Properties

Label 783.2.be.a.710.16
Level $783$
Weight $2$
Character 783.710
Analytic conductor $6.252$
Analytic rank $0$
Dimension $672$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(8,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(84)) chi = DirichletCharacter(H, H._module([14, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.be (of order \(84\), degree \(24\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(672\)
Relative dimension: \(28\) over \(\Q(\zeta_{84})\)
Twist minimal: no (minimal twist has level 261)
Sato-Tate group: $\mathrm{SU}(2)[C_{84}]$

Embedding invariants

Embedding label 710.16
Character \(\chi\) \(=\) 783.710
Dual form 783.2.be.a.665.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.234125 - 0.536620i) q^{2} +(1.12720 + 1.21483i) q^{4} +(1.79123 + 0.269985i) q^{5} +(2.59390 + 2.40679i) q^{7} +(2.02104 - 0.707193i) q^{8} +(0.564252 - 0.898002i) q^{10} +(0.974345 - 0.838491i) q^{11} +(-2.06180 + 3.02410i) q^{13} +(1.89883 - 0.828450i) q^{14} +(-0.154007 + 2.05508i) q^{16} +(2.82385 + 2.82385i) q^{17} +(-5.81575 - 3.65428i) q^{19} +(1.69109 + 2.48037i) q^{20} +(-0.221833 - 0.719165i) q^{22} +(-8.33810 - 3.27246i) q^{23} +(-1.64224 - 0.506563i) q^{25} +(1.14008 + 1.81442i) q^{26} +5.86408i q^{28} +(1.28158 - 5.23045i) q^{29} +(3.72396 - 2.74841i) q^{31} +(4.85287 + 2.56482i) q^{32} +(2.17647 - 0.854200i) q^{34} +(3.99648 + 5.01143i) q^{35} +(2.62155 + 7.49197i) q^{37} +(-3.32257 + 2.26529i) q^{38} +(3.81109 - 0.721097i) q^{40} +(-6.95493 - 1.86357i) q^{41} +(1.32201 - 1.79126i) q^{43} +(2.11691 + 0.238518i) q^{44} +(-3.70823 + 3.70823i) q^{46} +(-1.08573 - 1.26165i) q^{47} +(0.412579 + 5.50549i) q^{49} +(-0.656321 + 0.762658i) q^{50} +(-5.99783 + 0.904027i) q^{52} +(-6.55714 - 5.22915i) q^{53} +(1.97166 - 1.23888i) q^{55} +(6.94443 + 3.02983i) q^{56} +(-2.50671 - 1.91230i) q^{58} +(7.47986 - 4.31850i) q^{59} +(13.5329 - 0.506365i) q^{61} +(-0.602979 - 2.64182i) q^{62} +(-0.709949 + 0.566166i) q^{64} +(-4.50962 + 4.86022i) q^{65} +(10.9354 - 0.819497i) q^{67} +(-0.247461 + 6.61353i) q^{68} +(3.62491 - 0.971292i) q^{70} +(3.89744 - 1.87691i) q^{71} +(0.963648 - 8.55261i) q^{73} +(4.63411 + 0.347279i) q^{74} +(-2.11617 - 11.1843i) q^{76} +(4.54542 + 0.170078i) q^{77} +(0.335835 - 1.77493i) q^{79} +(-0.830703 + 3.63955i) q^{80} +(-2.62835 + 3.29585i) q^{82} +(0.302531 - 0.980782i) q^{83} +(4.29577 + 5.82057i) q^{85} +(-0.651711 - 1.12880i) q^{86} +(1.37622 - 2.38367i) q^{88} +(2.15138 - 0.242402i) q^{89} +(-12.6265 + 2.88191i) q^{91} +(-5.42320 - 