Properties

Label 2349.2.a.e.1.3
Level $2349$
Weight $2$
Character 2349.1
Self dual yes
Analytic conductor $18.757$
Analytic rank $1$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2349,2,Mod(1,2349)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2349.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2349, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2349 = 3^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2349.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [11,-1,0,5,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.7568594348\)
Analytic rank: \(1\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - x^{10} - 13x^{9} + 11x^{8} + 59x^{7} - 41x^{6} - 110x^{5} + 61x^{4} + 76x^{3} - 28x^{2} - 13x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 261)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.52818\) of defining polynomial
Character \(\chi\) \(=\) 2349.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.52818 q^{2} +0.335346 q^{4} +0.151216 q^{5} -0.0579426 q^{7} +2.54390 q^{8} -0.231086 q^{10} -1.08157 q^{11} -2.45294 q^{13} +0.0885469 q^{14} -4.55824 q^{16} +1.83487 q^{17} +2.89537 q^{19} +0.0507097 q^{20} +1.65284 q^{22} +0.781359 q^{23} -4.97713 q^{25} +3.74855 q^{26} -0.0194308 q^{28} +1.00000 q^{29} -1.20902 q^{31} +1.87803 q^{32} -2.80403 q^{34} -0.00876184 q^{35} -1.28794 q^{37} -4.42466 q^{38} +0.384678 q^{40} +4.37194 q^{41} -7.44418 q^{43} -0.362701 q^{44} -1.19406 q^{46} +5.87634 q^{47} -6.99664 q^{49} +7.60598 q^{50} -0.822584 q^{52} +0.0547103 q^{53} -0.163551 q^{55} -0.147400 q^{56} -1.52818 q^{58} +7.23633 q^{59} -4.04570 q^{61} +1.84760 q^{62} +6.24650 q^{64} -0.370924 q^{65} -4.33877 q^{67} +0.615318 q^{68} +0.0133897 q^{70} -14.9063 q^{71} -3.30924 q^{73} +1.96822 q^{74} +0.970952 q^{76} +0.0626690 q^{77} +3.21824 q^{79} -0.689278 q^{80} -6.68112 q^{82} +8.10784 q^{83} +0.277462 q^{85} +11.3761 q^{86} -2.75141 q^{88} +3.75415 q^{89} +0.142130 q^{91} +0.262026 q^{92} -8.98013 q^{94} +0.437827 q^{95} +15.5691 q^{97} +10.6922 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q - q^{2} + 5 q^{4} + q^{5} - 7 q^{7} - 3 q^{8} - 10 q^{10} - 3 q^{11} - 7 q^{13} + 10 q^{14} - 7 q^{16} - q^{17} - 28 q^{19} + 4 q^{20} - 13 q^{22} - 4 q^{23} - 4 q^{25} + 6 q^{26} - 16 q^{28} + 11 q^{29}+ \cdots - 43 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.52818 −1.08059 −0.540295 0.841476i \(-0.681687\pi\)
−0.540295 + 0.841476i \(0.681687\pi\)
\(3\) 0 0
\(4\) 0.335346 0.167673
\(5\) 0.151216 0.0676258 0.0338129 0.999428i \(-0.489235\pi\)
0.0338129 + 0.999428i \(0.489235\pi\)
\(6\) 0 0
\(7\) −0.0579426 −0.0219002 −0.0109501 0.999940i \(-0.503486\pi\)
−0.0109501 + 0.999940i \(0.503486\pi\)
\(8\) 2.54390 0.899404
\(9\) 0 0
\(10\) −0.231086 −0.0730757
\(11\) −1.08157 −0.326106 −0.163053 0.986617i \(-0.552134\pi\)
−0.163053 + 0.986617i \(0.552134\pi\)
\(12\) 0 0
\(13\) −2.45294 −0.680324 −0.340162 0.940367i \(-0.610482\pi\)
−0.340162 + 0.940367i \(0.610482\pi\)
\(14\) 0.0885469 0.0236652
\(15\) 0 0
\(16\) −4.55824 −1.13956
\(17\) 1.83487 0.445022 0.222511 0.974930i \(-0.428575\pi\)
0.222511 + 0.974930i \(0.428575\pi\)
\(18\) 0 0
\(19\) 2.89537 0.664244 0.332122 0.943236i \(-0.392235\pi\)
0.332122 + 0.943236i \(0.392235\pi\)
\(20\) 0.0507097 0.0113390
\(21\) 0 0
\(22\) 1.65284 0.352387
\(23\) 0.781359 0.162925 0.0814623 0.996676i \(-0.474041\pi\)
0.0814623 + 0.996676i \(0.474041\pi\)
\(24\) 0 0
\(25\) −4.97713 −0.995427
\(26\) 3.74855 0.735150
\(27\) 0 0
\(28\) −0.0194308 −0.00367208
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −1.20902 −0.217146 −0.108573 0.994088i \(-0.534628\pi\)
−0.108573 + 0.994088i \(0.534628\pi\)
\(32\) 1.87803 0.331991
\(33\) 0 0
\(34\) −2.80403 −0.480886
\(35\) −0.00876184 −0.00148102
\(36\) 0 0
\(37\) −1.28794 −0.211737 −0.105868 0.994380i \(-0.533762\pi\)
−0.105868 + 0.994380i \(0.533762\pi\)
\(38\) −4.42466 −0.717775
\(39\) 0 0
\(40\) 0.384678 0.0608229
\(41\) 4.37194 0.682782 0.341391 0.939921i \(-0.389102\pi\)
0.341391 + 0.939921i \(0.389102\pi\)
\(42\) 0 0
\(43\) −7.44418 −1.13523 −0.567613 0.823295i \(-0.692133\pi\)
−0.567613 + 0.823295i \(0.692133\pi\)
\(44\) −0.362701 −0.0546792
\(45\) 0 0
\(46\) −1.19406 −0.176054
\(47\) 5.87634 0.857153 0.428576 0.903506i \(-0.359015\pi\)
0.428576 + 0.903506i \(0.359015\pi\)
\(48\) 0 0
\(49\) −6.99664 −0.999520
\(50\) 7.60598 1.07565
\(51\) 0 0
\(52\) −0.822584 −0.114072
\(53\) 0.0547103 0.00751503 0.00375752 0.999993i \(-0.498804\pi\)
0.00375752 + 0.999993i \(0.498804\pi\)
\(54\) 0 0
\(55\) −0.163551 −0.0220532
\(56\) −0.147400 −0.0196971
\(57\) 0 0
\(58\) −1.52818 −0.200660
