Properties

Label 2349.2.a
Level $2349$
Weight $2$
Character orbit 2349.a
Rep. character $\chi_{2349}(1,\cdot)$
Character field $\Q$
Dimension $112$
Newform subspaces $10$
Sturm bound $540$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2349 = 3^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2349.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(540\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2349))\).

Total New Old
Modular forms 282 112 170
Cusp forms 259 112 147
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(29\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(63\)\(25\)\(38\)\(58\)\(25\)\(33\)\(5\)\(0\)\(5\)
\(+\)\(-\)\(-\)\(75\)\(31\)\(44\)\(69\)\(31\)\(38\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(-\)\(75\)\(31\)\(44\)\(69\)\(31\)\(38\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(+\)\(69\)\(25\)\(44\)\(63\)\(25\)\(38\)\(6\)\(0\)\(6\)
Plus space\(+\)\(132\)\(50\)\(82\)\(121\)\(50\)\(71\)\(11\)\(0\)\(11\)
Minus space\(-\)\(150\)\(62\)\(88\)\(138\)\(62\)\(76\)\(12\)\(0\)\(12\)

Trace form

\( 112 q + 112 q^{4} - 4 q^{7} - 4 q^{13} + 112 q^{16} - 16 q^{19} - 12 q^{22} + 100 q^{25} - 16 q^{28} - 28 q^{31} - 36 q^{34} - 16 q^{37} - 24 q^{40} - 4 q^{43} - 24 q^{46} + 132 q^{49} - 16 q^{52} + 12 q^{55}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2349))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 29
2349.2.a.a 2349.a 1.a $7$ $18.757$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 2349.2.a.a \(-1\) \(0\) \(-6\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(-1+\beta _{6})q^{5}+\cdots\)
2349.2.a.b 2349.a 1.a $7$ $18.757$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 2349.2.a.b \(-1\) \(0\) \(-2\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{2}+(1+\beta _{2}-\beta _{4})q^{4}+(-\beta _{3}+\cdots)q^{5}+\cdots\)
2349.2.a.c 2349.a 1.a $7$ $18.757$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 2349.2.a.b \(1\) \(0\) \(2\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{2}+(1+\beta _{2}-\beta _{4})q^{4}+(\beta _{3}+\beta _{6})q^{5}+\cdots\)
2349.2.a.d 2349.a 1.a $7$ $18.757$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 2349.2.a.a \(1\) \(0\) \(6\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(1-\beta _{6})q^{5}+\cdots\)
2349.2.a.e 2349.a 1.a $11$ $18.757$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 261.2.e.a \(-1\) \(0\) \(1\) \(-7\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{2}q^{4}+\beta _{3}q^{5}+(-1-\beta _{8}+\cdots)q^{7}+\cdots\)
2349.2.a.f 2349.a 1.a $11$ $18.757$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 261.2.e.a \(1\) \(0\) \(-1\) \(-7\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{2}q^{4}-\beta _{3}q^{5}+(-1-\beta _{8}+\cdots)q^{7}+\cdots\)
2349.2.a.g 2349.a 1.a $14$ $18.757$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 2349.2.a.g \(-2\) \(0\) \(-8\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(-1+\beta _{11}+\cdots)q^{5}+\cdots\)
2349.2.a.h 2349.a 1.a $14$ $18.757$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 2349.2.a.g \(2\) \(0\) \(8\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(1-\beta _{11})q^{5}+\cdots\)
2349.2.a.i 2349.a 1.a $17$ $18.757$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None 261.2.e.b \(-1\) \(0\) \(1\) \(9\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}-\beta _{5}q^{5}+(1+\beta _{14}+\cdots)q^{7}+\cdots\)
2349.2.a.j 2349.a 1.a $17$ $18.757$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None 261.2.e.b \(1\) \(0\) \(-1\) \(9\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+\beta _{5}q^{5}+(1+\beta _{14}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2349))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(2349)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(87))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(261))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(783))\)\(^{\oplus 2}\)