Newspace parameters
Level: | \( N \) | \(=\) | \( 783 = 3^{3} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 783.e (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.25228647827\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{3})\) |
Twist minimal: | no (minimal twist has level 261) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
262.1 | −1.13175 | + | 1.96024i | 0 | −1.56171 | − | 2.70495i | 0.731092 | + | 1.26629i | 0 | 0.881947 | − | 1.52758i | 2.54284 | 0 | −3.30965 | ||||||||||
262.2 | −0.942480 | + | 1.63242i | 0 | −0.776536 | − | 1.34500i | 0.325626 | + | 0.564001i | 0 | −0.0750596 | + | 0.130007i | −0.842439 | 0 | −1.22758 | ||||||||||
262.3 | −0.788768 | + | 1.36619i | 0 | −0.244311 | − | 0.423159i | −0.409773 | − | 0.709748i | 0 | −1.13728 | + | 1.96983i | −2.38425 | 0 | 1.29286 | ||||||||||
262.4 | −0.489415 | + | 0.847692i | 0 | 0.520946 | + | 0.902304i | 1.17228 | + | 2.03045i | 0 | 0.172733 | − | 0.299183i | −2.97750 | 0 | −2.29493 | ||||||||||
262.5 | −0.100158 | + | 0.173479i | 0 | 0.979937 | + | 1.69730i | −0.556635 | − | 0.964120i | 0 | 0.359329 | − | 0.622375i | −0.793225 | 0 | 0.223006 | ||||||||||
262.6 | −0.0549262 | + | 0.0951349i | 0 | 0.993966 | + | 1.72160i | −1.31653 | − | 2.28029i | 0 | 1.68615 | − | 2.92049i | −0.438084 | 0 | 0.289247 | ||||||||||
262.7 | 0.391918 | − | 0.678822i | 0 | 0.692800 | + | 1.19996i | −0.728601 | − | 1.26197i | 0 | −2.16737 | + | 3.75400i | 2.65376 | 0 | −1.14221 | ||||||||||
262.8 | 0.540070 | − | 0.935429i | 0 | 0.416648 | + | 0.721656i | 1.91815 | + | 3.32233i | 0 | 1.07867 | − | 1.86831i | 3.06036 | 0 | 4.14374 | ||||||||||
262.9 | 0.764092 | − | 1.32345i | 0 | −0.167673 | − | 0.290418i | −0.0756080 | − | 0.130957i | 0 | 0.0289713 | − | 0.0501797i | 2.54390 | 0 | −0.231086 | ||||||||||
262.10 | 1.10224 | − | 1.90914i | 0 | −1.42988 | − | 2.47662i | 0.463291 | + | 0.802444i | 0 | 2.26860 | − | 3.92934i | −1.89533 | 0 | 2.04264 | ||||||||||
262.11 | 1.20917 | − | 2.09435i | 0 | −1.92419 | − | 3.33280i | −2.02330 | − | 3.50445i | 0 | 0.403314 | − | 0.698560i | −4.47002 | 0 | −9.78605 | ||||||||||
523.1 | −1.13175 | − | 1.96024i | 0 | −1.56171 | + | 2.70495i | 0.731092 | − | 1.26629i | 0 | 0.881947 | + | 1.52758i | 2.54284 | 0 | −3.30965 | ||||||||||
523.2 | −0.942480 | − | 1.63242i | 0 | −0.776536 | + | 1.34500i | 0.325626 | − | 0.564001i | 0 | −0.0750596 | − | 0.130007i | −0.842439 | 0 | −1.22758 | ||||||||||
523.3 | −0.788768 | − | 1.36619i | 0 | −0.244311 | + | 0.423159i | −0.409773 | + | 0.709748i | 0 | −1.13728 | − | 1.96983i | −2.38425 | 0 | 1.29286 | ||||||||||
523.4 | −0.489415 | − | 0.847692i | 0 | 0.520946 | − | 0.902304i | 1.17228 | − | 2.03045i | 0 | 0.172733 | + | 0.299183i | −2.97750 | 0 | −2.29493 | ||||||||||
523.5 | −0.100158 | − | 0.173479i | 0 | 0.979937 | − | 1.69730i | −0.556635 | + | 0.964120i | 0 | 0.359329 | + | 0.622375i | −0.793225 | 0 | 0.223006 | ||||||||||
523.6 | −0.0549262 | − | 0.0951349i | 0 | 0.993966 | − | 1.72160i | −1.31653 | + | 2.28029i | 0 | 1.68615 | + | 2.92049i | −0.438084 | 0 | 0.289247 | ||||||||||
523.7 | 0.391918 | + | 0.678822i | 0 | 0.692800 | − | 1.19996i | −0.728601 | + | 1.26197i | 0 | −2.16737 | − | 3.75400i | 2.65376 | 0 | −1.14221 | ||||||||||
523.8 | 0.540070 | + | 0.935429i | 0 | 0.416648 | − | 0.721656i | 1.91815 | − | 3.32233i | 0 | 1.07867 | + | 1.86831i | 3.06036 | 0 | 4.14374 | ||||||||||
523.9 | 0.764092 | + | 1.32345i | 0 | −0.167673 | + | 0.290418i | −0.0756080 | + | 0.130957i | 0 | 0.0289713 | + | 0.0501797i | 2.54390 | 0 | −0.231086 | ||||||||||
See all 22 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 783.2.e.a | 22 | |
3.b | odd | 2 | 1 | 261.2.e.a | ✓ | 22 | |
9.c | even | 3 | 1 | inner | 783.2.e.a | 22 | |
9.c | even | 3 | 1 | 2349.2.a.e | 11 | ||
9.d | odd | 6 | 1 | 261.2.e.a | ✓ | 22 | |
9.d | odd | 6 | 1 | 2349.2.a.f | 11 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
261.2.e.a | ✓ | 22 | 3.b | odd | 2 | 1 | |
261.2.e.a | ✓ | 22 | 9.d | odd | 6 | 1 | |
783.2.e.a | 22 | 1.a | even | 1 | 1 | trivial | |
783.2.e.a | 22 | 9.c | even | 3 | 1 | inner | |
2349.2.a.e | 11 | 9.c | even | 3 | 1 | ||
2349.2.a.f | 11 | 9.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{22} - T_{2}^{21} + 14 T_{2}^{20} - 9 T_{2}^{19} + 121 T_{2}^{18} - 66 T_{2}^{17} + 627 T_{2}^{16} + \cdots + 1 \)
acting on \(S_{2}^{\mathrm{new}}(783, [\chi])\).