\(59\) 7.23633 0.942089 0.471045 0.882109i \(-0.343877\pi\)
0.471045 + 0.882109i \(0.343877\pi\)
\(60\) 0 0
\(61\) −4.04570 −0.517998 −0.258999 0.965878i \(-0.583393\pi\)
−0.258999 + 0.965878i \(0.583393\pi\)
\(62\) 1.84760 0.234646
\(63\) 0 0
\(64\) 6.24650 0.780812
\(65\) −0.370924 −0.0460074
\(66\) 0 0
\(67\) −4.33877 −0.530065 −0.265032 0.964239i \(-0.585383\pi\)
−0.265032 + 0.964239i \(0.585383\pi\)
\(68\) 0.615318 0.0746183
\(69\) 0 0
\(70\) 0.0133897 0.00160038
\(71\) −14.9063 −1.76905 −0.884527 0.466489i \(-0.845519\pi\)
−0.884527 + 0.466489i \(0.845519\pi\)
\(72\) 0 0
\(73\) −3.30924 −0.387317 −0.193658 0.981069i \(-0.562035\pi\)
−0.193658 + 0.981069i \(0.562035\pi\)
\(74\) 1.96822 0.228800
\(75\) 0 0
\(76\) 0.970952 0.111376
\(77\) 0.0626690 0.00714180
\(78\) 0 0
\(79\) 3.21824 0.362080 0.181040 0.983476i \(-0.442054\pi\)
0.181040 + 0.983476i \(0.442054\pi\)
\(80\) −0.689278 −0.0770636
\(81\) 0 0
\(82\) −6.68112 −0.737807
\(83\) 8.10784 0.889952 0.444976 0.895543i \(-0.353212\pi\)
0.444976 + 0.895543i \(0.353212\pi\)
\(84\) 0 0
\(85\) 0.277462 0.0300950
\(86\) 11.3761 1.22671
\(87\) 0 0
\(88\) −2.75141 −0.293301
\(89\) 3.75415 0.397939 0.198970 0.980006i \(-0.436241\pi\)
0.198970 + 0.980006i \(0.436241\pi\)
\(90\) 0 0
\(91\) 0.142130 0.0148992
\(92\) 0.262026 0.0273181
\(93\) 0 0
\(94\) −8.98013 −0.926230
\(95\) 0.437827 0.0449201
\(96\) 0 0
\(97\) 15.5691 1.58080 0.790402 0.612589i \(-0.209872\pi\)
0.790402 + 0.612589i \(0.209872\pi\)
\(98\) 10.6922 1.08007
\(99\) 0 0
\(100\) −1.66906 −0.166906
\(101\) 11.9917 1.19322 0.596609 0.802532i \(-0.296514\pi\)
0.596609 + 0.802532i \(0.296514\pi\)
\(102\) 0 0
\(103\) 10.9416 1.07810 0.539052 0.842272i \(-0.318782\pi\)
0.539052 + 0.842272i \(0.318782\pi\)
\(104\) −6.24003 −0.611886
\(105\) 0 0
\(106\) −0.0836074 −0.00812066
\(107\) −3.86363 −0.373511 −0.186756 0.982406i \(-0.559797\pi\)
−0.186756 + 0.982406i \(0.559797\pi\)
\(108\) 0 0
\(109\) −15.3103 −1.46646 −0.733230 0.679980i \(-0.761988\pi\)
−0.733230 + 0.679980i \(0.761988\pi\)
\(110\) 0.249936 0.0238304
\(111\) 0 0
\(112\) 0.264116 0.0249566
\(113\) −9.17086 −0.862721 −0.431361 0.902180i \(-0.641966\pi\)
−0.431361 + 0.902180i \(0.641966\pi\)
\(114\) 0 0
\(115\) 0.118154 0.0110179
\(116\) 0.335346 0.0311361
\(117\) 0 0
\(118\) −11.0584 −1.01801
\(119\) −0.106317 −0.00974609
\(120\) 0 0
\(121\) −9.83020 −0.893655
\(122\) 6.18257 0.559743
\(123\) 0 0
\(124\) −0.405440 −0.0364096
\(125\) −1.50870 −0.134942
\(126\) 0 0
\(127\) −12.5497 −1.11360 −0.556801 0.830646i \(-0.687972\pi\)
−0.556801 + 0.830646i \(0.687972\pi\)
\(128\) −13.3019 −1.17573
\(129\) 0 0
\(130\) 0.566840 0.0497152
\(131\) −18.4477 −1.61178 −0.805891 0.592064i \(-0.798313\pi\)
−0.805891 + 0.592064i \(0.798313\pi\)
\(132\) 0 0
\(133\) −0.167765 −0.0145471
\(134\) 6.63044 0.572782
\(135\) 0 0
\(136\) 4.66773 0.400255
\(137\) −17.1951 −1.46908 −0.734540 0.678565i \(-0.762602\pi\)
−0.734540 + 0.678565i \(0.762602\pi\)
\(138\) 0 0
\(139\) 1.63401 0.138595 0.0692976 0.997596i \(-0.477924\pi\)
0.0692976 + 0.997596i \(0.477924\pi\)
\(140\) −0.00293825 −0.000248327 0
\(141\) 0 0
\(142\) 22.7796 1.91162
\(143\) 2.65303 0.221858
\(144\) 0 0
\(145\) 0.151216 0.0125578
\(146\) 5.05712 0.418530
\(147\) 0 0
\(148\) −0.431907 −0.0355025
\(149\) −5.09418 −0.417331 −0.208666 0.977987i \(-0.566912\pi\)
−0.208666 + 0.977987i \(0.566912\pi\)
\(150\) 0 0
\(151\) −17.6243 −1.43425 −0.717124 0.696945i \(-0.754542\pi\)
−0.717124 + 0.696945i \(0.754542\pi\)
\(152\) 7.36553 0.597424
\(153\) 0 0
\(154\) −0.0957698 −0.00771735
\(155\) −0.182823 −0.0146847
\(156\) 0 0
\(157\) 1.47416 0.117651 0.0588256 0.998268i \(-0.481264\pi\)
0.0588256 + 0.998268i \(0.481264\pi\)
\(158\) −4.91806 −0.391260
\(159\) 0 0
\(160\) 0.283988 0.0224512
\(161\) −0.0452739 −0.00356809
\(162\) 0 0
\(163\) −14.2857 −1.11894 −0.559469 0.828851i \(-0.688995\pi\)
−0.559469 + 0.828851i \(0.688995\pi\)
\(164\) 1.46611 0.114484
\(165\) 0 0
\(166\) −12.3903 −0.961672
\(167\) −14.3390 −1.10958 −0.554791 0.831990i \(-0.687202\pi\)
−0.554791 + 0.831990i \(0.687202\pi\)
\(168\) 0 0
\(169\) −6.98308 −0.537160
\(170\) −0.424013 −0.0325203
\(171\) 0 0
\(172\) −2.49638 −0.190347
\(173\) 7.05344 0.536263 0.268132 0.963382i \(-0.413594\pi\)
0.268132 + 0.963382i \(0.413594\pi\)
\(174\) 0 0
\(175\) 0.288388 0.0218001
\(176\) 4.93006 0.371617
\(177\) 0 0
\(178\) −5.73703 −0.430009
\(179\) −11.7051 −0.874878 −0.437439 0.899248i \(-0.644114\pi\)
−0.437439 + 0.899248i \(0.644114\pi\)
\(180\) 0 0
\(181\) −7.15646 −0.531936 −0.265968 0.963982i \(-0.585691\pi\)
−0.265968 + 0.963982i \(0.585691\pi\)
\(182\) −0.217200 −0.0161000
\(183\) 0 0
