Properties

Label 783.2.e.a.262.9
Level $783$
Weight $2$
Character 783.262
Analytic conductor $6.252$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(262,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.262"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 261)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 262.9
Character \(\chi\) \(=\) 783.262
Dual form 783.2.e.a.523.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.764092 - 1.32345i) q^{2} +(-0.167673 - 0.290418i) q^{4} +(-0.0756080 - 0.130957i) q^{5} +(0.0289713 - 0.0501797i) q^{7} +2.54390 q^{8} -0.231086 q^{10} +(0.540786 - 0.936668i) q^{11} +(1.22647 + 2.12431i) q^{13} +(-0.0442735 - 0.0766839i) q^{14} +(2.27912 - 3.94755i) q^{16} +1.83487 q^{17} +2.89537 q^{19} +(-0.0253548 + 0.0439159i) q^{20} +(-0.826420 - 1.43140i) q^{22} +(-0.390679 - 0.676676i) q^{23} +(2.48857 - 4.31032i) q^{25} +3.74855 q^{26} -0.0194308 q^{28} +(-0.500000 + 0.866025i) q^{29} +(0.604509 + 1.04704i) q^{31} +(-0.939013 - 1.62642i) q^{32} +(1.40201 - 2.42836i) q^{34} -0.00876184 q^{35} -1.28794 q^{37} +(2.21233 - 3.83187i) q^{38} +(-0.192339 - 0.333141i) q^{40} +(-2.18597 - 3.78621i) q^{41} +(3.72209 - 6.44685i) q^{43} -0.362701 q^{44} -1.19406 q^{46} +(-2.93817 + 5.08906i) q^{47} +(3.49832 + 6.05927i) q^{49} +(-3.80299 - 6.58697i) q^{50} +(0.411292 - 0.712379i) q^{52} +0.0547103 q^{53} -0.163551 q^{55} +(0.0737000 - 0.127652i) q^{56} +(0.764092 + 1.32345i) q^{58} +(-3.61816 - 6.26684i) q^{59} +(2.02285 - 3.50368i) q^{61} +1.84760 q^{62} +6.24650 q^{64} +(0.185462 - 0.321230i) q^{65} +(2.16938 + 3.75748i) q^{67} +(-0.307659 - 0.532881i) q^{68} +(-0.00669485 + 0.0115958i) q^{70} -14.9063 q^{71} -3.30924 q^{73} +(-0.984108 + 1.70452i) q^{74} +(-0.485476 - 0.840869i) q^{76} +(-0.0313345 - 0.0542730i) q^{77} +(-1.60912 + 2.78708i) q^{79} -0.689278 q^{80} -6.68112 q^{82} +(-4.05392 + 7.02160i) q^{83} +(-0.138731 - 0.240289i) q^{85} +(-5.68804 - 9.85197i) q^{86} +(1.37570 - 2.38279i) q^{88} +3.75415 q^{89} +0.142130 q^{91} +(-0.131013 + 0.226921i) q^{92} +(4.49007 + 7.77702i) q^{94} +(-0.218913 - 0.379169i) q^{95} +(-7.78455 + 13.4832i) q^{97} +10.6922 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + q^{2} - 5 q^{4} - q^{5} + 7 q^{7} - 6 q^{8} - 20 q^{10} + 3 q^{11} + 7 q^{13} - 10 q^{14} + 7 q^{16} - 2 q^{17} - 56 q^{19} - 4 q^{20} + 13 q^{22} + 4 q^{23} + 4 q^{25} + 12 q^{26} - 32 q^{28}+ \cdots - 86 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.764092 1.32345i 0.540295 0.935818i −0.458592 0.888647i \(-0.651646\pi\)
0.998887 0.0471709i \(-0.0150205\pi\)
\(3\) 0 0
\(4\) −0.167673 0.290418i −0.0838365 0.145209i
\(5\) −0.0756080 0.130957i −0.0338129 0.0585657i 0.848624 0.528997i \(-0.177432\pi\)
−0.882437 + 0.470431i \(0.844098\pi\)
\(6\) 0 0
\(7\) 0.0289713 0.0501797i 0.0109501 0.0189662i −0.860498 0.509453i \(-0.829848\pi\)
0.871449 + 0.490487i \(0.163181\pi\)
\(8\) 2.54390 0.899404
\(9\) 0 0
\(10\) −0.231086 −0.0730757
\(11\) 0.540786 0.936668i 0.163053 0.282416i −0.772909 0.634517i \(-0.781199\pi\)
0.935962 + 0.352101i \(0.114533\pi\)
\(12\) 0 0
\(13\) 1.22647 + 2.12431i 0.340162 + 0.589178i 0.984463 0.175595i \(-0.0561848\pi\)
−0.644301 + 0.764772i \(0.722851\pi\)
\(14\) −0.0442735 0.0766839i −0.0118326 0.0204946i
\(15\) 0 0
\(16\) 2.27912 3.94755i 0.569779 0.986887i
\(17\) 1.83487 0.445022 0.222511 0.974930i \(-0.428575\pi\)
0.222511 + 0.974930i \(0.428575\pi\)
\(18\) 0 0
\(19\) 2.89537 0.664244 0.332122 0.943236i \(-0.392235\pi\)
0.332122 + 0.943236i \(0.392235\pi\)
\(20\) −0.0253548 + 0.0439159i −0.00566951 + 0.00981989i
\(21\) 0 0
\(22\) −0.826420 1.43140i −0.176193 0.305176i
\(23\) −0.390679 0.676676i −0.0814623 0.141097i 0.822416 0.568887i \(-0.192626\pi\)
−0.903878 + 0.427790i \(0.859292\pi\)
\(24\) 0 0
\(25\) 2.48857 4.31032i 0.497713 0.862065i
\(26\) 3.74855 0.735150
\(27\) 0 0
\(28\) −0.0194308 −0.00367208
\(29\) −0.500000 + 0.866025i −0.0928477 + 0.160817i
\(30\) 0 0
\(31\) 0.604509 + 1.04704i 0.108573 + 0.188054i 0.915192 0.403017i \(-0.132039\pi\)
−0.806619 + 0.591071i \(0.798705\pi\)
\(32\) −0.939013 1.62642i −0.165996 0.287513i
\(33\) 0 0
\(34\) 1.40201 2.42836i 0.240443 0.416460i
\(35\) −0.00876184 −0.00148102
\(36\) 0 0
\(37\) −1.28794 −0.211737 −0.105868 0.994380i \(-0.533762\pi\)
−0.105868 + 0.994380i \(0.533762\pi\)
\(38\) 2.21233 3.83187i 0.358888 0.621612i
\(39\) 0 0
\(40\) −0.192339 0.333141i −0.0304115 0.0526742i
\(41\) −2.18597 3.78621i −0.341391 0.591306i 0.643300 0.765614i \(-0.277565\pi\)
−0.984691 + 0.174307i \(0.944231\pi\)
\(42\) 0 0
\(43\) 3.72209 6.44685i 0.567613 0.983135i −0.429188 0.903215i \(-0.641200\pi\)
0.996801 0.0799197i \(-0.0254664\pi\)
\(44\) −0.362701 −0.0546792
\(45\) 0 0
\(46\) −1.19406 −0.176054
\(47\) −2.93817 + 5.08906i −0.428576 + 0.742316i −0.996747 0.0805948i \(-0.974318\pi\)
0.568171 + 0.822911i \(0.307651\pi\)
\(48\) 0 0
\(49\) 3.49832 + 6.05927i 0.499760 + 0.865610i
\(50\) −3.80299 6.58697i −0.537824 0.931538i
\(51\) 0 0
\(52\) 0.411292 0.712379i 0.0570360 0.0987892i
\(53\) 0.0547103 0.00751503 0.00375752 0.999993i \(-0.498804\pi\)
0.00375752 + 0.999993i \(0.498804\pi\)
\(54\) 0 0
\(55\) −0.163551 −0.0220532
\(56\) 0.0737000 0.127652i 0.00984857 0.0170582i
\(57\) 0 0
\(58\) 0.764092 + 1.32345i 0.100330 + 0.173777i
\(59\) −3.61816 6.26684i −0.471045 0.815873i 0.528407 0.848991i \(-0.322790\pi\)
−0.999451 + 0.0331179i \(0.989456\pi\)
\(60\) 0 0
\(61\) 2.02285 3.50368i 0.258999 0.448600i −0.706975 0.707239i \(-0.749941\pi\)
0.965974 + 0.258639i \(0.0832740\pi\)
\(62\) 1.84760 0.234646
\(63\) 0 0
\(64\) 6.24650 0.780812
\(65\) 0.185462 0.321230i 0.0230037 0.0398436i
\(66\) 0 0
\(67\) 2.16938 + 3.75748i 0.265032 + 0.459050i 0.967572 0.252595i \(-0.0812840\pi\)
−0.702540 + 0.711645i \(0.747951\pi\)
\(68\) −0.307659 0.532881i −0.0373091 0.0646213i
\(69\) 0 0
\(70\) −0.00669485 + 0.0115958i −0.000800188 + 0.00138597i
