + 0.237113i
\(566\) 0 0
\(567\) 13.7626 22.3542i 0.577977 0.938787i
\(568\) 0 0
\(569\) 18.2857 + 10.5573i 0.766577 + 0.442583i 0.831652 0.555297i \(-0.187395\pi\)
−0.0650753 + 0.997880i \(0.520729\pi\)
\(570\) 0 0
\(571\) −12.7451 3.41504i −0.533366 0.142915i −0.0179237 0.999839i \(-0.505706\pi\)
−0.515442 + 0.856924i \(0.672372\pi\)
\(572\) 0 0
\(573\) −25.8919 25.8919i −1.08165 1.08165i
\(574\) 0 0
\(575\) 30.5931i 1.27582i
\(576\) 0 0
\(577\) 21.7205 12.5403i 0.904235 0.522061i 0.0256635 0.999671i \(-0.491830\pi\)
0.878572 + 0.477610i \(0.158497\pi\)
\(578\) 0 0
\(579\) 0.954171 + 3.56101i 0.0396540 + 0.147991i
\(580\) 0 0
\(581\) 16.2367 + 4.84625i 0.673611 + 0.201056i
\(582\) 0 0
\(583\) −3.95029 + 6.84210i −0.163604 + 0.283371i
\(584\) 0 0
\(585\) −0.945868 + 0.546097i −0.0391068 + 0.0225783i
\(586\) 0 0
\(587\) 0.705313 + 0.705313i 0.0291114 + 0.0291114i 0.721513 0.692401i \(-0.243447\pi\)
−0.692401 + 0.721513i \(0.743447\pi\)
\(588\) 0 0
\(589\) −21.3877 + 21.3877i −0.881266 + 0.881266i
\(590\) 0 0
\(591\) −1.76818 3.06258i −0.0727333 0.125978i
\(592\) 0 0
\(593\) −37.2581 21.5110i −1.53001 0.883350i −0.999361 0.0357564i \(-0.988616\pi\)
−0.530646 0.847593i \(-0.678051\pi\)
\(594\) 0 0
\(595\) 0.0369460 0.123782i 0.00151464 0.00507458i
\(596\) 0 0
\(597\) −29.0711 + 7.78959i −1.18980 + 0.318807i
\(598\) 0 0
\(599\) 11.7482 + 20.3485i 0.480019 + 0.831418i 0.999737 0.0229200i \(-0.00729631\pi\)
−0.519718 + 0.854338i \(0.673963\pi\)
\(600\) 0 0
\(601\) 42.4771 1.73268 0.866339 0.499456i \(-0.166467\pi\)
0.866339 + 0.499456i \(0.166467\pi\)
\(602\) 0 0
\(603\) 20.3105 20.3105i 0.827107 0.827107i
\(604\) 0 0
\(605\) 1.47129 5.49092i 0.0598163 0.223238i
\(606\) 0 0
\(607\) 10.5533 18.2788i 0.428345 0.741915i −0.568382 0.822765i \(-0.692430\pi\)
0.996726 + 0.0808504i \(0.0257636\pi\)
\(608\) 0 0
\(609\) −36.4895 22.4653i −1.47863 0.910338i
\(610\) 0 0
\(611\) 5.05969 1.35574i 0.204693 0.0548473i
\(612\) 0 0
\(613\) 2.89016 10.7862i 0.116733 0.435652i −0.882678 0.469978i \(-0.844262\pi\)
0.999411 + 0.0343262i \(0.0109285\pi\)
\(614\) 0 0
\(615\) 10.2036i 0.411451i
\(616\) 0 0
\(617\) 18.9275i 0.761992i −0.924577 0.380996i \(-0.875581\pi\)
0.924577 0.380996i \(-0.124419\pi\)
\(618\) 0 0
\(619\) −2.19722 + 8.20013i −0.0883137 + 0.329591i −0.995921 0.0902289i \(-0.971240\pi\)
0.907607 + 0.419820i \(0.137907\pi\)