\(184\) 1.98770 0.146535
\(185\) −0.194758 −0.0143189
\(186\) 0 0
\(187\) −1.98455 −0.145124
\(188\) 1.97061 0.143721
\(189\) 0 0
\(190\) −0.669080 −0.0485401
\(191\) 22.8547 1.65371 0.826853 0.562418i \(-0.190129\pi\)
0.826853 + 0.562418i \(0.190129\pi\)
\(192\) 0 0
\(193\) 0.567703 0.0408641 0.0204321 0.999791i \(-0.493496\pi\)
0.0204321 + 0.999791i \(0.493496\pi\)
\(194\) −23.7925 −1.70820
\(195\) 0 0
\(196\) −2.34630 −0.167593
\(197\) −7.85018 −0.559302 −0.279651 0.960102i \(-0.590219\pi\)
−0.279651 + 0.960102i \(0.590219\pi\)
\(198\) 0 0
\(199\) 15.9248 1.12888 0.564441 0.825473i \(-0.309092\pi\)
0.564441 + 0.825473i \(0.309092\pi\)
\(200\) −12.6613 −0.895290
\(201\) 0 0
\(202\) −18.3255 −1.28938
\(203\) −0.0579426 −0.00406677
\(204\) 0 0
\(205\) 0.661107 0.0461737
\(206\) −16.7207 −1.16499
\(207\) 0 0
\(208\) 11.1811 0.775269
\(209\) −3.13155 −0.216614
\(210\) 0 0
\(211\) 20.1127 1.38462 0.692308 0.721602i \(-0.256594\pi\)
0.692308 + 0.721602i \(0.256594\pi\)
\(212\) 0.0183469 0.00126007
\(213\) 0 0
\(214\) 5.90434 0.403612
\(215\) −1.12568 −0.0767706
\(216\) 0 0
\(217\) 0.0700537 0.00475555
\(218\) 23.3970 1.58464
\(219\) 0 0
\(220\) −0.0548461 −0.00369773
\(221\) −4.50084 −0.302759
\(222\) 0 0
\(223\) −24.4543 −1.63758 −0.818790 0.574093i \(-0.805355\pi\)
−0.818790 + 0.574093i \(0.805355\pi\)
\(224\) −0.108818 −0.00727069
\(225\) 0 0
\(226\) 14.0148 0.932248
\(227\) −28.4313 −1.88705 −0.943527 0.331295i \(-0.892514\pi\)
−0.943527 + 0.331295i \(0.892514\pi\)
\(228\) 0 0
\(229\) −14.3532 −0.948485 −0.474242 0.880394i \(-0.657278\pi\)
−0.474242 + 0.880394i \(0.657278\pi\)
\(230\) −0.180561 −0.0119058
\(231\) 0 0
\(232\) 2.54390 0.167015
\(233\) 3.54955 0.232539 0.116269 0.993218i \(-0.462906\pi\)
0.116269 + 0.993218i \(0.462906\pi\)
\(234\) 0 0
\(235\) 0.888597 0.0579657
\(236\) 2.42667 0.157963
\(237\) 0 0
\(238\) 0.162472 0.0105315
\(239\) −13.9450 −0.902029 −0.451015 0.892517i \(-0.648938\pi\)
−0.451015 + 0.892517i \(0.648938\pi\)
\(240\) 0 0
\(241\) 21.1250 1.36078 0.680389 0.732851i \(-0.261811\pi\)
0.680389 + 0.732851i \(0.261811\pi\)
\(242\) 15.0224 0.965674
\(243\) 0 0
\(244\) −1.35671 −0.0868543
\(245\) −1.05800 −0.0675934
\(246\) 0 0
\(247\) −7.10218 −0.451901
\(248\) −3.07562 −0.195302
\(249\) 0 0
\(250\) 2.30557 0.145817
\(251\) −6.98888 −0.441134 −0.220567 0.975372i \(-0.570791\pi\)
−0.220567 + 0.975372i \(0.570791\pi\)
\(252\) 0 0
\(253\) −0.845095 −0.0531307
\(254\) 19.1782 1.20335
\(255\) 0 0
\(256\) 7.83468 0.489668
\(257\) 1.63268 0.101844 0.0509218 0.998703i \(-0.483784\pi\)
0.0509218 + 0.998703i \(0.483784\pi\)
\(258\) 0 0
\(259\) 0.0746268 0.00463708
\(260\) −0.124388 −0.00771421
\(261\) 0 0
\(262\) 28.1915 1.74167
\(263\) −16.5193 −1.01862 −0.509312 0.860582i \(-0.670100\pi\)
−0.509312 + 0.860582i \(0.670100\pi\)
\(264\) 0 0
\(265\) 0.00827306 0.000508210 0
\(266\) 0.256376 0.0157194
\(267\) 0 0
\(268\) −1.45499 −0.0888776
\(269\) −4.33854 −0.264525 −0.132263 0.991215i \(-0.542224\pi\)
−0.132263 + 0.991215i \(0.542224\pi\)
\(270\) 0 0
\(271\) −18.7332 −1.13796 −0.568980 0.822351i \(-0.692662\pi\)
−0.568980 + 0.822351i \(0.692662\pi\)
\(272\) −8.36379 −0.507129
\(273\) 0 0
\(274\) 26.2773 1.58747
\(275\) 5.38313 0.324615
\(276\) 0 0
\(277\) 12.4377 0.747308 0.373654 0.927568i \(-0.378105\pi\)
0.373654 + 0.927568i \(0.378105\pi\)
\(278\) −2.49707 −0.149765
\(279\) 0 0
\(280\) −0.0222892 −0.00133204
\(281\) 0.145092 0.00865548 0.00432774 0.999991i \(-0.498622\pi\)
0.00432774 + 0.999991i \(0.498622\pi\)
\(282\) 0 0
\(283\) 8.11009 0.482095 0.241047 0.970513i \(-0.422509\pi\)
0.241047 + 0.970513i \(0.422509\pi\)
\(284\) −4.99877 −0.296623
\(285\) 0 0
\(286\) −4.05432 −0.239737
\(287\) −0.253321 −0.0149531
\(288\) 0 0
\(289\) −13.6332 −0.801955
\(290\) −0.231086 −0.0135698
\(291\) 0 0
\(292\) −1.10974 −0.0649426
\(293\) −18.9313 −1.10598 −0.552990 0.833188i \(-0.686513\pi\)
−0.552990 + 0.833188i \(0.686513\pi\)
\(294\) 0 0
\(295\) 1.09425 0.0637096
\(296\) −3.27640 −0.190437
\(297\) 0 0
\(298\) 7.78484 0.450964
\(299\) −1.91663 −0.110841
\(300\) 0 0
\(301\) 0.431335 0.0248617
\(302\) 26.9332 1.54983
\(303\) 0 0
\(304\) −13.1978 −0.756945
\(305\) −0.611774 −0.0350301
\(306\) 0 0
\(307\) −19.9124 −1.13646 −0.568230 0.822870i \(-0.692372\pi\)
−0.568230 + 0.822870i \(0.692372\pi\)
\(308\) 0.0210158 0.00119749
\(309\) 0 0
\(310\) 0.279387 0.0158681
\(311\) 27.7656 1.57444 0.787222 0.616670i \(-0.211519\pi\)
0.787222 + 0.616670i \(0.211519\pi\)
\(312\) 0 0
\(313\) −9.31087 −0.526281 −0.263141 0.964757i \(-0.584758\pi\)
−0.263141 + 0.964757i \(0.584758\pi\)
\(314\) −2.25279 −0.127133
\(315\) 0 0