\(71\) −14.9063 −1.76905 −0.884527 0.466489i \(-0.845519\pi\)
−0.884527 + 0.466489i \(0.845519\pi\)
\(72\) 0 0
\(73\) −3.30924 −0.387317 −0.193658 0.981069i \(-0.562035\pi\)
−0.193658 + 0.981069i \(0.562035\pi\)
\(74\) −0.984108 + 1.70452i −0.114400 + 0.198147i
\(75\) 0 0
\(76\) −0.485476 0.840869i −0.0556879 0.0964543i
\(77\) −0.0313345 0.0542730i −0.00357090 0.00618498i
\(78\) 0 0
\(79\) −1.60912 + 2.78708i −0.181040 + 0.313570i −0.942235 0.334953i \(-0.891280\pi\)
0.761195 + 0.648523i \(0.224613\pi\)
\(80\) −0.689278 −0.0770636
\(81\) 0 0
\(82\) −6.68112 −0.737807
\(83\) −4.05392 + 7.02160i −0.444976 + 0.770721i −0.998051 0.0624110i \(-0.980121\pi\)
0.553075 + 0.833132i \(0.313454\pi\)
\(84\) 0 0
\(85\) −0.138731 0.240289i −0.0150475 0.0260630i
\(86\) −5.68804 9.85197i −0.613357 1.06236i
\(87\) 0 0
\(88\) 1.37570 2.38279i 0.146650 0.254006i
\(89\) 3.75415 0.397939 0.198970 0.980006i \(-0.436241\pi\)
0.198970 + 0.980006i \(0.436241\pi\)
\(90\) 0 0
\(91\) 0.142130 0.0148992
\(92\) −0.131013 + 0.226921i −0.0136590 + 0.0236581i
\(93\) 0 0
\(94\) 4.49007 + 7.77702i 0.463115 + 0.802139i
\(95\) −0.218913 0.379169i −0.0224600 0.0389019i
\(96\) 0 0
\(97\) −7.78455 + 13.4832i −0.790402 + 1.36902i 0.135317 + 0.990802i \(0.456795\pi\)
−0.925718 + 0.378214i \(0.876538\pi\)
\(98\) 10.6922 1.08007
\(99\) 0 0
\(100\) −1.66906 −0.166906
\(101\) −5.99585 + 10.3851i −0.596609 + 1.03336i 0.396708 + 0.917945i \(0.370152\pi\)
−0.993318 + 0.115413i \(0.963181\pi\)
\(102\) 0 0
\(103\) −5.47078 9.47568i −0.539052 0.933666i −0.998955 0.0456970i \(-0.985449\pi\)
0.459903 0.887969i \(-0.347884\pi\)
\(104\) 3.12002 + 5.40403i 0.305943 + 0.529908i
\(105\) 0 0
\(106\) 0.0418037 0.0724061i 0.00406033 0.00703270i
\(107\) −3.86363 −0.373511 −0.186756 0.982406i \(-0.559797\pi\)
−0.186756 + 0.982406i \(0.559797\pi\)
\(108\) 0 0
\(109\) −15.3103 −1.46646 −0.733230 0.679980i \(-0.761988\pi\)
−0.733230 + 0.679980i \(0.761988\pi\)
\(110\) −0.124968 + 0.216451i −0.0119152 + 0.0206378i
\(111\) 0 0
\(112\) −0.132058 0.228731i −0.0124783 0.0216131i
\(113\) 4.58543 + 7.94219i 0.431361 + 0.747139i 0.996991 0.0775204i \(-0.0247003\pi\)
−0.565630 + 0.824659i \(0.691367\pi\)
\(114\) 0 0
\(115\) −0.0590769 + 0.102324i −0.00550895 + 0.00954179i
\(116\) 0.335346 0.0311361
\(117\) 0 0
\(118\) −11.0584 −1.01801
\(119\) 0.0531587 0.0920735i 0.00487305 0.00844036i
\(120\) 0 0
\(121\) 4.91510 + 8.51321i 0.446827 + 0.773928i
\(122\) −3.09128 5.35426i −0.279872 0.484752i
\(123\) 0 0
\(124\) 0.202720 0.351121i 0.0182048 0.0315316i
\(125\) −1.50870 −0.134942
\(126\) 0 0
\(127\) −12.5497 −1.11360 −0.556801 0.830646i \(-0.687972\pi\)
−0.556801 + 0.830646i \(0.687972\pi\)
\(128\) 6.65093 11.5197i 0.587864 1.01821i
\(129\) 0 0
\(130\) −0.283420 0.490898i −0.0248576 0.0430546i
\(131\) 9.22384 + 15.9762i 0.805891 + 1.39584i 0.915688 + 0.401890i \(0.131647\pi\)
−0.109797 + 0.993954i \(0.535020\pi\)
\(132\) 0 0
\(133\) 0.0838827 0.145289i 0.00727355 0.0125982i
\(134\) 6.63044 0.572782
\(135\) 0 0
\(136\) 4.66773 0.400255
\(137\) 8.59757 14.8914i 0.734540 1.27226i −0.220385 0.975413i \(-0.570731\pi\)
0.954925 0.296848i \(-0.0959354\pi\)
\(138\) 0 0
\(139\) −0.817007 1.41510i −0.0692976 0.120027i 0.829295 0.558812i \(-0.188742\pi\)
−0.898592 + 0.438785i \(0.855409\pi\)
\(140\) 0.00146912 + 0.00254460i 0.000124164 + 0.000215058i
\(141\) 0 0
\(142\) −11.3898 + 19.7277i −0.955810 + 1.65551i
\(143\) 2.65303 0.221858
\(144\) 0 0
\(145\) 0.151216 0.0125578
\(146\) −2.52856 + 4.37960i −0.209265 + 0.362458i
\(147\) 0 0
\(148\) 0.215953 + 0.374042i 0.0177513 + 0.0307461i
\(149\) 2.54709 + 4.41169i 0.208666 + 0.361419i 0.951294 0.308284i \(-0.0997546\pi\)
−0.742629 + 0.669703i \(0.766421\pi\)
\(150\) 0 0
\(151\) 8.81217 15.2631i 0.717124 1.24210i −0.245010 0.969521i \(-0.578791\pi\)
0.962134 0.272575i \(-0.0878754\pi\)
\(152\) 7.36553 0.597424
\(153\) 0 0
\(154\) −0.0957698 −0.00771735
\(155\) 0.0914115 0.158329i 0.00734235 0.0127173i
\(156\) 0 0
\(157\) −0.737082 1.27666i −0.0588256 0.101889i 0.835113 0.550079i \(-0.185402\pi\)
−0.893938 + 0.448190i \(0.852069\pi\)
\(158\) 2.45903 + 4.25916i 0.195630 + 0.338841i
\(159\) 0 0
\(160\) −0.141994 + 0.245940i −0.0112256 + 0.0194433i
\(161\) −0.0452739 −0.00356809
\(162\) 0 0
\(163\) −14.2857 −1.11894 −0.559469 0.828851i \(-0.688995\pi\)
−0.559469 + 0.828851i \(0.688995\pi\)
\(164\) −0.733056 + 1.26969i −0.0572421 + 0.0991462i
\(165\) 0 0
\(166\) 6.19514 + 10.7303i 0.480836 + 0.832832i
\(167\) 7.16948 + 12.4179i 0.554791 + 0.960927i 0.997920 + 0.0644685i \(0.0205352\pi\)
−0.443129 + 0.896458i \(0.646131\pi\)
\(168\) 0 0
\(169\) 3.49154 6.04752i 0.268580 0.465194i
\(170\) −0.424013 −0.0325203
\(171\) 0 0
\(172\) −2.49638 −0.190347
\(173\) −3.52672 + 6.10846i −0.268132 + 0.464417i −0.968379 0.249482i \(-0.919740\pi\)
0.700248 + 0.713900i \(0.253073\pi\)
\(174\) 0 0
\(175\) −0.144194 0.249751i −0.0109000 0.0188794i
\(176\) −2.46503 4.26955i −0.185809 0.321830i
\(177\) 0 0
\(178\) 2.86852 4.96841i 0.215004 0.372398i
\(179\) −11.7051 −0.874878 −0.437439 0.899248i \(-0.644114\pi\)
−0.437439 + 0.899248i \(0.644114\pi\)
\(180\) 0 0
\(181\) −7.15646 −0.531936 −0.265968 0.963982i \(-0.585691\pi\)
−0.265968 + 0.963982i \(0.585691\pi\)
\(182\) 0.108600 0.188101i 0.00804998 0.0139430i
\(183\) 0 0
\(184\) −0.993848 1.72140i −0.0732675 0.126903i
\(185\) 0.0973788 + 0.168665i 0.00715943 + 0.0124005i
\(186\) 0 0
\(187\) 0.992274 1.71867i 0.0725622 0.125681i
\(188\) 1.97061 0.143721
\(189\) 0 0
\(190\) −0.669080 −0.0485401
\(191\) −11.4273 + 19.7927i −0.826853 + 1.43215i 0.0736417 + 0.997285i \(0.476538\pi\)
−0.900495 + 0.434867i \(0.856795\pi\)
\(192\) 0 0
\(193\) −0.283851 0.491645i −0.0204321 0.0353894i 0.855629 0.517590i \(-0.173171\pi\)
−0.876061 + 0.482201i \(0.839838\pi\)
\(194\) 11.8962 + 20.6049i 0.854100 + 1.47934i
\(195\) 0 0
\(196\) 1.17315 2.03195i 0.0837963 0.145139i