\(620\) 0 0
\(621\) −5.74449 + 1.53923i −0.230518 + 0.0617672i
\(622\) 0 0
\(623\) 6.78194 + 0.191697i 0.271713 + 0.00768017i
\(624\) 0 0
\(625\) 7.16461 12.4095i 0.286584 0.496379i
\(626\) 0 0
\(627\) 10.5907 39.5251i 0.422953 1.57848i
\(628\) 0 0
\(629\) 0.135073 0.135073i 0.00538571 0.00538571i
\(630\) 0 0
\(631\) −8.88067 −0.353534 −0.176767 0.984253i \(-0.556564\pi\)
−0.176767 + 0.984253i \(0.556564\pi\)
\(632\) 0 0
\(633\) 1.39620 + 2.41829i 0.0554940 + 0.0961184i
\(634\) 0 0
\(635\) −7.20868 + 1.93156i −0.286068 + 0.0766516i
\(636\) 0 0
\(637\) −3.26116 + 0.679025i −0.129212 + 0.0269040i
\(638\) 0 0
\(639\) 30.1477 + 17.4058i 1.19263 + 0.688563i
\(640\) 0 0
\(641\) 1.02617 + 1.77738i 0.0405314 + 0.0702024i 0.885579 0.464488i \(-0.153762\pi\)
−0.845048 + 0.534690i \(0.820428\pi\)
\(642\) 0 0
\(643\) −20.1070 + 20.1070i −0.792942 + 0.792942i −0.981971 0.189029i \(-0.939466\pi\)
0.189029 + 0.981971i \(0.439466\pi\)
\(644\) 0 0
\(645\) 10.2827 + 10.2827i 0.404880 + 0.404880i
\(646\) 0 0
\(647\) −10.6872 + 6.17028i −0.420159 + 0.242579i −0.695145 0.718869i \(-0.744660\pi\)
0.274987 + 0.961448i \(0.411327\pi\)
\(648\) 0 0
\(649\) 9.25625 16.0323i 0.363339 0.629322i
\(650\) 0 0
\(651\) −16.9113 + 15.9816i −0.662807 + 0.626368i
\(652\) 0 0
\(653\) −11.0441 41.2170i −0.432187 1.61294i −0.747709 0.664026i \(-0.768846\pi\)
0.315522 0.948918i \(-0.397820\pi\)
\(654\) 0 0
\(655\) 4.03621 2.33030i 0.157708 0.0910525i
\(656\) 0 0
\(657\) 14.3013i 0.557948i
\(658\) 0 0
\(659\) 19.4114 + 19.4114i 0.756162 + 0.756162i 0.975622 0.219460i \(-0.0704294\pi\)
−0.219460 + 0.975622i \(0.570429\pi\)
\(660\) 0 0
\(661\) −31.9327 8.55633i −1.24204 0.332803i −0.422782 0.906232i \(-0.638946\pi\)
−0.819255 + 0.573429i \(0.805613\pi\)
\(662\) 0 0
\(663\) −0.0552848 0.0319187i −0.00214708 0.00123962i
\(664\) 0 0
\(665\) −15.9410 9.81431i −0.618167 0.380583i
\(666\) 0 0
\(667\) 12.6881 + 47.3525i 0.491284 + 1.83350i
\(668\) 0 0
\(669\) 9.63796 + 2.58248i 0.372625 + 0.0998446i
\(670\) 0 0
\(671\) 13.5527 0.523196
\(672\) 0 0
\(673\) −2.56169 −0.0987460 −0.0493730 0.998780i \(-0.515722\pi\)
−0.0493730 + 0.998780i \(0.515722\pi\)
\(674\) 0 0
\(675\) −3.39359 0.909309i −0.130619 0.0349993i
\(676\) 0 0
\(677\) 6.22338 + 23.2260i 0.239184 + 0.892646i 0.976218 + 0.216791i \(0.0695590\pi\)
−0.737034 + 0.675855i \(0.763774\pi\)
\(678\) 0 0