\(316\) 1.07922 0.0607110
\(317\) −12.2762 −0.689498 −0.344749 0.938695i \(-0.612036\pi\)
−0.344749 + 0.938695i \(0.612036\pi\)
\(318\) 0 0
\(319\) −1.08157 −0.0605564
\(320\) 0.944570 0.0528031
\(321\) 0 0
\(322\) 0.0691869 0.00385563
\(323\) 5.31265 0.295604
\(324\) 0 0
\(325\) 12.2086 0.677212
\(326\) 21.8311 1.20911
\(327\) 0 0
\(328\) 11.1218 0.614096
\(329\) −0.340490 −0.0187718
\(330\) 0 0
\(331\) −21.7765 −1.19694 −0.598472 0.801143i \(-0.704225\pi\)
−0.598472 + 0.801143i \(0.704225\pi\)
\(332\) 2.71893 0.149221
\(333\) 0 0
\(334\) 21.9126 1.19900
\(335\) −0.656091 −0.0358461
\(336\) 0 0
\(337\) −11.9304 −0.649892 −0.324946 0.945733i \(-0.605346\pi\)
−0.324946 + 0.945733i \(0.605346\pi\)
\(338\) 10.6714 0.580449
\(339\) 0 0
\(340\) 0.0930459 0.00504612
\(341\) 1.30764 0.0708127
\(342\) 0 0
\(343\) 0.811001 0.0437900
\(344\) −18.9372 −1.02103
\(345\) 0 0
\(346\) −10.7790 −0.579480
\(347\) −12.1588 −0.652716 −0.326358 0.945246i \(-0.605822\pi\)
−0.326358 + 0.945246i \(0.605822\pi\)
\(348\) 0 0
\(349\) 10.1326 0.542388 0.271194 0.962525i \(-0.412581\pi\)
0.271194 + 0.962525i \(0.412581\pi\)
\(350\) −0.440710 −0.0235569
\(351\) 0 0
\(352\) −2.03122 −0.108264
\(353\) −12.3668 −0.658218 −0.329109 0.944292i \(-0.606748\pi\)
−0.329109 + 0.944292i \(0.606748\pi\)
\(354\) 0 0
\(355\) −2.25407 −0.119634
\(356\) 1.25894 0.0667237
\(357\) 0 0
\(358\) 17.8875 0.945384
\(359\) −19.6499 −1.03708 −0.518541 0.855053i \(-0.673525\pi\)
−0.518541 + 0.855053i \(0.673525\pi\)
\(360\) 0 0
\(361\) −10.6168 −0.558779
\(362\) 10.9364 0.574804
\(363\) 0 0
\(364\) 0.0476627 0.00249820
\(365\) −0.500409 −0.0261926
\(366\) 0 0
\(367\) 9.86294 0.514841 0.257421 0.966299i \(-0.417127\pi\)
0.257421 + 0.966299i \(0.417127\pi\)
\(368\) −3.56162 −0.185662
\(369\) 0 0
\(370\) 0.297625 0.0154728
\(371\) −0.00317005 −0.000164581 0
\(372\) 0 0
\(373\) 20.8855 1.08141 0.540705 0.841212i \(-0.318157\pi\)
0.540705 + 0.841212i \(0.318157\pi\)
\(374\) 3.03275 0.156820
\(375\) 0 0
\(376\) 14.9488 0.770926
\(377\) −2.45294 −0.126333
\(378\) 0 0
\(379\) −29.3384 −1.50701 −0.753506 0.657442i \(-0.771639\pi\)
−0.753506 + 0.657442i \(0.771639\pi\)
\(380\) 0.146823 0.00753188
\(381\) 0 0
\(382\) −34.9261 −1.78698
\(383\) 32.6387 1.66776 0.833879 0.551947i \(-0.186115\pi\)
0.833879 + 0.551947i \(0.186115\pi\)
\(384\) 0 0
\(385\) 0.00947656 0.000482970 0
\(386\) −0.867554 −0.0441573
\(387\) 0 0
\(388\) 5.22104 0.265058
\(389\) −33.8652 −1.71704 −0.858518 0.512784i \(-0.828614\pi\)
−0.858518 + 0.512784i \(0.828614\pi\)
\(390\) 0 0
\(391\) 1.43369 0.0725051
\(392\) −17.7987 −0.898972
\(393\) 0 0
\(394\) 11.9965 0.604376
\(395\) 0.486649 0.0244860
\(396\) 0 0
\(397\) 30.3217 1.52180 0.760902 0.648867i \(-0.224757\pi\)
0.760902 + 0.648867i \(0.224757\pi\)
\(398\) −24.3361 −1.21986
\(399\) 0 0
\(400\) 22.6869 1.13435
\(401\) 34.6591 1.73079 0.865397 0.501087i \(-0.167066\pi\)
0.865397 + 0.501087i \(0.167066\pi\)
\(402\) 0 0
\(403\) 2.96565 0.147730
\(404\) 4.02137 0.200071
\(405\) 0 0
\(406\) 0.0885469 0.00439451
\(407\) 1.39300 0.0690486
\(408\) 0 0
\(409\) −13.3446 −0.659849 −0.329925 0.944007i \(-0.607023\pi\)
−0.329925 + 0.944007i \(0.607023\pi\)
\(410\) −1.01029 −0.0498948
\(411\) 0 0
\(412\) 3.66921 0.180769
\(413\) −0.419291 −0.0206320
\(414\) 0 0
\(415\) 1.22604 0.0601837
\(416\) −4.60669 −0.225862
\(417\) 0 0
\(418\) 4.78559 0.234071
\(419\) −4.41552 −0.215712 −0.107856 0.994167i \(-0.534399\pi\)
−0.107856 + 0.994167i \(0.534399\pi\)
\(420\) 0 0
\(421\) 17.1362 0.835168 0.417584 0.908638i \(-0.362877\pi\)
0.417584 + 0.908638i \(0.362877\pi\)
\(422\) −30.7359 −1.49620
\(423\) 0 0
\(424\) 0.139177 0.00675905
\(425\) −9.13241 −0.442987
\(426\) 0 0
\(427\) 0.234418 0.0113443
\(428\) −1.29565 −0.0626278
\(429\) 0 0
\(430\) 1.72024 0.0829575
\(431\) −12.9834 −0.625388 −0.312694 0.949854i \(-0.601231\pi\)
−0.312694 + 0.949854i \(0.601231\pi\)
\(432\) 0 0
\(433\) 24.6959 1.18681 0.593404 0.804905i \(-0.297784\pi\)
0.593404 + 0.804905i \(0.297784\pi\)
\(434\) −0.107055 −0.00513880
\(435\) 0 0
\(436\) −5.13425 −0.245886
\(437\) 2.26233 0.108222
\(438\) 0 0
\(439\) −35.0650 −1.67356 −0.836781 0.547537i \(-0.815565\pi\)
−0.836781 + 0.547537i \(0.815565\pi\)
\(440\) −0.416057 −0.0198347
\(441\) 0 0
\(442\) 6.87811 0.327158
\(443\) −3.44567 −0.163709 −0.0818544 0.996644i \(-0.526084\pi\)
−0.0818544 + 0.996644i \(0.526084\pi\)
\(444\) 0 0
\(445\) 0.567687 0.0269110
\(446\) 37.3706 1.76955
\(447\) 0 0
\(448\) −0.361938 −0.0171000
\(449\) 2.91179 0.137416 0.0687079 0.997637i \(-0.478112\pi\)
0.0687079 + 0.997637i \(0.478112\pi\)
\(450\) 0 0
\(451\) −4.72856 −0.222659