\(197\) −7.85018 −0.559302 −0.279651 0.960102i \(-0.590219\pi\)
−0.279651 + 0.960102i \(0.590219\pi\)
\(198\) 0 0
\(199\) 15.9248 1.12888 0.564441 0.825473i \(-0.309092\pi\)
0.564441 + 0.825473i \(0.309092\pi\)
\(200\) 6.33066 10.9650i 0.447645 0.775344i
\(201\) 0 0
\(202\) 9.16276 + 15.8704i 0.644690 + 1.11664i
\(203\) 0.0289713 + 0.0501797i 0.00203339 + 0.00352193i
\(204\) 0 0
\(205\) −0.330553 + 0.572535i −0.0230868 + 0.0399876i
\(206\) −16.7207 −1.16499
\(207\) 0 0
\(208\) 11.1811 0.775269
\(209\) 1.56578 2.71201i 0.108307 0.187593i
\(210\) 0 0
\(211\) −10.0564 17.4181i −0.692308 1.19911i −0.971080 0.238755i \(-0.923261\pi\)
0.278772 0.960357i \(-0.410073\pi\)
\(212\) −0.00917344 0.0158889i −0.000630034 0.00109125i
\(213\) 0 0
\(214\) −2.95217 + 5.11331i −0.201806 + 0.349539i
\(215\) −1.12568 −0.0767706
\(216\) 0 0
\(217\) 0.0700537 0.00475555
\(218\) −11.6985 + 20.2624i −0.792321 + 1.37234i
\(219\) 0 0
\(220\) 0.0274231 + 0.0474981i 0.00184886 + 0.00320232i
\(221\) 2.25042 + 3.89784i 0.151380 + 0.262197i
\(222\) 0 0
\(223\) 12.2271 21.1780i 0.818790 1.41819i −0.0877845 0.996139i \(-0.527979\pi\)
0.906574 0.422046i \(-0.138688\pi\)
\(224\) −0.108818 −0.00727069
\(225\) 0 0
\(226\) 14.0148 0.932248
\(227\) 14.2157 24.6223i 0.943527 1.63424i 0.184854 0.982766i \(-0.440819\pi\)
0.758674 0.651471i \(-0.225848\pi\)
\(228\) 0 0
\(229\) 7.17659 + 12.4302i 0.474242 + 0.821412i 0.999565 0.0294912i \(-0.00938869\pi\)
−0.525323 + 0.850903i \(0.676055\pi\)
\(230\) 0.0902804 + 0.156370i 0.00595291 + 0.0103108i
\(231\) 0 0
\(232\) −1.27195 + 2.20308i −0.0835075 + 0.144639i
\(233\) 3.54955 0.232539 0.116269 0.993218i \(-0.462906\pi\)
0.116269 + 0.993218i \(0.462906\pi\)
\(234\) 0 0
\(235\) 0.888597 0.0579657
\(236\) −1.21334 + 2.10156i −0.0789815 + 0.136800i
\(237\) 0 0
\(238\) −0.0812362 0.140705i −0.00526576 0.00912057i
\(239\) 6.97252 + 12.0768i 0.451015 + 0.781180i 0.998449 0.0556682i \(-0.0177289\pi\)
−0.547435 + 0.836848i \(0.684396\pi\)
\(240\) 0 0
\(241\) −10.5625 + 18.2947i −0.680389 + 1.17847i 0.294473 + 0.955660i \(0.404856\pi\)
−0.974862 + 0.222808i \(0.928478\pi\)
\(242\) 15.0224 0.965674
\(243\) 0 0
\(244\) −1.35671 −0.0868543
\(245\) 0.529002 0.916258i 0.0337967 0.0585376i
\(246\) 0 0
\(247\) 3.55109 + 6.15067i 0.225951 + 0.391358i
\(248\) 1.53781 + 2.66357i 0.0976510 + 0.169137i
\(249\) 0 0
\(250\) −1.15279 + 1.99669i −0.0729086 + 0.126281i
\(251\) −6.98888 −0.441134 −0.220567 0.975372i \(-0.570791\pi\)
−0.220567 + 0.975372i \(0.570791\pi\)
\(252\) 0 0
\(253\) −0.845095 −0.0531307
\(254\) −9.58910 + 16.6088i −0.601673 + 1.04213i
\(255\) 0 0
\(256\) −3.91734 6.78503i −0.244834 0.424065i
\(257\) −0.816339 1.41394i −0.0509218 0.0881992i 0.839441 0.543451i \(-0.182883\pi\)
−0.890363 + 0.455252i \(0.849549\pi\)
\(258\) 0 0
\(259\) −0.0373134 + 0.0646287i −0.00231854 + 0.00401583i
\(260\) −0.124388 −0.00771421
\(261\) 0 0
\(262\) 28.1915 1.74167
\(263\) 8.25965 14.3061i 0.509312 0.882153i −0.490630 0.871368i \(-0.663233\pi\)
0.999942 0.0107856i \(-0.00343324\pi\)
\(264\) 0 0
\(265\) −0.00413653 0.00716468i −0.000254105 0.000440123i
\(266\) −0.128188 0.222028i −0.00785972 0.0136134i
\(267\) 0 0
\(268\) 0.727494 1.26006i 0.0444388 0.0769703i
\(269\) −4.33854 −0.264525 −0.132263 0.991215i \(-0.542224\pi\)
−0.132263 + 0.991215i \(0.542224\pi\)
\(270\) 0 0
\(271\) −18.7332 −1.13796 −0.568980 0.822351i \(-0.692662\pi\)
−0.568980 + 0.822351i \(0.692662\pi\)
\(272\) 4.18189 7.24325i 0.253565 0.439187i
\(273\) 0 0
\(274\) −13.1387 22.7568i −0.793736 1.37479i
\(275\) −2.69156 4.66192i −0.162307 0.281125i
\(276\) 0 0
\(277\) −6.21884 + 10.7713i −0.373654 + 0.647187i −0.990125 0.140190i \(-0.955229\pi\)
0.616471 + 0.787378i \(0.288562\pi\)
\(278\) −2.49707 −0.149765
\(279\) 0 0
\(280\) −0.0222892 −0.00133204
\(281\) −0.0725462 + 0.125654i −0.00432774 + 0.00749587i −0.868181 0.496247i \(-0.834711\pi\)
0.863853 + 0.503743i \(0.168044\pi\)
\(282\) 0 0
\(283\) −4.05504 7.02354i −0.241047 0.417506i 0.719966 0.694010i \(-0.244158\pi\)
−0.961013 + 0.276504i \(0.910824\pi\)
\(284\) 2.49939 + 4.32906i 0.148311 + 0.256883i
\(285\) 0 0
\(286\) 2.02716 3.51114i 0.119869 0.207618i
\(287\) −0.253321 −0.0149531
\(288\) 0 0
\(289\) −13.6332 −0.801955
\(290\) 0.115543 0.200126i 0.00678491 0.0117518i
\(291\) 0 0
\(292\) 0.554870 + 0.961063i 0.0324713 + 0.0562419i
\(293\) 9.46566 + 16.3950i 0.552990 + 0.957806i 0.998057 + 0.0623090i \(0.0198464\pi\)
−0.445067 + 0.895497i \(0.646820\pi\)
\(294\) 0 0
\(295\) −0.547124 + 0.947646i −0.0318548 + 0.0551741i
\(296\) −3.27640 −0.190437
\(297\) 0 0
\(298\) 7.78484 0.450964
\(299\) 0.958314 1.65985i 0.0554207 0.0959915i
\(300\) 0 0
\(301\) −0.215667 0.373547i −0.0124309 0.0215309i
\(302\) −13.4666 23.3249i −0.774917 1.34220i
\(303\) 0 0
\(304\) 6.59890 11.4296i 0.378473 0.655534i
\(305\) −0.611774 −0.0350301
\(306\) 0 0
\(307\) −19.9124 −1.13646 −0.568230 0.822870i \(-0.692372\pi\)
−0.568230 + 0.822870i \(0.692372\pi\)
\(308\) −0.0105079 + 0.0182002i −0.000598744 + 0.00103705i
\(309\) 0 0
\(310\) −0.139694 0.241956i −0.00793406 0.0137422i
\(311\) −13.8828 24.0457i −0.787222 1.36351i −0.927663 0.373419i \(-0.878185\pi\)
0.140441 0.990089i \(-0.455148\pi\)
\(312\) 0 0
\(313\) 4.65543 8.06345i 0.263141 0.455773i −0.703934 0.710265i \(-0.748575\pi\)
0.967075 + 0.254492i \(0.0819083\pi\)
\(314\) −2.25279 −0.127133
\(315\) 0 0
\(316\) 1.07922 0.0607110
\(317\) 6.13808 10.6315i 0.344749 0.597123i −0.640559 0.767909i \(-0.721297\pi\)
0.985308 + 0.170786i \(0.0546307\pi\)
\(318\) 0 0
\(319\) 0.540786 + 0.936668i 0.0302782 + 0.0524434i
\(320\) −0.472285 0.818022i −0.0264015 0.0457288i
\(321\) 0 0
\(322\) −0.0345934 + 0.0599176i −0.00192782 + 0.00333908i
\(323\) 5.31265 0.295604
\(324\) 0 0
\(325\) 12.2086 0.677212
\(326\) −10.9156 + 18.9063i −0.604557 + 1.04712i
\(327\) 0 0
\(328\) −5.56088 9.63173i −0.307048 0.531823i
\(329\) 0.170245 + 0.294873i 0.00938592 + 0.0162569i