\(679\) −21.0967 + 11.3979i −0.809617 + 0.437410i
\(680\) 0 0
\(681\) −26.4820 15.2894i −1.01479 0.585890i
\(682\) 0 0
\(683\) 13.9020 + 3.72504i 0.531946 + 0.142535i 0.514787 0.857318i \(-0.327871\pi\)
0.0171593 + 0.999853i \(0.494538\pi\)
\(684\) 0 0
\(685\) 6.58458 + 6.58458i 0.251584 + 0.251584i
\(686\) 0 0
\(687\) 48.1041i 1.83529i
\(688\) 0 0
\(689\) 1.54686 0.893079i 0.0589306 0.0340236i
\(690\) 0 0
\(691\) −11.3894 42.5057i −0.433272 1.61699i −0.745169 0.666876i \(-0.767631\pi\)
0.311897 0.950116i \(-0.399036\pi\)
\(692\) 0 0
\(693\) 4.22468 14.1542i 0.160482 0.537673i
\(694\) 0 0
\(695\) −8.07940 + 13.9939i −0.306469 + 0.530820i
\(696\) 0 0
\(697\) 0.242363 0.139929i 0.00918017 0.00530017i
\(698\) 0 0
\(699\) −38.5501 38.5501i −1.45810 1.45810i
\(700\) 0 0
\(701\) −15.8844 + 15.8844i −0.599946 + 0.599946i −0.940298 0.340352i \(-0.889454\pi\)
0.340352 + 0.940298i \(0.389454\pi\)
\(702\) 0 0
\(703\) −13.8410 23.9734i −0.522024 0.904173i
\(704\) 0 0
\(705\) 19.6114 + 11.3227i 0.738609 + 0.426436i
\(706\) 0 0
\(707\) −5.87747 24.7075i −0.221045 0.929222i
\(708\) 0 0
\(709\) 25.3348 6.78844i 0.951469 0.254945i 0.250483 0.968121i \(-0.419410\pi\)
0.700985 + 0.713176i \(0.252744\pi\)
\(710\) 0 0
\(711\) −7.65098 13.2519i −0.286934 0.496985i
\(712\) 0 0
\(713\) 26.6197 0.996916
\(714\) 0 0
\(715\) 0.612879 0.612879i 0.0229204 0.0229204i
\(716\) 0 0
\(717\) −3.15647 + 11.7801i −0.117881 + 0.439936i
\(718\) 0 0
\(719\) −7.85533 + 13.6058i −0.292954 + 0.507412i −0.974507 0.224357i \(-0.927972\pi\)
0.681553 + 0.731769i \(0.261305\pi\)
\(720\) 0 0
\(721\) −0.102697 + 3.63325i −0.00382462 + 0.135309i
\(722\) 0 0
\(723\) −38.9260 + 10.4302i −1.44768 + 0.387903i
\(724\) 0 0
\(725\) −7.49554 + 27.9737i −0.278377 + 1.03892i
\(726\) 0 0
\(727\) 24.4125i 0.905411i 0.891660 + 0.452705i \(0.149541\pi\)
−0.891660 + 0.452705i \(0.850459\pi\)
\(728\) 0 0
\(729\) 20.4227i 0.756395i
\(730\) 0 0
\(731\) −0.103228 + 0.385253i −0.00381803 + 0.0142491i
\(732\) 0 0
\(733\) −7.87397 + 2.10982i −0.290832 + 0.0779281i −0.401285 0.915953i \(-0.631436\pi\)
0.110453 + 0.993881i \(0.464770\pi\)
\(734\) 0 0
\(735\) −12.0448 7.89336i −0.444279 0.291151i
\(736\) 0 0
\(737\) −11.3971 + 19.7404i −0.419818 + 0.727147i
\(738\) 0 0
\(739\) 1.94045 7.24186i 0.0713807 0.266396i −0.921008 0.389545i \(-0.872632\pi\)
0.992388 + 0.123148i \(0.0392991\pi\)
\(740\) 0 0