\(452\) −3.07541 −0.144655
\(453\) 0 0
\(454\) 43.4483 2.03913
\(455\) 0.0214923 0.00100757
\(456\) 0 0
\(457\) 28.9796 1.35561 0.677805 0.735241i \(-0.262931\pi\)
0.677805 + 0.735241i \(0.262931\pi\)
\(458\) 21.9343 1.02492
\(459\) 0 0
\(460\) 0.0396224 0.00184741
\(461\) 21.7458 1.01280 0.506402 0.862297i \(-0.330975\pi\)
0.506402 + 0.862297i \(0.330975\pi\)
\(462\) 0 0
\(463\) 20.8839 0.970556 0.485278 0.874360i \(-0.338718\pi\)
0.485278 + 0.874360i \(0.338718\pi\)
\(464\) −4.55824 −0.211611
\(465\) 0 0
\(466\) −5.42436 −0.251279
\(467\) 18.3950 0.851221 0.425610 0.904906i \(-0.360059\pi\)
0.425610 + 0.904906i \(0.360059\pi\)
\(468\) 0 0
\(469\) 0.251399 0.0116085
\(470\) −1.35794 −0.0626371
\(471\) 0 0
\(472\) 18.4085 0.847319
\(473\) 8.05141 0.370204
\(474\) 0 0
\(475\) −14.4107 −0.661207
\(476\) −0.0356531 −0.00163416
\(477\) 0 0
\(478\) 21.3106 0.974723
\(479\) 9.30916 0.425347 0.212673 0.977123i \(-0.431783\pi\)
0.212673 + 0.977123i \(0.431783\pi\)
\(480\) 0 0
\(481\) 3.15925 0.144049
\(482\) −32.2828 −1.47044
\(483\) 0 0
\(484\) −3.29652 −0.149842
\(485\) 2.35430 0.106903
\(486\) 0 0
\(487\) 20.2090 0.915755 0.457877 0.889015i \(-0.348610\pi\)
0.457877 + 0.889015i \(0.348610\pi\)
\(488\) −10.2918 −0.465889
\(489\) 0 0
\(490\) 1.61682 0.0730407
\(491\) 9.51156 0.429251 0.214625 0.976696i \(-0.431147\pi\)
0.214625 + 0.976696i \(0.431147\pi\)
\(492\) 0 0
\(493\) 1.83487 0.0826386
\(494\) 10.8534 0.488320
\(495\) 0 0
\(496\) 5.51099 0.247451
\(497\) 0.863710 0.0387427
\(498\) 0 0
\(499\) −4.58145 −0.205094 −0.102547 0.994728i \(-0.532699\pi\)
−0.102547 + 0.994728i \(0.532699\pi\)
\(500\) −0.505937 −0.0226262
\(501\) 0 0
\(502\) 10.6803 0.476685
\(503\) −8.85873 −0.394991 −0.197496 0.980304i \(-0.563281\pi\)
−0.197496 + 0.980304i \(0.563281\pi\)
\(504\) 0 0
\(505\) 1.81334 0.0806924
\(506\) 1.29146 0.0574124
\(507\) 0 0
\(508\) −4.20848 −0.186721
\(509\) −27.7440 −1.22973 −0.614865 0.788632i \(-0.710790\pi\)
−0.614865 + 0.788632i \(0.710790\pi\)
\(510\) 0 0
\(511\) 0.191746 0.00848233
\(512\) 14.6309 0.646599
\(513\) 0 0
\(514\) −2.49503 −0.110051
\(515\) 1.65454 0.0729077
\(516\) 0 0
\(517\) −6.35568 −0.279523
\(518\) −0.114043 −0.00501078
\(519\) 0 0
\(520\) −0.943592 −0.0413793
\(521\) 25.4524 1.11509 0.557546 0.830146i \(-0.311743\pi\)
0.557546 + 0.830146i \(0.311743\pi\)
\(522\) 0 0
\(523\) 25.8717 1.13129 0.565646 0.824648i \(-0.308627\pi\)
0.565646 + 0.824648i \(0.308627\pi\)
\(524\) −6.18636 −0.270252
\(525\) 0 0
\(526\) 25.2445 1.10071
\(527\) −2.21840 −0.0966349
\(528\) 0 0
\(529\) −22.3895 −0.973456
\(530\) −0.0126428 −0.000549167 0
\(531\) 0 0
\(532\) −0.0562595 −0.00243916
\(533\) −10.7241 −0.464513
\(534\) 0 0
\(535\) −0.584243 −0.0252590
\(536\) −11.0374 −0.476742
\(537\) 0 0
\(538\) 6.63008 0.285843
\(539\) 7.56737 0.325950
\(540\) 0 0
\(541\) 4.29297 0.184569 0.0922845 0.995733i \(-0.470583\pi\)
0.0922845 + 0.995733i \(0.470583\pi\)
\(542\) 28.6278 1.22967
\(543\) 0 0
\(544\) 3.44594 0.147744
\(545\) −2.31516 −0.0991706
\(546\) 0 0
\(547\) −18.5239 −0.792026 −0.396013 0.918245i \(-0.629606\pi\)
−0.396013 + 0.918245i \(0.629606\pi\)
\(548\) −5.76632 −0.246325
\(549\) 0 0
\(550\) −8.22641 −0.350775
\(551\) 2.89537 0.123347
\(552\) 0 0
\(553\) −0.186473 −0.00792964
\(554\) −19.0071 −0.807532
\(555\) 0 0
\(556\) 0.547960 0.0232387
\(557\) 25.5627 1.08313 0.541564 0.840660i \(-0.317833\pi\)
0.541564 + 0.840660i \(0.317833\pi\)
\(558\) 0 0
\(559\) 18.2601 0.772321
\(560\) 0.0399385 0.00168771
\(561\) 0 0
\(562\) −0.221728 −0.00935302
\(563\) 37.7859 1.59248 0.796242 0.604978i \(-0.206818\pi\)
0.796242 + 0.604978i \(0.206818\pi\)
\(564\) 0 0
\(565\) −1.38678 −0.0583422
\(566\) −12.3937 −0.520946
\(567\) 0 0
\(568\) −37.9201 −1.59109
\(569\) 37.5277 1.57324 0.786622 0.617435i \(-0.211828\pi\)
0.786622 + 0.617435i \(0.211828\pi\)
\(570\) 0 0
\(571\) −10.1411 −0.424392 −0.212196 0.977227i \(-0.568061\pi\)
−0.212196 + 0.977227i \(0.568061\pi\)
\(572\) 0.889684 0.0371996
\(573\) 0 0
\(574\) 0.387122 0.0161581
\(575\) −3.88893 −0.162179
\(576\) 0 0
\(577\) 42.3619 1.76355 0.881775 0.471670i \(-0.156349\pi\)
0.881775 + 0.471670i \(0.156349\pi\)
\(578\) 20.8341 0.866584
\(579\) 0 0
\(580\) 0.0507097 0.00210560
\(581\) −0.469789 −0.0194901
\(582\) 0 0
\(583\) −0.0591731 −0.00245070
\(584\) −8.41836 −0.348354
\(585\) 0 0
\(586\) 28.9305 1.19511
\(587\) 41.3222 1.70555 0.852775 0.522279i \(-0.174918\pi\)
0.852775 + 0.522279i \(0.174918\pi\)
\(588\) 0 0
\(589\) −3.50056 −0.144238
\(590\) −1.67221 −0.0688439
\(591\) 0 0
\(592\) 5.87075 0.241286
\(593\) 27.3325 1.12241 0.561206 0.827676i \(-0.310338\pi\)
