L(s) = 1 | + (−0.489 + 0.847i)2-s + (0.520 + 0.902i)4-s + (1.17 + 2.03i)5-s + (0.172 − 0.299i)7-s − 2.97·8-s − 2.29·10-s + (−2.90 + 5.02i)11-s + (−1.50 − 2.61i)13-s + (0.169 + 0.292i)14-s + (0.415 − 0.719i)16-s − 1.63·17-s − 1.61·19-s + (−1.22 + 2.11i)20-s + (−2.84 − 4.92i)22-s + (−0.565 − 0.980i)23-s + ⋯ |
L(s) = 1 | + (−0.346 + 0.599i)2-s + (0.260 + 0.451i)4-s + (0.524 + 0.908i)5-s + (0.0652 − 0.113i)7-s − 1.05·8-s − 0.725·10-s + (−0.875 + 1.51i)11-s + (−0.418 − 0.724i)13-s + (0.0451 + 0.0782i)14-s + (0.103 − 0.179i)16-s − 0.397·17-s − 0.369·19-s + (−0.273 + 0.473i)20-s + (−0.606 − 1.04i)22-s + (−0.117 − 0.204i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0178i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0178i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00904231 - 1.01346i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00904231 - 1.01346i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (0.489 - 0.847i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.17 - 2.03i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.172 + 0.299i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.90 - 5.02i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.50 + 2.61i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 1.63T + 17T^{2} \) |
| 19 | \( 1 + 1.61T + 19T^{2} \) |
| 23 | \( 1 + (0.565 + 0.980i)T + (-11.5 + 19.9i)T^{2} \) |
| 31 | \( 1 + (-3.73 - 6.47i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2.72T + 37T^{2} \) |
| 41 | \( 1 + (-4.41 - 7.64i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.422 + 0.732i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.93 + 6.82i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 4.90T + 53T^{2} \) |
| 59 | \( 1 + (3.35 + 5.80i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.07 + 3.58i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.24 - 5.62i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 12.1T + 71T^{2} \) |
| 73 | \( 1 + 12.1T + 73T^{2} \) |
| 79 | \( 1 + (5.91 - 10.2i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (6.06 - 10.5i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 6.10T + 89T^{2} \) |
| 97 | \( 1 + (-1.79 + 3.11i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36986390072362104964674594396, −10.07604837615583641487051528056, −8.894026393735676906085185275173, −7.959841885080931678224214289409, −7.20060409632975955106342747176, −6.68939170136545826411461149492, −5.63900346085194790162150899255, −4.49178374121919874000181913615, −2.97711116155671761816442544396, −2.27292881257918723212184339063,
0.52737342584639698776748414563, 1.88853609340467996394216435686, 2.89537783994326431676600255839, 4.42369436453760917542010990688, 5.63029188210405770514006702389, 5.98687251195121913114601448810, 7.34504626824495416351696504230, 8.650147993900839206564730826744, 8.967410887468107080837874442137, 9.930678977717751660504457463523