\(741\) −6.54147 + 6.54147i −0.240307 + 0.240307i
\(742\) 0 0
\(743\) −5.21163 −0.191196 −0.0955980 0.995420i \(-0.530476\pi\)
−0.0955980 + 0.995420i \(0.530476\pi\)
\(744\) 0 0
\(745\) 1.74727 + 3.02635i 0.0640149 + 0.110877i
\(746\) 0 0
\(747\) 16.4082 4.39657i 0.600346 0.160862i
\(748\) 0 0
\(749\) 26.9056 25.4264i 0.983109 0.929060i
\(750\) 0 0
\(751\) 3.60025 + 2.07860i 0.131375 + 0.0758493i 0.564247 0.825606i \(-0.309167\pi\)
−0.432872 + 0.901455i \(0.642500\pi\)
\(752\) 0 0
\(753\) −2.75320 4.76869i −0.100332 0.173781i
\(754\) 0 0
\(755\) 4.83215 4.83215i 0.175860 0.175860i
\(756\) 0 0
\(757\) −5.25365 5.25365i −0.190947 0.190947i 0.605158 0.796105i \(-0.293110\pi\)
−0.796105 + 0.605158i \(0.793110\pi\)
\(758\) 0 0
\(759\) −31.1877 + 18.0062i −1.13204 + 0.653585i
\(760\) 0 0
\(761\) −4.74872 + 8.22502i −0.172141 + 0.298157i −0.939168 0.343458i \(-0.888402\pi\)
0.767027 + 0.641615i \(0.221735\pi\)
\(762\) 0 0
\(763\) 1.70451 + 7.16535i 0.0617073 + 0.259403i
\(764\) 0 0
\(765\) −0.0335178 0.125090i −0.00121184 0.00452264i
\(766\) 0 0
\(767\) −3.62457 + 2.09265i −0.130876 + 0.0755611i
\(768\) 0 0
\(769\) 21.7626i 0.784779i 0.919799 + 0.392390i \(0.128352\pi\)
−0.919799 + 0.392390i \(0.871648\pi\)
\(770\) 0 0
\(771\) −13.6069 13.6069i −0.490042 0.490042i
\(772\) 0 0
\(773\) −38.1522 10.2229i −1.37224 0.367690i −0.503943 0.863737i \(-0.668118\pi\)
−0.868296 + 0.496046i \(0.834785\pi\)
\(774\) 0 0
\(775\) 13.6189 + 7.86287i 0.489205 + 0.282442i
\(776\) 0 0
\(777\) −10.1222 18.7356i −0.363133 0.672135i
\(778\) 0 0
\(779\) −10.4966 39.1738i −0.376079 1.40355i
\(780\) 0 0
\(781\) −26.6844 7.15007i −0.954843 0.255850i
\(782\) 0 0
\(783\) 5.62978 0.201192
\(784\) 0 0
\(785\) 13.9827 0.499062
\(786\) 0 0
\(787\) 25.9373 + 6.94989i 0.924567 + 0.247737i 0.689536 0.724251i \(-0.257814\pi\)
0.235030 + 0.971988i \(0.424481\pi\)
\(788\) 0 0
\(789\) −9.12949 34.0717i −0.325018 1.21299i
\(790\) 0 0
\(791\) 8.48027 + 15.6964i 0.301524 + 0.558101i
\(792\) 0 0
\(793\) −2.65349 1.53199i −0.0942281 0.0544026i
\(794\) 0 0
\(795\) 7.45868 + 1.99855i 0.264532 + 0.0708812i
\(796\) 0 0
\(797\) 28.0289 + 28.0289i 0.992834 + 0.992834i 0.999975 0.00714087i \(-0.00227303\pi\)
−0.00714087 + 0.999975i \(0.502273\pi\)
\(798\) 0 0
\(799\) 0.621097i 0.0219728i
\(800\) 0 0
\(801\) 5.89044 3.40084i 0.208128 0.120163i
\(802\) 0 0