\(330\) 0 0
\(331\) 10.8883 18.8590i 0.598472 1.03658i −0.394574 0.918864i \(-0.629108\pi\)
0.993047 0.117721i \(-0.0375587\pi\)
\(332\) 2.71893 0.149221
\(333\) 0 0
\(334\) 21.9126 1.19900
\(335\) 0.328045 0.568191i 0.0179230 0.0310436i
\(336\) 0 0
\(337\) 5.96522 + 10.3321i 0.324946 + 0.562823i 0.981501 0.191455i \(-0.0613205\pi\)
−0.656555 + 0.754278i \(0.727987\pi\)
\(338\) −5.33571 9.24172i −0.290224 0.502684i
\(339\) 0 0
\(340\) −0.0465229 + 0.0805801i −0.00252306 + 0.00437007i
\(341\) 1.30764 0.0708127
\(342\) 0 0
\(343\) 0.811001 0.0437900
\(344\) 9.46861 16.4001i 0.510513 0.884235i
\(345\) 0 0
\(346\) 5.38948 + 9.33485i 0.289740 + 0.501844i
\(347\) 6.07938 + 10.5298i 0.326358 + 0.565269i 0.981786 0.189989i \(-0.0608451\pi\)
−0.655428 + 0.755258i \(0.727512\pi\)
\(348\) 0 0
\(349\) −5.06632 + 8.77513i −0.271194 + 0.469722i −0.969168 0.246401i \(-0.920752\pi\)
0.697974 + 0.716123i \(0.254085\pi\)
\(350\) −0.440710 −0.0235569
\(351\) 0 0
\(352\) −2.03122 −0.108264
\(353\) 6.18340 10.7100i 0.329109 0.570034i −0.653226 0.757163i \(-0.726585\pi\)
0.982335 + 0.187129i \(0.0599183\pi\)
\(354\) 0 0
\(355\) 1.12704 + 1.95208i 0.0598168 + 0.103606i
\(356\) −0.629470 1.09027i −0.0333618 0.0577844i
\(357\) 0 0
\(358\) −8.94375 + 15.4910i −0.472692 + 0.818726i
\(359\) −19.6499 −1.03708 −0.518541 0.855053i \(-0.673525\pi\)
−0.518541 + 0.855053i \(0.673525\pi\)
\(360\) 0 0
\(361\) −10.6168 −0.558779
\(362\) −5.46819 + 9.47119i −0.287402 + 0.497795i
\(363\) 0 0
\(364\) −0.0238313 0.0412771i −0.00124910 0.00216351i
\(365\) 0.250205 + 0.433367i 0.0130963 + 0.0226835i
\(366\) 0 0
\(367\) −4.93147 + 8.54155i −0.257421 + 0.445865i −0.965550 0.260217i \(-0.916206\pi\)
0.708130 + 0.706082i \(0.249539\pi\)
\(368\) −3.56162 −0.185662
\(369\) 0 0
\(370\) 0.297625 0.0154728
\(371\) 0.00158503 0.00274535i 8.22905e−5 0.000142531i
\(372\) 0 0
\(373\) −10.4428 18.0874i −0.540705 0.936529i −0.998864 0.0476584i \(-0.984824\pi\)
0.458158 0.888871i \(-0.348509\pi\)
\(374\) −1.51638 2.62644i −0.0784100 0.135810i
\(375\) 0 0
\(376\) −7.47441 + 12.9461i −0.385463 + 0.667642i
\(377\) −2.45294 −0.126333
\(378\) 0 0
\(379\) −29.3384 −1.50701 −0.753506 0.657442i \(-0.771639\pi\)
−0.753506 + 0.657442i \(0.771639\pi\)
\(380\) −0.0734117 + 0.127153i −0.00376594 + 0.00652280i
\(381\) 0 0
\(382\) 17.4631 + 30.2469i 0.893489 + 1.54757i
\(383\) −16.3193 28.2659i −0.833879 1.44432i −0.894940 0.446187i \(-0.852782\pi\)
0.0610603 0.998134i \(-0.480552\pi\)
\(384\) 0 0
\(385\) −0.00473828 + 0.00820694i −0.000241485 + 0.000418264i
\(386\) −0.867554 −0.0441573
\(387\) 0 0
\(388\) 5.22104 0.265058
\(389\) 16.9326 29.3282i 0.858518 1.48700i −0.0148249 0.999890i \(-0.504719\pi\)
0.873343 0.487106i \(-0.161948\pi\)
\(390\) 0 0
\(391\) −0.716847 1.24162i −0.0362525 0.0627912i
\(392\) 8.89937 + 15.4142i 0.449486 + 0.778533i
\(393\) 0 0
\(394\) −5.99826 + 10.3893i −0.302188 + 0.523405i
\(395\) 0.486649 0.0244860
\(396\) 0 0
\(397\) 30.3217 1.52180 0.760902 0.648867i \(-0.224757\pi\)
0.760902 + 0.648867i \(0.224757\pi\)
\(398\) 12.1680 21.0757i 0.609929 1.05643i
\(399\) 0 0
\(400\) −11.3435 19.6475i −0.567174 0.982374i
\(401\) −17.3296 30.0157i −0.865397 1.49891i −0.866653 0.498912i \(-0.833733\pi\)
0.00125608 0.999999i \(-0.499600\pi\)
\(402\) 0 0
\(403\) −1.48283 + 2.56833i −0.0738649 + 0.127938i
\(404\) 4.02137 0.200071
\(405\) 0 0
\(406\) 0.0885469 0.00439451
\(407\) −0.696502 + 1.20638i −0.0345243 + 0.0597979i
\(408\) 0 0
\(409\) 6.67231 + 11.5568i 0.329925 + 0.571446i 0.982497 0.186281i \(-0.0596433\pi\)
−0.652572 + 0.757727i \(0.726310\pi\)
\(410\) 0.505146 + 0.874939i 0.0249474 + 0.0432102i
\(411\) 0 0
\(412\) −1.83461 + 3.17763i −0.0903846 + 0.156551i
\(413\) −0.419291 −0.0206320
\(414\) 0 0
\(415\) 1.22604 0.0601837
\(416\) 2.30335 3.98951i 0.112931 0.195602i
\(417\) 0 0
\(418\) −2.39280 4.14444i −0.117035 0.202711i
\(419\) 2.20776 + 3.82395i 0.107856 + 0.186812i 0.914902 0.403677i \(-0.132268\pi\)
−0.807045 + 0.590489i \(0.798935\pi\)
\(420\) 0 0
\(421\) −8.56811 + 14.8404i −0.417584 + 0.723277i −0.995696 0.0926806i \(-0.970456\pi\)
0.578112 + 0.815958i \(0.303790\pi\)
\(422\) −30.7359 −1.49620
\(423\) 0 0
\(424\) 0.139177 0.00675905
\(425\) 4.56621 7.90890i 0.221494 0.383638i
\(426\) 0 0
\(427\) −0.117209 0.203012i −0.00567214 0.00982444i
\(428\) 0.647827 + 1.12207i 0.0313139 + 0.0542373i
\(429\) 0 0
\(430\) −0.860122 + 1.48977i −0.0414787 + 0.0718433i
\(431\) −12.9834 −0.625388 −0.312694 0.949854i \(-0.601231\pi\)
−0.312694 + 0.949854i \(0.601231\pi\)
\(432\) 0 0
\(433\) 24.6959 1.18681 0.593404 0.804905i \(-0.297784\pi\)
0.593404 + 0.804905i \(0.297784\pi\)
\(434\) 0.0535274 0.0927123i 0.00256940 0.00445033i
\(435\) 0 0
\(436\) 2.56712 + 4.44639i 0.122943 + 0.212943i
\(437\) −1.13116 1.95923i −0.0541109 0.0937227i
\(438\) 0 0
\(439\) 17.5325 30.3672i 0.836781 1.44935i −0.0557905 0.998442i \(-0.517768\pi\)
0.892572 0.450905i \(-0.148899\pi\)
\(440\) −0.416057 −0.0198347
\(441\) 0 0
\(442\) 6.87811 0.327158
\(443\) 1.72283 2.98404i 0.0818544 0.141776i −0.822192 0.569210i \(-0.807249\pi\)
0.904046 + 0.427434i \(0.140582\pi\)
\(444\) 0 0
\(445\) −0.283844 0.491632i −0.0134555 0.0233056i
\(446\) −18.6853 32.3639i −0.884776 1.53248i
\(447\) 0 0
\(448\) 0.180969 0.313448i 0.00854999 0.0148090i
\(449\) 2.91179 0.137416 0.0687079 0.997637i \(-0.478112\pi\)
0.0687079 + 0.997637i \(0.478112\pi\)
\(450\) 0 0
\(451\) −4.72856 −0.222659
\(452\) 1.53771 2.66338i 0.0723276 0.125275i
\(453\) 0 0
\(454\) −21.7242 37.6273i −1.01957 1.76594i
\(455\) −0.0107461 0.0186129i −0.000503787 0.000872585i
\(456\) 0 0
\(457\) −14.4898 + 25.0971i −0.677805 + 1.17399i 0.297835 + 0.954617i \(0.403735\pi\)
−0.975640 + 0.219376i \(0.929598\pi\)
\(458\) 21.9343 1.02492
\(459\) 0 0
\(460\) 0.0396224 0.00184741
\(461\) −10.8729 + 18.8324i −0.506402 + 0.877114i 0.493570 + 0.869706i \(0.335692\pi\)