0.561206 + 0.827676i \(0.310338\pi\)
\(594\) 0 0
\(595\) −0.0160769 −0.000659088 0
\(596\) −1.70831 −0.0699752
\(597\) 0 0
\(598\) 2.92896 0.119774
\(599\) 16.5875 0.677748 0.338874 0.940832i \(-0.389954\pi\)
0.338874 + 0.940832i \(0.389954\pi\)
\(600\) 0 0
\(601\) −29.9840 −1.22307 −0.611536 0.791217i \(-0.709448\pi\)
−0.611536 + 0.791217i \(0.709448\pi\)
\(602\) −0.659159 −0.0268653
\(603\) 0 0
\(604\) −5.91025 −0.240485
\(605\) −1.48648 −0.0604341
\(606\) 0 0
\(607\) −32.6427 −1.32493 −0.662464 0.749094i \(-0.730489\pi\)
−0.662464 + 0.749094i \(0.730489\pi\)
\(608\) 5.43759 0.220523
\(609\) 0 0
\(610\) 0.934903 0.0378531
\(611\) −14.4143 −0.583141
\(612\) 0 0
\(613\) 25.4682 1.02865 0.514325 0.857596i \(-0.328043\pi\)
0.514325 + 0.857596i \(0.328043\pi\)
\(614\) 30.4298 1.22805
\(615\) 0 0
\(616\) 0.159424 0.00642336
\(617\) −5.58811 −0.224969 −0.112484 0.993653i \(-0.535881\pi\)
−0.112484 + 0.993653i \(0.535881\pi\)
\(618\) 0 0
\(619\) 35.9924 1.44666 0.723329 0.690504i \(-0.242611\pi\)
0.723329 + 0.690504i \(0.242611\pi\)
\(620\) −0.0613090 −0.00246223
\(621\) 0 0
\(622\) −42.4310 −1.70133
\(623\) −0.217525 −0.00871496
\(624\) 0 0
\(625\) 24.6575 0.986301
\(626\) 14.2287 0.568694
\(627\) 0 0
\(628\) 0.494355 0.0197269
\(629\) −2.36322 −0.0942276
\(630\) 0 0
\(631\) −1.71845 −0.0684105 −0.0342053 0.999415i \(-0.510890\pi\)
−0.0342053 + 0.999415i \(0.510890\pi\)
\(632\) 8.18686 0.325656
\(633\) 0 0
\(634\) 18.7602 0.745064
\(635\) −1.89771 −0.0753083
\(636\) 0 0
\(637\) 17.1624 0.679997
\(638\) 1.65284 0.0654366
\(639\) 0 0
\(640\) −2.01145 −0.0795096
\(641\) −4.82736 −0.190669 −0.0953347 0.995445i \(-0.530392\pi\)
−0.0953347 + 0.995445i \(0.530392\pi\)
\(642\) 0 0
\(643\) −33.0164 −1.30204 −0.651020 0.759061i \(-0.725659\pi\)
−0.651020 + 0.759061i \(0.725659\pi\)
\(644\) −0.0151824 −0.000598272 0
\(645\) 0 0
\(646\) −8.11870 −0.319426
\(647\) 7.25011 0.285031 0.142516 0.989793i \(-0.454481\pi\)
0.142516 + 0.989793i \(0.454481\pi\)
\(648\) 0 0
\(649\) −7.82660 −0.307221
\(650\) −18.6570 −0.731788
\(651\) 0 0
\(652\) −4.79064 −0.187616
\(653\) −40.2602 −1.57550 −0.787751 0.615994i \(-0.788755\pi\)
−0.787751 + 0.615994i \(0.788755\pi\)
\(654\) 0 0
\(655\) −2.78958 −0.108998
\(656\) −19.9283 −0.778070
\(657\) 0 0
\(658\) 0.520332 0.0202847
\(659\) −34.4719 −1.34284 −0.671418 0.741079i \(-0.734314\pi\)
−0.671418 + 0.741079i \(0.734314\pi\)
\(660\) 0 0
\(661\) −31.9494 −1.24269 −0.621344 0.783538i \(-0.713413\pi\)
−0.621344 + 0.783538i \(0.713413\pi\)
\(662\) 33.2785 1.29341
\(663\) 0 0
\(664\) 20.6255 0.800426
\(665\) −0.0253688 −0.000983760 0
\(666\) 0 0
\(667\) 0.781359 0.0302543
\(668\) −4.80852 −0.186047
\(669\) 0 0
\(670\) 1.00263 0.0387349
\(671\) 4.37571 0.168922
\(672\) 0 0
\(673\) 22.8571 0.881077 0.440538 0.897734i \(-0.354788\pi\)
0.440538 + 0.897734i \(0.354788\pi\)
\(674\) 18.2319 0.702267
\(675\) 0 0
\(676\) −2.34175 −0.0900672
\(677\) 42.6273 1.63830 0.819150 0.573580i \(-0.194446\pi\)
0.819150 + 0.573580i \(0.194446\pi\)
\(678\) 0 0
\(679\) −0.902114 −0.0346200
\(680\) 0.705835 0.0270676
\(681\) 0 0
\(682\) −1.99831 −0.0765194
\(683\) 41.5204 1.58873 0.794367 0.607438i \(-0.207803\pi\)
0.794367 + 0.607438i \(0.207803\pi\)
\(684\) 0 0
\(685\) −2.60018 −0.0993478
\(686\) −1.23936 −0.0473190
\(687\) 0 0
\(688\) 33.9323 1.29366
\(689\) −0.134201 −0.00511266
\(690\) 0 0
\(691\) −16.2283 −0.617353 −0.308676 0.951167i \(-0.599886\pi\)
−0.308676 + 0.951167i \(0.599886\pi\)
\(692\) 2.36534 0.0899169
\(693\) 0 0
\(694\) 18.5808 0.705318
\(695\) 0.247089 0.00937262
\(696\) 0 0
\(697\) 8.02196 0.303853
\(698\) −15.4845 −0.586099
\(699\) 0 0
\(700\) 0.0967098 0.00365529
\(701\) 48.6772 1.83851 0.919257 0.393658i \(-0.128791\pi\)
0.919257 + 0.393658i \(0.128791\pi\)
\(702\) 0 0
\(703\) −3.72908 −0.140645
\(704\) −6.75604 −0.254628
\(705\) 0 0
\(706\) 18.8987 0.711263
\(707\) −0.694830 −0.0261318
\(708\) 0 0
\(709\) 51.1081 1.91941 0.959703 0.281017i \(-0.0906717\pi\)
0.959703 + 0.281017i \(0.0906717\pi\)
\(710\) 3.44464 0.129275
\(711\) 0 0
\(712\) 9.55017 0.357908
\(713\) −0.944677 −0.0353784
\(714\) 0 0
\(715\) 0.401181 0.0150033
\(716\) −3.92525 −0.146693
\(717\) 0 0
\(718\) 30.0287 1.12066
\(719\) −33.1064 −1.23466 −0.617330 0.786704i \(-0.711786\pi\)
−0.617330 + 0.786704i \(0.711786\pi\)
\(720\) 0 0
\(721\) −0.633983 −0.0236107
\(722\) 16.2244 0.603811
\(723\) 0 0
\(724\) −2.39989 −0.0891913
\(725\) −4.97713 −0.184846
\(726\) 0 0
\(727\) −15.0301 −0.557435 −0.278717 0.960373i \(-0.589909\pi\)
−0.278717 + 0.960373i \(0.589909\pi\)
\(728\) 0.361564 0.0134004
\(729\) 0 0
\(730\) 0.764717 0.0283035
\(731\) −13.6591 −0.505201