\(803\) 2.93740 + 10.9625i 0.103658 + 0.386859i
\(804\) 0 0
\(805\) 3.81274 + 16.0279i 0.134381 + 0.564908i
\(806\) 0 0
\(807\) 0.288072 0.498956i 0.0101406 0.0175641i
\(808\) 0 0
\(809\) 14.7231 8.50038i 0.517636 0.298857i −0.218331 0.975875i \(-0.570061\pi\)
0.735967 + 0.677017i \(0.236728\pi\)
\(810\) 0 0
\(811\) −0.379489 0.379489i −0.0133256 0.0133256i 0.700413 0.713738i \(-0.252999\pi\)
−0.713738 + 0.700413i \(0.752999\pi\)
\(812\) 0 0
\(813\) 37.7059 37.7059i 1.32240 1.32240i
\(814\) 0 0
\(815\) −1.33935 2.31983i −0.0469155 0.0812600i
\(816\) 0 0
\(817\) 50.0550 + 28.8993i 1.75120 + 1.01106i
\(818\) 0 0
\(819\) −2.42714 + 2.29370i −0.0848110 + 0.0801483i
\(820\) 0 0
\(821\) 30.7660 8.24372i 1.07374 0.287708i 0.321711 0.946838i \(-0.395742\pi\)
0.752029 + 0.659130i \(0.229075\pi\)
\(822\) 0 0
\(823\) −22.7033 39.3232i −0.791386 1.37072i −0.925109 0.379703i \(-0.876026\pi\)
0.133722 0.991019i \(-0.457307\pi\)
\(824\) 0 0
\(825\) −21.2746 −0.740685
\(826\) 0 0
\(827\) −5.61746 + 5.61746i −0.195338 + 0.195338i −0.797998 0.602660i \(-0.794108\pi\)
0.602660 + 0.797998i \(0.294108\pi\)
\(828\) 0 0
\(829\) 13.7815 51.4334i 0.478652 1.78636i −0.128432 0.991718i \(-0.540995\pi\)
0.607085 0.794637i \(-0.292339\pi\)
\(830\) 0 0
\(831\) −23.1356 + 40.0721i −0.802565 + 1.39008i
\(832\) 0 0
\(833\) 0.0223106 0.394342i 0.000773016 0.0136631i
\(834\) 0 0
\(835\) −4.70531 + 1.26078i −0.162834 + 0.0436312i
\(836\) 0 0
\(837\) 0.791210 2.95283i 0.0273482 0.102065i
\(838\) 0 0
\(839\) 42.8593i 1.47967i −0.672790 0.739834i \(-0.734904\pi\)
0.672790 0.739834i \(-0.265096\pi\)
\(840\) 0 0
\(841\) 17.4069i 0.600238i
\(842\) 0 0
\(843\) −7.62133 + 28.4432i −0.262492 + 0.979635i
\(844\) 0 0
\(845\) 10.6765 2.86075i 0.367281 0.0984127i
\(846\) 0 0
\(847\) 0.491095 17.3742i 0.0168742 0.596985i
\(848\) 0 0
\(849\) 4.49186 7.78012i 0.154160 0.267013i
\(850\) 0 0
\(851\) −6.30548 + 23.5324i −0.216149 + 0.806679i
\(852\) 0 0
\(853\) −1.26515 + 1.26515i −0.0433180 + 0.0433180i −0.728434 0.685116i \(-0.759751\pi\)
0.685116 + 0.728434i \(0.259751\pi\)
\(854\) 0 0
\(855\) −18.7670 −0.641818
\(856\) 0 0
\(857\) −19.6774 34.0822i −0.672166 1.16423i −0.977289 0.211912i \(-0.932031\pi\)
0.305123 0.952313i \(-0.401302\pi\)
\(858\) 0 0
\(859\) −28.9153 + 7.74782i −0.986576 + 0.264352i −0.715812 0.698293i \(-0.753943\pi\)
−0.270764 + 0.962646i \(0.587276\pi\)
\(860\) 0 0