−0.999973 + 0.00740849i \(0.997642\pi\)
\(462\) 0 0
\(463\) −10.4419 18.0860i −0.485278 0.840526i 0.514579 0.857443i \(-0.327948\pi\)
−0.999857 + 0.0169169i \(0.994615\pi\)
\(464\) 2.27912 + 3.94755i 0.105805 + 0.183260i
\(465\) 0 0
\(466\) 2.71218 4.69764i 0.125639 0.217614i
\(467\) 18.3950 0.851221 0.425610 0.904906i \(-0.360059\pi\)
0.425610 + 0.904906i \(0.360059\pi\)
\(468\) 0 0
\(469\) 0.251399 0.0116085
\(470\) 0.678970 1.17601i 0.0313185 0.0542453i
\(471\) 0 0
\(472\) −9.20424 15.9422i −0.423659 0.733799i
\(473\) −4.02570 6.97272i −0.185102 0.320606i
\(474\) 0 0
\(475\) 7.20533 12.4800i 0.330603 0.572622i
\(476\) −0.0356531 −0.00163416
\(477\) 0 0
\(478\) 21.3106 0.974723
\(479\) −4.65458 + 8.06197i −0.212673 + 0.368361i −0.952550 0.304381i \(-0.901550\pi\)
0.739877 + 0.672742i \(0.234884\pi\)
\(480\) 0 0
\(481\) −1.57963 2.73599i −0.0720247 0.124751i
\(482\) 16.1414 + 27.9577i 0.735221 + 1.27344i
\(483\) 0 0
\(484\) 1.64826 2.85487i 0.0749209 0.129767i
\(485\) 2.35430 0.106903
\(486\) 0 0
\(487\) 20.2090 0.915755 0.457877 0.889015i \(-0.348610\pi\)
0.457877 + 0.889015i \(0.348610\pi\)
\(488\) 5.14592 8.91299i 0.232945 0.403472i
\(489\) 0 0
\(490\) −0.808412 1.40021i −0.0365203 0.0632551i
\(491\) −4.75578 8.23725i −0.214625 0.371742i 0.738531 0.674219i \(-0.235520\pi\)
−0.953157 + 0.302477i \(0.902186\pi\)
\(492\) 0 0
\(493\) −0.917437 + 1.58905i −0.0413193 + 0.0715671i
\(494\) 10.8534 0.488320
\(495\) 0 0
\(496\) 5.51099 0.247451
\(497\) −0.431855 + 0.747995i −0.0193713 + 0.0335521i
\(498\) 0 0
\(499\) 2.29072 + 3.96765i 0.102547 + 0.177616i 0.912733 0.408556i \(-0.133968\pi\)
−0.810186 + 0.586172i \(0.800634\pi\)
\(500\) 0.252969 + 0.438154i 0.0113131 + 0.0195949i
\(501\) 0 0
\(502\) −5.34015 + 9.24941i −0.238342 + 0.412821i
\(503\) −8.85873 −0.394991 −0.197496 0.980304i \(-0.563281\pi\)
−0.197496 + 0.980304i \(0.563281\pi\)
\(504\) 0 0
\(505\) 1.81334 0.0806924
\(506\) −0.645730 + 1.11844i −0.0287062 + 0.0497206i
\(507\) 0 0
\(508\) 2.10424 + 3.64465i 0.0933606 + 0.161705i
\(509\) 13.8720 + 24.0270i 0.614865 + 1.06498i 0.990408 + 0.138173i \(0.0441229\pi\)
−0.375543 + 0.926805i \(0.622544\pi\)
\(510\) 0 0
\(511\) −0.0958728 + 0.166057i −0.00424116 + 0.00734591i
\(512\) 14.6309 0.646599
\(513\) 0 0
\(514\) −2.49503 −0.110051
\(515\) −0.827270 + 1.43287i −0.0364539 + 0.0631399i
\(516\) 0 0
\(517\) 3.17784 + 5.50418i 0.139761 + 0.242074i
\(518\) 0.0570217 + 0.0987645i 0.00250539 + 0.00433946i
\(519\) 0 0
\(520\) 0.471796 0.817175i 0.0206896 0.0358355i
\(521\) 25.4524 1.11509 0.557546 0.830146i \(-0.311743\pi\)
0.557546 + 0.830146i \(0.311743\pi\)
\(522\) 0 0
\(523\) 25.8717 1.13129 0.565646 0.824648i \(-0.308627\pi\)
0.565646 + 0.824648i \(0.308627\pi\)
\(524\) 3.09318 5.35755i 0.135126 0.234045i
\(525\) 0 0
\(526\) −12.6223 21.8624i −0.550357 0.953246i
\(527\) 1.10920 + 1.92119i 0.0483175 + 0.0836883i
\(528\) 0 0
\(529\) 11.1947 19.3899i 0.486728 0.843037i
\(530\) −0.0126428 −0.000549167
\(531\) 0 0
\(532\) −0.0562595 −0.00243916
\(533\) 5.36205 9.28735i 0.232256 0.402280i
\(534\) 0 0
\(535\) 0.292121 + 0.505969i 0.0126295 + 0.0218750i
\(536\) 5.51869 + 9.55865i 0.238371 + 0.412871i
\(537\) 0 0
\(538\) −3.31504 + 5.74182i −0.142922 + 0.247547i
\(539\) 7.56737 0.325950
\(540\) 0 0
\(541\) 4.29297 0.184569 0.0922845 0.995733i \(-0.470583\pi\)
0.0922845 + 0.995733i \(0.470583\pi\)
\(542\) −14.3139 + 24.7924i −0.614834 + 1.06492i
\(543\) 0 0
\(544\) −1.72297 2.98427i −0.0738718 0.127950i
\(545\) 1.15758 + 2.00499i 0.0495853 + 0.0858843i
\(546\) 0 0
\(547\) 9.26196 16.0422i 0.396013 0.685914i −0.597217 0.802080i \(-0.703727\pi\)
0.993230 + 0.116165i \(0.0370602\pi\)
\(548\) −5.76632 −0.246325
\(549\) 0 0
\(550\) −8.22641 −0.350775
\(551\) −1.44769 + 2.50747i −0.0616735 + 0.106822i
\(552\) 0 0
\(553\) 0.0932365 + 0.161490i 0.00396482 + 0.00686727i
\(554\) 9.50353 + 16.4606i 0.403766 + 0.699344i
\(555\) 0 0
\(556\) −0.273980 + 0.474547i −0.0116193 + 0.0201253i
\(557\) 25.5627 1.08313 0.541564 0.840660i \(-0.317833\pi\)
0.541564 + 0.840660i \(0.317833\pi\)
\(558\) 0 0
\(559\) 18.2601 0.772321
\(560\) −0.0199693 + 0.0345878i −0.000843855 + 0.00146160i
\(561\) 0 0
\(562\) 0.110864 + 0.192022i 0.00467651 + 0.00809995i
\(563\) −18.8929 32.7235i −0.796242 1.37913i −0.922047 0.387077i \(-0.873485\pi\)
0.125805 0.992055i \(-0.459849\pi\)
\(564\) 0 0
\(565\) 0.693390 1.20099i 0.0291711 0.0505259i
\(566\) −12.3937 −0.520946
\(567\) 0 0
\(568\) −37.9201 −1.59109
\(569\) −18.7639 + 32.5000i −0.786622 + 1.36247i 0.141403 + 0.989952i \(0.454839\pi\)
−0.928025 + 0.372517i \(0.878495\pi\)
\(570\) 0 0
\(571\) 5.07055 + 8.78244i 0.212196 + 0.367534i 0.952401 0.304847i \(-0.0986052\pi\)
−0.740206 + 0.672381i \(0.765272\pi\)
\(572\) −0.444842 0.770489i −0.0185998 0.0322158i
\(573\) 0 0
\(574\) −0.193561 + 0.335257i −0.00807907 + 0.0139934i
\(575\) −3.88893 −0.162179
\(576\) 0 0
\(577\) 42.3619 1.76355 0.881775 0.471670i \(-0.156349\pi\)
0.881775 + 0.471670i \(0.156349\pi\)
\(578\) −10.4170 + 18.0429i −0.433292 + 0.750484i
\(579\) 0 0
\(580\) −0.0253548 0.0439159i −0.00105280 0.00182351i
\(581\) 0.234895 + 0.406849i 0.00974507 + 0.0168790i
\(582\) 0 0
\(583\) 0.0295865 0.0512454i 0.00122535 0.00212237i
\(584\) −8.41836 −0.348354
\(585\) 0 0
\(586\) 28.9305 1.19511
\(587\) −20.6611 + 35.7861i −0.852775 + 1.47705i 0.0259199 + 0.999664i \(0.491749\pi\)
−0.878694 + 0.477385i \(0.841585\pi\)
\(588\) 0 0
\(589\) 1.75028 + 3.03158i 0.0721191 + 0.124914i
\(590\) 0.836106 + 1.44818i 0.0344219 + 0.0596205i
\(591\) 0 0
\(592\) −2.93538 + 5.08422i −0.120643 + 0.208960i
\(593\) 27.3325 1.12241 0.561206 0.827676i \(-0.310338\pi\)
0.561206 + 0.827676i \(0.310338\pi\)
\(594\) 0 0
\(595\) −0.0160769 −0.000659088
\(596\) 0.854156 1.47944i 0.0349876 0.0606003i
\(597\) 0 0
\(598\) −1.46448 2.53655i −0.0598870 0.103727i
\(599\) −8.29376 14.3652i −0.338874 0.586947i 0.645347 0.763889i \(-0.276713\pi\)