\(732\) 0 0
\(733\) 37.0618 1.36891 0.684454 0.729056i \(-0.260040\pi\)
0.684454 + 0.729056i \(0.260040\pi\)
\(734\) −15.0724 −0.556332
\(735\) 0 0
\(736\) 1.46741 0.0540895
\(737\) 4.69269 0.172857
\(738\) 0 0
\(739\) −32.1984 −1.18444 −0.592219 0.805777i \(-0.701748\pi\)
−0.592219 + 0.805777i \(0.701748\pi\)
\(740\) −0.0653112 −0.00240089
\(741\) 0 0
\(742\) 0.00484442 0.000177844 0
\(743\) 8.93641 0.327845 0.163923 0.986473i \(-0.447585\pi\)
0.163923 + 0.986473i \(0.447585\pi\)
\(744\) 0 0
\(745\) −0.770321 −0.0282224
\(746\) −31.9169 −1.16856
\(747\) 0 0
\(748\) −0.665510 −0.0243335
\(749\) 0.223869 0.00817999
\(750\) 0 0
\(751\) −0.773158 −0.0282129 −0.0141065 0.999900i \(-0.504490\pi\)
−0.0141065 + 0.999900i \(0.504490\pi\)
\(752\) −26.7858 −0.976776
\(753\) 0 0
\(754\) 3.74855 0.136514
\(755\) −2.66508 −0.0969922
\(756\) 0 0
\(757\) −36.5342 −1.32786 −0.663929 0.747796i \(-0.731112\pi\)
−0.663929 + 0.747796i \(0.731112\pi\)
\(758\) 44.8344 1.62846
\(759\) 0 0
\(760\) 1.11379 0.0404013
\(761\) −6.50231 −0.235709 −0.117854 0.993031i \(-0.537602\pi\)
−0.117854 + 0.993031i \(0.537602\pi\)
\(762\) 0 0
\(763\) 0.887118 0.0321158
\(764\) 7.66423 0.277282
\(765\) 0 0
\(766\) −49.8779 −1.80216
\(767\) −17.7503 −0.640926
\(768\) 0 0
\(769\) −36.1435 −1.30337 −0.651683 0.758491i \(-0.725937\pi\)
−0.651683 + 0.758491i \(0.725937\pi\)
\(770\) −0.0144819 −0.000521892 0
\(771\) 0 0
\(772\) 0.190377 0.00685181
\(773\) 3.21379 0.115592 0.0577959 0.998328i \(-0.481593\pi\)
0.0577959 + 0.998328i \(0.481593\pi\)
\(774\) 0 0
\(775\) 6.01745 0.216153
\(776\) 39.6062 1.42178
\(777\) 0 0
\(778\) 51.7523 1.85541
\(779\) 12.6584 0.453534
\(780\) 0 0
\(781\) 16.1222 0.576899
\(782\) −2.19095 −0.0783482
\(783\) 0 0
\(784\) 31.8923 1.13901
\(785\) 0.222917 0.00795625
\(786\) 0 0
\(787\) −29.1577 −1.03936 −0.519680 0.854361i \(-0.673949\pi\)
−0.519680 + 0.854361i \(0.673949\pi\)
\(788\) −2.63253 −0.0937799
\(789\) 0 0
\(790\) −0.743689 −0.0264593
\(791\) 0.531383 0.0188938
\(792\) 0 0
\(793\) 9.92386 0.352407
\(794\) −46.3371 −1.64444
\(795\) 0 0
\(796\) 5.34034 0.189283
\(797\) −16.3600 −0.579500 −0.289750 0.957102i \(-0.593572\pi\)
−0.289750 + 0.957102i \(0.593572\pi\)
\(798\) 0 0
\(799\) 10.7823 0.381452
\(800\) −9.34719 −0.330473
\(801\) 0 0
\(802\) −52.9655 −1.87028
\(803\) 3.57918 0.126306
\(804\) 0 0
\(805\) −0.00684614 −0.000241295 0
\(806\) −4.53206 −0.159635
\(807\) 0 0
\(808\) 30.5057 1.07319
\(809\) −0.968702 −0.0340577 −0.0170289 0.999855i \(-0.505421\pi\)
−0.0170289 + 0.999855i \(0.505421\pi\)
\(810\) 0 0
\(811\) −32.8852 −1.15476 −0.577378 0.816477i \(-0.695924\pi\)
−0.577378 + 0.816477i \(0.695924\pi\)
\(812\) −0.0194308 −0.000681888 0
\(813\) 0 0
\(814\) −2.12877 −0.0746132
\(815\) −2.16022 −0.0756691
\(816\) 0 0
\(817\) −21.5537 −0.754068
\(818\) 20.3930 0.713026
\(819\) 0 0
\(820\) 0.221700 0.00774208
\(821\) 13.8449 0.483192 0.241596 0.970377i \(-0.422329\pi\)
0.241596 + 0.970377i \(0.422329\pi\)
\(822\) 0 0
\(823\) 19.8751 0.692804 0.346402 0.938086i \(-0.387403\pi\)
0.346402 + 0.938086i \(0.387403\pi\)
\(824\) 27.8342 0.969651
\(825\) 0 0
\(826\) 0.640754 0.0222947
\(827\) −24.5929 −0.855181 −0.427590 0.903973i \(-0.640637\pi\)
−0.427590 + 0.903973i \(0.640637\pi\)
\(828\) 0 0
\(829\) −44.4191 −1.54274 −0.771370 0.636387i \(-0.780428\pi\)
−0.771370 + 0.636387i \(0.780428\pi\)
\(830\) −1.87361 −0.0650339
\(831\) 0 0
\(832\) −15.3223 −0.531205
\(833\) −12.8380 −0.444809
\(834\) 0 0
\(835\) −2.16828 −0.0750364
\(836\) −1.05015 −0.0363203
\(837\) 0 0
\(838\) 6.74773 0.233096
\(839\) 18.9679 0.654844 0.327422 0.944878i \(-0.393820\pi\)
0.327422 + 0.944878i \(0.393820\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −26.1873 −0.902474
\(843\) 0 0
\(844\) 6.74472 0.232163
\(845\) −1.05595 −0.0363259
\(846\) 0 0
\(847\) 0.569587 0.0195712
\(848\) −0.249382 −0.00856382
\(849\) 0 0
\(850\) 13.9560 0.478687
\(851\) −1.00635 −0.0344971
\(852\) 0 0
\(853\) −6.18209 −0.211671 −0.105835 0.994384i \(-0.533752\pi\)
−0.105835 + 0.994384i \(0.533752\pi\)
\(854\) −0.358234 −0.0122585
\(855\) 0 0
\(856\) −9.82869 −0.335938
\(857\) −26.6845 −0.911526 −0.455763 0.890101i \(-0.650634\pi\)
−0.455763 + 0.890101i \(0.650634\pi\)
\(858\) 0 0
\(859\) −43.7240 −1.49184 −0.745922 0.666033i \(-0.767991\pi\)
−0.745922 + 0.666033i \(0.767991\pi\)
\(860\) −0.377492 −0.0128724
\(861\) 0 0
\(862\) 19.8410 0.675788
\(863\) 32.7025 1.11320 0.556602 0.830779i \(-0.312105\pi\)
0.556602 + 0.830779i \(0.312105\pi\)
\(864\) 0 0
\(865\) 1.06659 0.0362652
\(866\) −37.7398 −1.28245
\(867\) 0 0
\(868\) 0.0234922 0.000797378 0
\(869\) −3.48075 −0.118076
\(870\) 0 0