\(861\) −7.22006 30.3515i −0.246059 1.03438i
\(862\) 0 0
\(863\) 1.42367 + 0.821957i 0.0484624 + 0.0279798i 0.524035 0.851696i \(-0.324426\pi\)
−0.475573 + 0.879676i \(0.657759\pi\)
\(864\) 0 0
\(865\) −0.760238 1.31677i −0.0258489 0.0447716i
\(866\) 0 0
\(867\) −28.5739 + 28.5739i −0.970419 + 0.970419i
\(868\) 0 0
\(869\) 8.58662 + 8.58662i 0.291281 + 0.291281i
\(870\) 0 0
\(871\) 4.46290 2.57666i 0.151220 0.0873066i
\(872\) 0 0
\(873\) −12.0195 + 20.8184i −0.406799 + 0.704596i
\(874\) 0 0
\(875\) −6.05756 + 20.2950i −0.204783 + 0.686096i
\(876\) 0 0
\(877\) −2.19077 8.17605i −0.0739769 0.276086i 0.919022 0.394205i \(-0.128980\pi\)
−0.992999 + 0.118120i \(0.962313\pi\)
\(878\) 0 0
\(879\) −8.26360 + 4.77099i −0.278724 + 0.160922i
\(880\) 0 0
\(881\) 21.6012i 0.727763i −0.931445 0.363881i \(-0.881451\pi\)
0.931445 0.363881i \(-0.118549\pi\)
\(882\) 0 0
\(883\) 13.8898 + 13.8898i 0.467428 + 0.467428i 0.901080 0.433652i \(-0.142775\pi\)
−0.433652 + 0.901080i \(0.642775\pi\)
\(884\) 0 0
\(885\) −17.4770 4.68296i −0.587485 0.157416i
\(886\) 0 0
\(887\) −6.26306 3.61598i −0.210293 0.121413i 0.391155 0.920325i \(-0.372076\pi\)
−0.601448 + 0.798912i \(0.705409\pi\)
\(888\) 0 0
\(889\) −20.0760 + 10.8464i −0.673327 + 0.363777i
\(890\) 0 0
\(891\) 5.40534 + 20.1730i 0.181086 + 0.675821i
\(892\) 0 0
\(893\) 86.9398 + 23.2954i 2.90933 + 0.779552i
\(894\) 0 0
\(895\) −6.62866 −0.221572
\(896\) 0 0
\(897\) 8.14168 0.271843
\(898\) 0 0
\(899\) −24.3406 6.52203i −0.811803 0.217522i
\(900\) 0 0
\(901\) 0.0548145 + 0.204571i 0.00182614 + 0.00681524i
\(902\) 0 0
\(903\) 37.8625 + 23.3106i 1.25999 + 0.775727i
\(904\) 0 0
\(905\) 0.00474788 + 0.00274119i 0.000157825 + 9.11202e-5i
\(906\) 0 0
\(907\) −19.9743 5.35210i −0.663237 0.177714i −0.0885303 0.996073i \(-0.528217\pi\)
−0.574706 + 0.818360i \(0.694884\pi\)
\(908\) 0 0
\(909\) −18.0035 18.0035i −0.597137 0.597137i
\(910\) 0 0
\(911\) 0.154520i 0.00511948i −0.999997 0.00255974i \(-0.999185\pi\)
0.999997 0.00255974i \(-0.000814791\pi\)
\(912\) 0 0
\(913\) −11.6745 + 6.74028i −0.386370 + 0.223071i
\(914\) 0 0
\(915\) −3.42832 12.7947i −0.113337 0.422978i
\(916\) 0 0
\(917\) 10.3571 9.78766i 0.342021 0.323217i
\(918\) 0 0
\(919\) 17.9792 31.1409i 0.593079 1.02724i −0.400736 0.916194i \(-0.631246\pi\)
0.993815 0.111049i \(-0.0354211\pi\)
\(920\) 0 0
\(921\) 51.0385 29.4671i 1.68178 0.970974i