−0.984221 + 0.176943i \(0.943379\pi\)
\(600\) 0 0
\(601\) 14.9920 25.9669i 0.611536 1.05921i −0.379446 0.925214i \(-0.623885\pi\)
0.990982 0.133997i \(-0.0427813\pi\)
\(602\) −0.659159 −0.0268653
\(603\) 0 0
\(604\) −5.91025 −0.240485
\(605\) 0.743242 1.28733i 0.0302171 0.0523375i
\(606\) 0 0
\(607\) 16.3214 + 28.2694i 0.662464 + 1.14742i 0.979966 + 0.199164i \(0.0638225\pi\)
−0.317502 + 0.948257i \(0.602844\pi\)
\(608\) −2.71880 4.70909i −0.110262 0.190979i
\(609\) 0 0
\(610\) −0.467451 + 0.809649i −0.0189266 + 0.0327817i
\(611\) −14.4143 −0.583141
\(612\) 0 0
\(613\) 25.4682 1.02865 0.514325 0.857596i \(-0.328043\pi\)
0.514325 + 0.857596i \(0.328043\pi\)
\(614\) −15.2149 + 26.3530i −0.614023 + 1.06352i
\(615\) 0 0
\(616\) −0.0797118 0.138065i −0.00321168 0.00556279i
\(617\) 2.79406 + 4.83945i 0.112484 + 0.194829i 0.916771 0.399412i \(-0.130786\pi\)
−0.804287 + 0.594241i \(0.797452\pi\)
\(618\) 0 0
\(619\) −17.9962 + 31.1704i −0.723329 + 1.25284i 0.236329 + 0.971673i \(0.424056\pi\)
−0.959658 + 0.281169i \(0.909278\pi\)
\(620\) −0.0613090 −0.00246223
\(621\) 0 0
\(622\) −42.4310 −1.70133
\(623\) 0.108763 0.188382i 0.00435748 0.00754738i
\(624\) 0 0
\(625\) −12.3288 21.3540i −0.493151 0.854162i
\(626\) −7.11436 12.3224i −0.284347 0.492503i
\(627\) 0 0
\(628\) −0.247178 + 0.428124i −0.00986346 + 0.0170840i
\(629\) −2.36322 −0.0942276
\(630\) 0 0
\(631\) −1.71845 −0.0684105 −0.0342053 0.999415i \(-0.510890\pi\)
−0.0342053 + 0.999415i \(0.510890\pi\)
\(632\) −4.09343 + 7.09003i −0.162828 + 0.282026i
\(633\) 0 0
\(634\) −9.38012 16.2468i −0.372532 0.645244i
\(635\) 0.948854 + 1.64346i 0.0376541 + 0.0652189i
\(636\) 0 0
\(637\) −8.58118 + 14.8630i −0.339999 + 0.588895i
\(638\) 1.65284 0.0654366
\(639\) 0 0
\(640\) −2.01145 −0.0795096
\(641\) 2.41368 4.18062i 0.0953347 0.165124i −0.814414 0.580285i \(-0.802941\pi\)
0.909748 + 0.415160i \(0.136275\pi\)
\(642\) 0 0
\(643\) 16.5082 + 28.5930i 0.651020 + 1.12760i 0.982876 + 0.184269i \(0.0589919\pi\)
−0.331856 + 0.943330i \(0.607675\pi\)
\(644\) 0.00759122 + 0.0131484i 0.000299136 + 0.000518118i
\(645\) 0 0
\(646\) 4.05935 7.03100i 0.159713 0.276631i
\(647\) 7.25011 0.285031 0.142516 0.989793i \(-0.454481\pi\)
0.142516 + 0.989793i \(0.454481\pi\)
\(648\) 0 0
\(649\) −7.82660 −0.307221
\(650\) 9.32851 16.1575i 0.365894 0.633747i
\(651\) 0 0
\(652\) 2.39532 + 4.14881i 0.0938079 + 0.162480i
\(653\) 20.1301 + 34.8663i 0.787751 + 1.36442i 0.927342 + 0.374216i \(0.122088\pi\)
−0.139591 + 0.990209i \(0.544579\pi\)
\(654\) 0 0
\(655\) 1.39479 2.41585i 0.0544990 0.0943951i
\(656\) −19.9283 −0.778070
\(657\) 0 0
\(658\) 0.520332 0.0202847
\(659\) 17.2360 29.8536i 0.671418 1.16293i −0.306085 0.952004i \(-0.599019\pi\)
0.977502 0.210925i \(-0.0676476\pi\)
\(660\) 0 0
\(661\) 15.9747 + 27.6690i 0.621344 + 1.07620i 0.989236 + 0.146330i \(0.0467463\pi\)
−0.367892 + 0.929869i \(0.619920\pi\)
\(662\) −16.6392 28.8200i −0.646703 1.12012i
\(663\) 0 0
\(664\) −10.3128 + 17.8622i −0.400213 + 0.693189i
\(665\) −0.0253688 −0.000983760
\(666\) 0 0
\(667\) 0.781359 0.0302543
\(668\) 2.40426 4.16430i 0.0930235 0.161121i
\(669\) 0 0
\(670\) −0.501314 0.868301i −0.0193674 0.0335454i
\(671\) −2.18785 3.78948i −0.0844612 0.146291i
\(672\) 0 0
\(673\) −11.4286 + 19.7948i −0.440538 + 0.763035i −0.997729 0.0673494i \(-0.978546\pi\)
0.557191 + 0.830384i \(0.311879\pi\)
\(674\) 18.2319 0.702267
\(675\) 0 0
\(676\) −2.34175 −0.0900672
\(677\) −21.3136 + 36.9163i −0.819150 + 1.41881i 0.0871600 + 0.996194i \(0.472221\pi\)
−0.906310 + 0.422614i \(0.861112\pi\)
\(678\) 0 0
\(679\) 0.451057 + 0.781254i 0.0173100 + 0.0299818i
\(680\) −0.352918 0.611271i −0.0135338 0.0234412i
\(681\) 0 0
\(682\) 0.999157 1.73059i 0.0382597 0.0662678i
\(683\) 41.5204 1.58873 0.794367 0.607438i \(-0.207803\pi\)
0.794367 + 0.607438i \(0.207803\pi\)
\(684\) 0 0
\(685\) −2.60018 −0.0993478
\(686\) 0.619680 1.07332i 0.0236595 0.0409794i
\(687\) 0 0
\(688\) −16.9662 29.3862i −0.646829 1.12034i
\(689\) 0.0671006 + 0.116222i 0.00255633 + 0.00442769i
\(690\) 0 0
\(691\) 8.11414 14.0541i 0.308676 0.534643i −0.669397 0.742905i \(-0.733447\pi\)
0.978073 + 0.208262i \(0.0667806\pi\)
\(692\) 2.36534 0.0899169
\(693\) 0 0
\(694\) 18.5808 0.705318
\(695\) −0.123544 + 0.213985i −0.00468631 + 0.00811693i
\(696\) 0 0
\(697\) −4.01098 6.94722i −0.151927 0.263145i
\(698\) 7.74227 + 13.4100i 0.293049 + 0.507576i
\(699\) 0 0
\(700\) −0.0483549 + 0.0837531i −0.00182764 + 0.00316557i
\(701\) 48.6772 1.83851 0.919257 0.393658i \(-0.128791\pi\)
0.919257 + 0.393658i \(0.128791\pi\)
\(702\) 0 0
\(703\) −3.72908 −0.140645
\(704\) 3.37802 5.85090i 0.127314 0.220514i
\(705\) 0 0
\(706\) −9.44937 16.3668i −0.355632 0.615972i
\(707\) 0.347415 + 0.601740i 0.0130659 + 0.0226308i
\(708\) 0 0
\(709\) −25.5541 + 44.2609i −0.959703 + 1.66225i −0.236484 + 0.971635i \(0.575995\pi\)
−0.723219 + 0.690619i \(0.757338\pi\)
\(710\) 3.44464 0.129275
\(711\) 0 0
\(712\) 9.55017 0.357908
\(713\) 0.472339 0.818115i 0.0176892 0.0306386i
\(714\) 0 0
\(715\) −0.200590 0.347433i −0.00750165 0.0129932i
\(716\) 1.96262 + 3.39936i 0.0733467 + 0.127040i
\(717\) 0 0
\(718\) −15.0143 + 26.0056i −0.560330 + 0.970520i
\(719\) −33.1064 −1.23466 −0.617330 0.786704i \(-0.711786\pi\)
−0.617330 + 0.786704i \(0.711786\pi\)
\(720\) 0 0
\(721\) −0.633983 −0.0236107
\(722\) −8.11222 + 14.0508i −0.301906 + 0.522916i
\(723\) 0 0
\(724\) 1.19995 + 2.07837i 0.0445956 + 0.0772419i
\(725\) 2.48857 + 4.31032i 0.0924231 + 0.160081i
\(726\) 0 0
\(727\) 7.51504 13.0164i 0.278717 0.482752i −0.692349 0.721563i \(-0.743424\pi\)
0.971066 + 0.238810i \(0.0767574\pi\)
\(728\) 0.361564 0.0134004
\(729\) 0 0
\(730\) 0.764717 0.0283035
\(731\) 6.82956 11.8292i 0.252601 0.437517i
\(732\) 0 0
\(733\) −18.5309 32.0965i −0.684454 1.18551i −0.973608 0.228227i \(-0.926707\pi\)
0.289153 0.957283i \(-0.406626\pi\)