\(871\) 10.6427 0.360616
\(872\) −38.9478 −1.31894
\(873\) 0 0
\(874\) −3.45725 −0.116943
\(875\) 0.0874180 0.00295527
\(876\) 0 0
\(877\) −23.1085 −0.780317 −0.390159 0.920748i \(-0.627580\pi\)
−0.390159 + 0.920748i \(0.627580\pi\)
\(878\) 53.5858 1.80843
\(879\) 0 0
\(880\) 0.745503 0.0251309
\(881\) −42.3370 −1.42637 −0.713184 0.700976i \(-0.752748\pi\)
−0.713184 + 0.700976i \(0.752748\pi\)
\(882\) 0 0
\(883\) −40.9401 −1.37774 −0.688872 0.724883i \(-0.741894\pi\)
−0.688872 + 0.724883i \(0.741894\pi\)
\(884\) −1.50934 −0.0507646
\(885\) 0 0
\(886\) 5.26562 0.176902
\(887\) −11.9422 −0.400980 −0.200490 0.979696i \(-0.564253\pi\)
−0.200490 + 0.979696i \(0.564253\pi\)
\(888\) 0 0
\(889\) 0.727160 0.0243882
\(890\) −0.867531 −0.0290797
\(891\) 0 0
\(892\) −8.20065 −0.274578
\(893\) 17.0142 0.569359
\(894\) 0 0
\(895\) −1.76999 −0.0591643
\(896\) 0.770744 0.0257487
\(897\) 0 0
\(898\) −4.44975 −0.148490
\(899\) −1.20902 −0.0403230
\(900\) 0 0
\(901\) 0.100386 0.00334436
\(902\) 7.22611 0.240603
\(903\) 0 0
\(904\) −23.3297 −0.775935
\(905\) −1.08217 −0.0359726
\(906\) 0 0
\(907\) 16.9795 0.563795 0.281898 0.959444i \(-0.409036\pi\)
0.281898 + 0.959444i \(0.409036\pi\)
\(908\) −9.53434 −0.316408
\(909\) 0 0
\(910\) −0.0328442 −0.00108877
\(911\) −29.0868 −0.963687 −0.481844 0.876257i \(-0.660033\pi\)
−0.481844 + 0.876257i \(0.660033\pi\)
\(912\) 0 0
\(913\) −8.76921 −0.290219
\(914\) −44.2862 −1.46486
\(915\) 0 0
\(916\) −4.81328 −0.159035
\(917\) 1.06891 0.0352984
\(918\) 0 0
\(919\) 56.7951 1.87350 0.936749 0.350002i \(-0.113819\pi\)
0.936749 + 0.350002i \(0.113819\pi\)
\(920\) 0.300571 0.00990954
\(921\) 0 0
\(922\) −33.2316 −1.09443
\(923\) 36.5643 1.20353
\(924\) 0 0
\(925\) 6.41027 0.210768
\(926\) −31.9144 −1.04877
\(927\) 0 0
\(928\) 1.87803 0.0616493
\(929\) 5.22657 0.171478 0.0857391 0.996318i \(-0.472675\pi\)
0.0857391 + 0.996318i \(0.472675\pi\)
\(930\) 0 0
\(931\) −20.2579 −0.663926
\(932\) 1.19033 0.0389905
\(933\) 0 0
\(934\) −28.1110 −0.919820
\(935\) −0.300095 −0.00981416
\(936\) 0 0
\(937\) 24.4385 0.798372 0.399186 0.916870i \(-0.369293\pi\)
0.399186 + 0.916870i \(0.369293\pi\)
\(938\) −0.384184 −0.0125441
\(939\) 0 0
\(940\) 0.297987 0.00971928
\(941\) 21.9511 0.715586 0.357793 0.933801i \(-0.383529\pi\)
0.357793 + 0.933801i \(0.383529\pi\)
\(942\) 0 0
\(943\) 3.41605 0.111242
\(944\) −32.9849 −1.07357
\(945\) 0 0
\(946\) −12.3040 −0.400039
\(947\) −2.29429 −0.0745543 −0.0372771 0.999305i \(-0.511868\pi\)
−0.0372771 + 0.999305i \(0.511868\pi\)
\(948\) 0 0
\(949\) 8.11737 0.263501
\(950\) 22.0221 0.714493
\(951\) 0 0
\(952\) −0.270460 −0.00876567
\(953\) −3.38896 −0.109779 −0.0548896 0.998492i \(-0.517481\pi\)
−0.0548896 + 0.998492i \(0.517481\pi\)
\(954\) 0 0
\(955\) 3.45599 0.111833
\(956\) −4.67641 −0.151246
\(957\) 0 0
\(958\) −14.2261 −0.459625
\(959\) 0.996331 0.0321732
\(960\) 0 0
\(961\) −29.5383 −0.952848
\(962\) −4.82792 −0.155658
\(963\) 0 0
\(964\) 7.08417 0.228166
\(965\) 0.0858457 0.00276347
\(966\) 0 0
\(967\) 22.3252 0.717929 0.358965 0.933351i \(-0.383130\pi\)
0.358965 + 0.933351i \(0.383130\pi\)
\(968\) −25.0070 −0.803756
\(969\) 0 0
\(970\) −3.59780 −0.115518
\(971\) 25.9936 0.834174 0.417087 0.908867i \(-0.363051\pi\)
0.417087 + 0.908867i \(0.363051\pi\)
\(972\) 0 0
\(973\) −0.0946790 −0.00303527
\(974\) −30.8830 −0.989555
\(975\) 0 0
\(976\) 18.4412 0.590289
\(977\) −5.59628 −0.179041 −0.0895204 0.995985i \(-0.528533\pi\)
−0.0895204 + 0.995985i \(0.528533\pi\)
\(978\) 0 0
\(979\) −4.06038 −0.129770
\(980\) −0.354797 −0.0113336
\(981\) 0 0
\(982\) −14.5354 −0.463844
\(983\) 47.1635 1.50428 0.752141 0.659002i \(-0.229021\pi\)
0.752141 + 0.659002i \(0.229021\pi\)
\(984\) 0 0
\(985\) −1.18707 −0.0378233
\(986\) −2.80403 −0.0892984
\(987\) 0 0
\(988\) −2.38169 −0.0757716
\(989\) −5.81657 −0.184956
\(990\) 0 0
\(991\) 21.3455 0.678061 0.339030 0.940775i \(-0.389901\pi\)
0.339030 + 0.940775i \(0.389901\pi\)
\(992\) −2.27057 −0.0720907
\(993\) 0 0
\(994\) −1.31991 −0.0418649
\(995\) 2.40809 0.0763416
\(996\) 0 0
\(997\) −38.4855 −1.21885 −0.609424 0.792844i \(-0.708599\pi\)
−0.609424 + 0.792844i \(0.708599\pi\)
\(998\) 7.00129 0.221622
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2349.2.a.e.1.3 11
3.2 odd 2 2349.2.a.f.1.9 11
9.2 odd 6 261.2.e.a.175.3 yes 22
9.4 even 3 783.2.e.a.262.9 22
9.5 odd 6 261.2.e.a.88.3 22
9.7 even 3 783.2.e.a.523.9 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
261.2.e.a.88.3 22 9.5 odd 6
261.2.e.a.175.3 yes 22 9.2 odd 6
783.2.e.a.262.9 22 9.4 even 3
783.2.e.a.523.9 22 9.7 even 3
2349.2.a.e.1.3 11 1.1 even 1 trivial
2349.2.a.f.1.9 11 3.2 odd 2