\(922\) 0 0
\(923\) 4.41631 + 4.41631i 0.145365 + 0.145365i
\(924\) 0 0
\(925\) −10.1769 + 10.1769i −0.334614 + 0.334614i
\(926\) 0 0
\(927\) 1.82191 + 3.15565i 0.0598395 + 0.103645i
\(928\) 0 0
\(929\) 13.9612 + 8.06050i 0.458052 + 0.264456i 0.711225 0.702965i \(-0.248141\pi\)
−0.253173 + 0.967421i \(0.581474\pi\)
\(930\) 0 0
\(931\) −54.3623 17.9136i −1.78165 0.587093i
\(932\) 0 0
\(933\) 51.4860 13.7956i 1.68558 0.451649i
\(934\) 0 0
\(935\) 0.0513854 + 0.0890021i 0.00168048 + 0.00291068i
\(936\) 0 0
\(937\) −8.23172 −0.268919 −0.134459 0.990919i \(-0.542930\pi\)
−0.134459 + 0.990919i \(0.542930\pi\)
\(938\) 0 0
\(939\) −13.0096 + 13.0096i −0.424552 + 0.424552i
\(940\) 0 0
\(941\) −6.14005 + 22.9150i −0.200160 + 0.747007i 0.790710 + 0.612190i \(0.209711\pi\)
−0.990870 + 0.134817i \(0.956955\pi\)
\(942\) 0 0
\(943\) −17.8462 + 30.9105i −0.581151 + 1.00658i
\(944\) 0 0
\(945\) 1.89124 + 0.0534574i 0.0615221 + 0.00173897i
\(946\) 0 0
\(947\) 31.9395 8.55816i 1.03789 0.278103i 0.300654 0.953733i \(-0.402795\pi\)
0.737240 + 0.675631i \(0.236129\pi\)
\(948\) 0 0
\(949\) 0.664085 2.47840i 0.0215571 0.0804522i
\(950\) 0 0
\(951\) 7.70103i 0.249723i
\(952\) 0 0
\(953\) 21.4014i 0.693259i 0.938002 + 0.346630i \(0.112674\pi\)
−0.938002 + 0.346630i \(0.887326\pi\)
\(954\) 0 0
\(955\) 3.44929 12.8729i 0.111617 0.416558i
\(956\) 0 0
\(957\) 32.9291 8.82333i 1.06445 0.285218i
\(958\) 0 0
\(959\) 24.2455 + 14.9271i 0.782929 + 0.482020i
\(960\) 0 0
\(961\) 8.65835 14.9967i 0.279302 0.483765i
\(962\) 0 0
\(963\) 9.60531 35.8475i 0.309527 1.15517i
\(964\) 0 0
\(965\) −0.948791 + 0.948791i −0.0305426 + 0.0305426i
\(966\) 0 0
\(967\) 4.85592 0.156156 0.0780779 0.996947i \(-0.475122\pi\)
0.0780779 + 0.996947i \(0.475122\pi\)
\(968\) 0 0
\(969\) −0.548454 0.949950i −0.0176189 0.0305168i
\(970\) 0 0
\(971\) 59.5122 15.9462i 1.90984 0.511739i 0.915956 0.401280i \(-0.131434\pi\)
0.993881 0.110459i \(-0.0352322\pi\)
\(972\) 0 0
\(973\) −14.1307 + 47.3429i −0.453010 + 1.51774i
\(974\) 0 0
\(975\) 4.16536 + 2.40487i 0.133398 + 0.0770175i
\(976\) 0 0
\(977\) −6.98255 12.0941i −0.223392 0.386926i 0.732444 0.680827i \(-0.238380\pi\)
−0.955836 + 0.293902i \(0.905046\pi\)
\(978\) 0 0
\(979\) −3.81673 + 3.81673i −0.121983 + 0.121983i
\(980\) 0 0
\(981\) 5.22113 + 5.22113i 0.166698 + 0.166698i
\(982\) 0 0
