L(s) = 1 | + (0.540 − 0.935i)2-s + (0.416 + 0.721i)4-s + (1.91 + 3.32i)5-s + (1.07 − 1.86i)7-s + 3.06·8-s + 4.14·10-s + (−1.42 + 2.47i)11-s + (0.862 + 1.49i)13-s + (−1.16 − 2.01i)14-s + (0.819 − 1.41i)16-s − 1.10·17-s − 2.98·19-s + (−1.59 + 2.76i)20-s + (1.54 + 2.67i)22-s + (−4.05 − 7.02i)23-s + ⋯ |
L(s) = 1 | + (0.381 − 0.661i)2-s + (0.208 + 0.360i)4-s + (0.857 + 1.48i)5-s + (0.407 − 0.706i)7-s + 1.08·8-s + 1.31·10-s + (−0.430 + 0.746i)11-s + (0.239 + 0.414i)13-s + (−0.311 − 0.539i)14-s + (0.204 − 0.354i)16-s − 0.268·17-s − 0.685·19-s + (−0.357 + 0.619i)20-s + (0.329 + 0.570i)22-s + (−0.846 − 1.46i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.917 - 0.397i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.917 - 0.397i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.40387 + 0.498252i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.40387 + 0.498252i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-0.540 + 0.935i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.91 - 3.32i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.07 + 1.86i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.42 - 2.47i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.862 - 1.49i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 1.10T + 17T^{2} \) |
| 19 | \( 1 + 2.98T + 19T^{2} \) |
| 23 | \( 1 + (4.05 + 7.02i)T + (-11.5 + 19.9i)T^{2} \) |
| 31 | \( 1 + (-1.57 - 2.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 6.10T + 37T^{2} \) |
| 41 | \( 1 + (4.70 + 8.15i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.66 + 6.34i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.381 + 0.660i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 10.4T + 53T^{2} \) |
| 59 | \( 1 + (0.153 + 0.265i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.35 - 5.80i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.53 + 9.57i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 10.0T + 71T^{2} \) |
| 73 | \( 1 + 3.16T + 73T^{2} \) |
| 79 | \( 1 + (-1.18 + 2.05i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.09 + 8.81i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 17.6T + 89T^{2} \) |
| 97 | \( 1 + (-8.44 + 14.6i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52379519277933195321293260299, −10.05308295893779081406395169629, −8.653998372243683284492073783600, −7.48256751108939244471141594041, −6.96252203357071460185890695642, −6.09700841224644501373370385697, −4.62882366543353380893150139998, −3.79381134065492246834428010769, −2.55816544281774755915685673352, −1.97192065404092792583003535310,
1.20584333537798005777653225937, 2.30938484622282165646138518911, 4.23797115957560636723483233097, 5.21830325966782384832542987942, 5.69476404474304002344430531991, 6.32118131813416578946260230562, 7.86213496849249204896183772206, 8.376272574769494435945416959233, 9.348731757854691982907989846461, 10.05863621754785830512200319746