\(734\) 7.53619 + 13.0531i 0.278166 + 0.481797i
\(735\) 0 0
\(736\) −0.733706 + 1.27082i −0.0270448 + 0.0468429i
\(737\) 4.69269 0.172857
\(738\) 0 0
\(739\) −32.1984 −1.18444 −0.592219 0.805777i \(-0.701748\pi\)
−0.592219 + 0.805777i \(0.701748\pi\)
\(740\) 0.0326556 0.0565612i 0.00120044 0.00207923i
\(741\) 0 0
\(742\) −0.00242221 0.00419540i −8.89222e−5 0.000154018i
\(743\) −4.46821 7.73916i −0.163923 0.283922i 0.772350 0.635198i \(-0.219081\pi\)
−0.936272 + 0.351275i \(0.885748\pi\)
\(744\) 0 0
\(745\) 0.385160 0.667117i 0.0141112 0.0244413i
\(746\) −31.9169 −1.16856
\(747\) 0 0
\(748\) −0.665510 −0.0243335
\(749\) −0.111934 + 0.193876i −0.00408999 + 0.00708408i
\(750\) 0 0
\(751\) 0.386579 + 0.669575i 0.0141065 + 0.0244331i 0.872992 0.487734i \(-0.162176\pi\)
−0.858886 + 0.512167i \(0.828843\pi\)
\(752\) 13.3929 + 23.1971i 0.488388 + 0.845913i
\(753\) 0 0
\(754\) −1.87427 + 3.24634i −0.0682570 + 0.118225i
\(755\) −2.66508 −0.0969922
\(756\) 0 0
\(757\) −36.5342 −1.32786 −0.663929 0.747796i \(-0.731112\pi\)
−0.663929 + 0.747796i \(0.731112\pi\)
\(758\) −22.4172 + 38.8278i −0.814230 + 1.41029i
\(759\) 0 0
\(760\) −0.556893 0.964567i −0.0202006 0.0349885i
\(761\) 3.25115 + 5.63116i 0.117854 + 0.204130i 0.918917 0.394451i \(-0.129065\pi\)
−0.801063 + 0.598580i \(0.795732\pi\)
\(762\) 0 0
\(763\) −0.443559 + 0.768267i −0.0160579 + 0.0278131i
\(764\) 7.66423 0.277282
\(765\) 0 0
\(766\) −49.8779 −1.80216
\(767\) 8.87514 15.3722i 0.320463 0.555058i
\(768\) 0 0
\(769\) 18.0717 + 31.3012i 0.651683 + 1.12875i 0.982714 + 0.185129i \(0.0592703\pi\)
−0.331031 + 0.943620i \(0.607396\pi\)
\(770\) 0.00724096 + 0.0125417i 0.000260946 + 0.000451972i
\(771\) 0 0
\(772\) −0.0951884 + 0.164871i −0.00342591 + 0.00593384i
\(773\) 3.21379 0.115592 0.0577959 0.998328i \(-0.481593\pi\)
0.0577959 + 0.998328i \(0.481593\pi\)
\(774\) 0 0
\(775\) 6.01745 0.216153
\(776\) −19.8031 + 34.3000i −0.710890 + 1.23130i
\(777\) 0 0
\(778\) −25.8762 44.8188i −0.927705 1.60683i
\(779\) −6.32920 10.9625i −0.226767 0.392772i
\(780\) 0 0
\(781\) −8.06112 + 13.9623i −0.288450 + 0.499609i
\(782\) −2.19095 −0.0783482
\(783\) 0 0
\(784\) 31.8923 1.13901
\(785\) −0.111459 + 0.193052i −0.00397813 + 0.00689032i
\(786\) 0 0
\(787\) 14.5789 + 25.2513i 0.519680 + 0.900112i 0.999738 + 0.0228755i \(0.00728213\pi\)
−0.480058 + 0.877237i \(0.659385\pi\)
\(788\) 1.31626 + 2.27984i 0.0468900 + 0.0812158i
\(789\) 0 0
\(790\) 0.371844 0.644053i 0.0132296 0.0229144i
\(791\) 0.531383 0.0188938
\(792\) 0 0
\(793\) 9.92386 0.352407
\(794\) 23.1686 40.1291i 0.822222 1.42413i
\(795\) 0 0
\(796\) −2.67017 4.62487i −0.0946416 0.163924i
\(797\) 8.17998 + 14.1681i 0.289750 + 0.501862i 0.973750 0.227620i \(-0.0730945\pi\)
−0.684000 + 0.729482i \(0.739761\pi\)
\(798\) 0 0
\(799\) −5.39117 + 9.33779i −0.190726 + 0.330347i
\(800\) −9.34719 −0.330473
\(801\) 0 0
\(802\) −52.9655 −1.87028
\(803\) −1.78959 + 3.09966i −0.0631532 + 0.109385i
\(804\) 0 0
\(805\) 0.00342307 + 0.00592893i 0.000120647 + 0.000208967i
\(806\) 2.26603 + 3.92488i 0.0798176 + 0.138248i
\(807\) 0 0
\(808\) −15.2528 + 26.4187i −0.536593 + 0.929406i
\(809\) −0.968702 −0.0340577 −0.0170289 0.999855i \(-0.505421\pi\)
−0.0170289 + 0.999855i \(0.505421\pi\)
\(810\) 0 0
\(811\) −32.8852 −1.15476 −0.577378 0.816477i \(-0.695924\pi\)
−0.577378 + 0.816477i \(0.695924\pi\)
\(812\) 0.00971541 0.0168276i 0.000340944 0.000590532i
\(813\) 0 0
\(814\) 1.06438 + 1.84356i 0.0373066 + 0.0646169i
\(815\) 1.08011 + 1.87080i 0.0378346 + 0.0655314i
\(816\) 0 0
\(817\) 10.7768 18.6660i 0.377034 0.653042i
\(818\) 20.3930 0.713026
\(819\) 0 0
\(820\) 0.221700 0.00774208
\(821\) −6.92247 + 11.9901i −0.241596 + 0.418456i −0.961169 0.275960i \(-0.911004\pi\)
0.719573 + 0.694417i \(0.244337\pi\)
\(822\) 0 0
\(823\) −9.93757 17.2124i −0.346402 0.599986i 0.639206 0.769036i \(-0.279263\pi\)
−0.985607 + 0.169050i \(0.945930\pi\)
\(824\) −13.9171 24.1051i −0.484826 0.839743i
\(825\) 0 0
\(826\) −0.320377 + 0.554910i −0.0111473 + 0.0193078i
\(827\) −24.5929 −0.855181 −0.427590 0.903973i \(-0.640637\pi\)
−0.427590 + 0.903973i \(0.640637\pi\)
\(828\) 0 0
\(829\) −44.4191 −1.54274 −0.771370 0.636387i \(-0.780428\pi\)
−0.771370 + 0.636387i \(0.780428\pi\)
\(830\) 0.936804 1.62259i 0.0325169 0.0563210i
\(831\) 0 0
\(832\) 7.66115 + 13.2695i 0.265603 + 0.460037i
\(833\) 6.41898 + 11.1180i 0.222404 + 0.385216i
\(834\) 0 0
\(835\) 1.08414 1.87779i 0.0375182 0.0649835i
\(836\) −1.05015 −0.0363203
\(837\) 0 0
\(838\) 6.74773 0.233096
\(839\) −9.48394 + 16.4267i −0.327422 + 0.567112i −0.982000 0.188883i \(-0.939513\pi\)
0.654578 + 0.755995i \(0.272847\pi\)
\(840\) 0 0
\(841\) −0.500000 0.866025i −0.0172414 0.0298629i
\(842\) 13.0936 + 22.6789i 0.451237 + 0.781565i
\(843\) 0 0
\(844\) −3.37236 + 5.84110i −0.116081 + 0.201059i
\(845\) −1.05595 −0.0363259
\(846\) 0 0
\(847\) 0.569587 0.0195712
\(848\) 0.124691 0.215971i 0.00428191 0.00741649i
\(849\) 0 0
\(850\) −6.97800 12.0863i −0.239344 0.414555i
\(851\) 0.503173 + 0.871521i 0.0172485 + 0.0298754i
\(852\) 0 0
\(853\) 3.09105 5.35385i 0.105835 0.183312i −0.808244 0.588848i \(-0.799582\pi\)
0.914079 + 0.405536i \(0.132915\pi\)
\(854\) −0.358234 −0.0122585
\(855\) 0 0
\(856\) −9.82869 −0.335938
\(857\) 13.3423 23.1095i 0.455763 0.789404i −0.542969 0.839753i \(-0.682700\pi\)
0.998732 + 0.0503484i \(0.0160332\pi\)
\(858\) 0 0
\(859\) 21.8620 + 37.8661i 0.745922 + 1.29198i 0.949763 + 0.312971i \(0.101324\pi\)
−0.203841 + 0.979004i \(0.565342\pi\)
\(860\) 0.188746 + 0.326917i 0.00643618 + 0.0111478i
\(861\) 0 0
\(862\) −9.92051 + 17.1828i −0.337894 + 0.585250i
\(863\) 32.7025 1.11320 0.556602 0.830779i \(-0.312105\pi\)
0.556602 + 0.830779i \(0.312105\pi\)
\(864\) 0 0
\(865\) 1.06659 0.0362652
\(866\) 18.8699 32.6837i 0.641226 1.11064i
\(867\) 0 0
\(868\) −0.0117461 0.0203449i −0.000398689 0.000690550i
\(869\) 1.74038 + 3.01442i 0.0590382 + 0.102257i
\(870\) 0 0