\(983\) −48.8774 + 28.2194i −1.55895 + 0.900058i −0.561588 + 0.827417i \(0.689810\pi\)
−0.997358 + 0.0726413i \(0.976857\pi\)
\(984\) 0 0
\(985\) 0.643550 1.11466i 0.0205052 0.0355161i
\(986\) 0 0
\(987\) 66.3474 + 19.8031i 2.11186 + 0.630339i
\(988\) 0 0
\(989\) −13.1655 49.1342i −0.418638 1.56238i
\(990\) 0 0
\(991\) −39.5634 + 22.8419i −1.25677 + 0.725598i −0.972446 0.233129i \(-0.925104\pi\)
−0.284327 + 0.958727i \(0.591770\pi\)
\(992\) 0 0
\(993\) 9.89891i 0.314132i
\(994\) 0 0
\(995\) −7.74566 7.74566i −0.245554 0.245554i
\(996\) 0 0
\(997\) −13.2530 3.55112i −0.419726 0.112465i 0.0427736 0.999085i \(-0.486381\pi\)
−0.462499 + 0.886620i \(0.653047\pi\)
\(998\) 0 0
\(999\) 2.42295 + 1.39889i 0.0766588 + 0.0442590i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.z.a.159.13 56
4.3 odd 2 896.2.z.b.159.2 56
7.3 odd 6 inner 896.2.z.a.31.13 56
8.3 odd 2 112.2.v.a.75.10 yes 56
8.5 even 2 448.2.z.a.271.2 56
16.3 odd 4 inner 896.2.z.a.607.13 56
16.5 even 4 112.2.v.a.19.1 yes 56
16.11 odd 4 448.2.z.a.47.2 56
16.13 even 4 896.2.z.b.607.2 56
28.3 even 6 896.2.z.b.31.2 56
56.3 even 6 112.2.v.a.59.1 yes 56
56.11 odd 6 784.2.w.f.619.1 56
56.19 even 6 784.2.j.a.587.20 56
56.27 even 2 784.2.w.f.411.10 56
56.45 odd 6 448.2.z.a.143.2 56
56.51 odd 6 784.2.j.a.587.19 56
112.3 even 12 inner 896.2.z.a.479.13 56
112.5 odd 12 784.2.j.a.195.19 56
112.37 even 12 784.2.j.a.195.20 56
112.45 odd 12 896.2.z.b.479.2 56
112.53 even 12 784.2.w.f.227.10 56
112.59 even 12 448.2.z.a.367.2 56
112.69 odd 4 784.2.w.f.19.1 56
112.101 odd 12 112.2.v.a.3.10 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.10 56 112.101 odd 12
112.2.v.a.19.1 yes 56 16.5 even 4
112.2.v.a.59.1 yes 56 56.3 even 6
112.2.v.a.75.10 yes 56 8.3 odd 2
448.2.z.a.47.2 56 16.11 odd 4
448.2.z.a.143.2 56 56.45 odd 6
448.2.z.a.271.2 56 8.5 even 2
448.2.z.a.367.2 56 112.59 even 12
784.2.j.a.195.19 56 112.5 odd 12
784.2.j.a.195.20 56 112.37 even 12
784.2.j.a.587.19 56 56.51 odd 6
784.2.j.a.587.20 56 56.19 even 6
784.2.w.f.19.1 56 112.69 odd 4
784.2.w.f.227.10 56 112.53 even 12
784.2.w.f.411.10 56 56.27 even 2
784.2.w.f.619.1 56 56.11 odd 6
896.2.z.a.31.13 56 7.3 odd 6 inner
896.2.z.a.159.13 56 1.1 even 1 trivial
896.2.z.a.479.13 56 112.3 even 12 inner
896.2.z.a.607.13 56 16.3 odd 4 inner
896.2.z.b.31.2 56 28.3 even 6
896.2.z.b.159.2 56 4.3 odd 2
896.2.z.b.479.2 56 112.45 odd 12
896.2.z.b.607.2 56 16.13 even 4