\(871\) −5.32137 + 9.21689i −0.180308 + 0.312302i
\(872\) −38.9478 −1.31894
\(873\) 0 0
\(874\) −3.45725 −0.116943
\(875\) −0.0437090 + 0.0757062i −0.00147763 + 0.00255934i
\(876\) 0 0
\(877\) 11.5542 + 20.0125i 0.390159 + 0.675774i 0.992470 0.122487i \(-0.0390869\pi\)
−0.602312 + 0.798261i \(0.705754\pi\)
\(878\) −26.7929 46.4067i −0.904217 1.56615i
\(879\) 0 0
\(880\) −0.372752 + 0.645625i −0.0125655 + 0.0217640i
\(881\) −42.3370 −1.42637 −0.713184 0.700976i \(-0.752748\pi\)
−0.713184 + 0.700976i \(0.752748\pi\)
\(882\) 0 0
\(883\) −40.9401 −1.37774 −0.688872 0.724883i \(-0.741894\pi\)
−0.688872 + 0.724883i \(0.741894\pi\)
\(884\) 0.754670 1.30713i 0.0253823 0.0439634i
\(885\) 0 0
\(886\) −2.63281 4.56016i −0.0884509 0.153202i
\(887\) 5.97110 + 10.3423i 0.200490 + 0.347259i 0.948686 0.316218i \(-0.102413\pi\)
−0.748196 + 0.663477i \(0.769080\pi\)
\(888\) 0 0
\(889\) −0.363580 + 0.629739i −0.0121941 + 0.0211208i
\(890\) −0.867531 −0.0290797
\(891\) 0 0
\(892\) −8.20065 −0.274578
\(893\) −8.50710 + 14.7347i −0.284679 + 0.493079i
\(894\) 0 0
\(895\) 0.884996 + 1.53286i 0.0295822 + 0.0512378i
\(896\) −0.385372 0.667484i −0.0128744 0.0222991i
\(897\) 0 0
\(898\) 2.22487 3.85360i 0.0742450 0.128596i
\(899\) −1.20902 −0.0403230
\(900\) 0 0
\(901\) 0.100386 0.00334436
\(902\) −3.61306 + 6.25800i −0.120302 + 0.208369i
\(903\) 0 0
\(904\) 11.6649 + 20.2041i 0.387967 + 0.671979i
\(905\) 0.541086 + 0.937188i 0.0179863 + 0.0311532i
\(906\) 0 0
\(907\) −8.48976 + 14.7047i −0.281898 + 0.488261i −0.971852 0.235592i \(-0.924297\pi\)
0.689954 + 0.723853i \(0.257631\pi\)
\(908\) −9.53434 −0.316408
\(909\) 0 0
\(910\) −0.0328442 −0.00108877
\(911\) 14.5434 25.1899i 0.481844 0.834578i −0.517939 0.855417i \(-0.673301\pi\)
0.999783 + 0.0208399i \(0.00663401\pi\)
\(912\) 0 0
\(913\) 4.38461 + 7.59436i 0.145109 + 0.251337i
\(914\) 22.1431 + 38.3530i 0.732429 + 1.26860i
\(915\) 0 0
\(916\) 2.40664 4.16843i 0.0795177 0.137729i
\(917\) 1.06891 0.0352984
\(918\) 0 0
\(919\) 56.7951 1.87350 0.936749 0.350002i \(-0.113819\pi\)
0.936749 + 0.350002i \(0.113819\pi\)
\(920\) −0.150286 + 0.260302i −0.00495477 + 0.00858192i
\(921\) 0 0
\(922\) 16.6158 + 28.7794i 0.547213 + 0.947800i
\(923\) −18.2822 31.6656i −0.601765 1.04229i
\(924\) 0 0
\(925\) −3.20513 + 5.55146i −0.105384 + 0.182531i
\(926\) −31.9144 −1.04877
\(927\) 0 0
\(928\) 1.87803 0.0616493
\(929\) −2.61328 + 4.52634i −0.0857391 + 0.148504i −0.905706 0.423907i \(-0.860658\pi\)
0.819967 + 0.572411i \(0.193992\pi\)
\(930\) 0 0
\(931\) 10.1289 + 17.5439i 0.331963 + 0.574977i
\(932\) −0.595164 1.03085i −0.0194952 0.0337667i
\(933\) 0 0
\(934\) 14.0555 24.3448i 0.459910 0.796588i
\(935\) −0.300095 −0.00981416
\(936\) 0 0
\(937\) 24.4385 0.798372 0.399186 0.916870i \(-0.369293\pi\)
0.399186 + 0.916870i \(0.369293\pi\)
\(938\) 0.192092 0.332714i 0.00627203 0.0108635i
\(939\) 0 0
\(940\) −0.148994 0.258065i −0.00485964 0.00841714i
\(941\) −10.9756 19.0102i −0.357793 0.619716i 0.629799 0.776758i \(-0.283137\pi\)
−0.987592 + 0.157043i \(0.949804\pi\)
\(942\) 0 0
\(943\) −1.70803 + 2.95839i −0.0556210 + 0.0963383i
\(944\) −32.9849 −1.07357
\(945\) 0 0
\(946\) −12.3040 −0.400039
\(947\) 1.14714 1.98691i 0.0372771 0.0645659i −0.846785 0.531935i \(-0.821465\pi\)
0.884062 + 0.467370i \(0.154798\pi\)
\(948\) 0 0
\(949\) −4.05868 7.02984i −0.131750 0.228198i
\(950\) −11.0111 19.0717i −0.357246 0.618769i
\(951\) 0 0
\(952\) 0.135230 0.234226i 0.00438284 0.00759129i
\(953\) −3.38896 −0.109779 −0.0548896 0.998492i \(-0.517481\pi\)
−0.0548896 + 0.998492i \(0.517481\pi\)
\(954\) 0 0
\(955\) 3.45599 0.111833
\(956\) 2.33821 4.04989i 0.0756230 0.130983i
\(957\) 0 0
\(958\) 7.11306 + 12.3202i 0.229812 + 0.398047i
\(959\) −0.498165 0.862848i −0.0160866 0.0278628i
\(960\) 0 0
\(961\) 14.7691 25.5809i 0.476424 0.825190i
\(962\) −4.82792 −0.155658
\(963\) 0 0
\(964\) 7.08417 0.228166
\(965\) −0.0429228 + 0.0743446i −0.00138174 + 0.00239324i
\(966\) 0 0
\(967\) −11.1626 19.3342i −0.358965 0.621745i 0.628824 0.777548i \(-0.283537\pi\)
−0.987788 + 0.155803i \(0.950203\pi\)
\(968\) 12.5035 + 21.6567i 0.401878 + 0.696073i
\(969\) 0 0
\(970\) 1.79890 3.11579i 0.0577592 0.100042i
\(971\) 25.9936 0.834174 0.417087 0.908867i \(-0.363051\pi\)
0.417087 + 0.908867i \(0.363051\pi\)
\(972\) 0 0
\(973\) −0.0946790 −0.00303527
\(974\) 15.4415 26.7455i 0.494777 0.856980i
\(975\) 0 0
\(976\) −9.22062 15.9706i −0.295145 0.511206i
\(977\) 2.79814 + 4.84652i 0.0895204 + 0.155054i 0.907309 0.420466i \(-0.138133\pi\)
−0.817788 + 0.575519i \(0.804800\pi\)
\(978\) 0 0
\(979\) 2.03019 3.51639i 0.0648852 0.112384i
\(980\) −0.354797 −0.0113336
\(981\) 0 0
\(982\) −14.5354 −0.463844
\(983\) −23.5817 + 40.8448i −0.752141 + 1.30275i 0.194642 + 0.980874i \(0.437645\pi\)
−0.946783 + 0.321872i \(0.895688\pi\)
\(984\) 0 0
\(985\) 0.593536 + 1.02804i 0.0189116 + 0.0327559i
\(986\) 1.40201 + 2.42836i 0.0446492 + 0.0773346i
\(987\) 0 0
\(988\) 1.19084 2.06260i 0.0378858 0.0656202i
\(989\) −5.81657 −0.184956
\(990\) 0 0
\(991\) 21.3455 0.678061 0.339030 0.940775i \(-0.389901\pi\)
0.339030 + 0.940775i \(0.389901\pi\)
\(992\) 1.13529 1.96637i 0.0360453 0.0624324i
\(993\) 0 0
\(994\) 0.659954 + 1.14307i 0.0209325 + 0.0362561i
\(995\) −1.20405 2.08547i −0.0381708 0.0661138i
\(996\) 0 0
\(997\) 19.2428 33.3294i 0.609424 1.05555i −0.381911 0.924199i \(-0.624734\pi\)
0.991335 0.131355i \(-0.0419328\pi\)
\(998\) 7.00129 0.221622
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.e.a.262.9 22
3.2 odd 2 261.2.e.a.88.3 22
9.2 odd 6 2349.2.a.f.1.9 11
9.4 even 3 inner 783.2.e.a.523.9 22
9.5 odd 6 261.2.e.a.175.3 yes 22
9.7 even 3 2349.2.a.e.1.3 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
261.2.e.a.88.3 22 3.2 odd 2
261.2.e.a.175.3 yes 22 9.5 odd 6
783.2.e.a.262.9 22 1.1 even 1 trivial
783.2.e.a.523.9 22 9.4 even 3 inner
2349.2.a.e.1.3 11 9.7 even 3
2349.2.a.f.1.9 11 9.2 odd 6