13.8181i) q^{92} +(-0.931222 + 0.287244i) q^{94} +(-9.43077 - 8.11583i) q^{95} +(-0.817727 - 1.54721i) q^{97} +(3.05095 + 1.06757i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 672 q + 36 q^{2} - 14 q^{4} + 42 q^{5} - 10 q^{7} - 56 q^{10} + 48 q^{11} - 14 q^{13} + 24 q^{14} - 54 q^{16} - 48 q^{19} + 30 q^{20} - 14 q^{22} + 30 q^{23} + 30 q^{25} - 12 q^{31} - 24 q^{32} - 14 q^{34}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.234125 0.536620i 0.165551 0.379448i −0.813936 0.580955i \(-0.802679\pi\)
0.979487 + 0.201507i \(0.0645840\pi\)
\(3\) 0 0
\(4\) 1.12720 + 1.21483i 0.563599 + 0.607416i
\(5\) 1.79123 + 0.269985i 0.801064 + 0.120741i 0.536800 0.843709i \(-0.319633\pi\)
0.264264 + 0.964450i \(0.414871\pi\)
\(6\) 0 0
\(7\) 2.59390 + 2.40679i 0.980401 + 0.909680i 0.995924 0.0901999i \(-0.0287506\pi\)
−0.0155222 + 0.999880i \(0.504941\pi\)
\(8\) 2.02104 0.707193i 0.714546 0.250030i
\(9\) 0 0
\(10\) 0.564252 0.898002i 0.178432 0.283973i
\(11\) 0.974345 0.838491i 0.293776 0.252815i −0.493034 0.870010i \(-0.664112\pi\)
0.786810 + 0.617195i \(0.211731\pi\)
\(12\) 0 0
\(13\) −2.06180 + 3.02410i −0.571839 + 0.838734i −0.997820 0.0659980i \(-0.978977\pi\)
0.425980 + 0.904732i \(0.359929\pi\)
\(14\) 1.89883 0.828450i 0.507483 0.221412i
\(15\) 0 0
\(16\) −0.154007 + 2.05508i −0.0385017 + 0.513770i
\(17\) 2.82385 + 2.82385i 0.684884 + 0.684884i 0.961096 0.276213i \(-0.0890795\pi\)
−0.276213 + 0.961096i \(0.589080\pi\)
\(18\) 0 0
\(19\) −5.81575 3.65428i −1.33422 0.838349i −0.339468 0.940618i \(-0.610247\pi\)
−0.994757 + 0.102269i \(0.967390\pi\)
\(20\) 1.69109 + 2.48037i 0.378139 + 0.554629i
\(21\) 0 0
\(22\) −0.221833 0.719165i −0.0472950 0.153326i
\(23\) −8.33810 3.27246i −1.73861 0.682355i −0.999966 0.00826369i \(-0.997370\pi\)
−0.738648 0.674092i \(-0.764535\pi\)
\(24\) 0 0
\(25\) −1.64224 0.506563i −0.328447 0.101313i
\(26\) 1.14008 + 1.81442i 0.223587 + 0.355837i
\(27\) 0 0
\(28\) 5.86408i 1.10821i
\(29\) 1.28158 5.23045i 0.237983 0.971269i
\(30\) 0 0
\(31\) 3.72396 2.74841i 0.668843 0.493629i −0.205676 0.978620i \(-0.565939\pi\)
0.874519 + 0.484992i \(0.161177\pi\)
\(32\) 4.85287 + 2.56482i 0.857874 + 0.453400i
\(33\) 0 0
\(34\) 2.17647 0.854200i 0.373261 0.146494i
\(35\) 3.99648 + 5.01143i 0.675529 + 0.847086i
\(36\) 0 0
\(37\) 2.62155 + 7.49197i 0.430981 + 1.23167i 0.930796 + 0.365540i \(0.119116\pi\)
−0.499815 + 0.866132i \(0.666599\pi\)
\(38\) −3.32257 + 2.26529i −0.538992 + 0.367479i
\(39\) 0 0
\(40\) 3.81109 0.721097i 0.602586 0.114015i
\(41\) −6.95493 1.86357i −1.08618 0.291040i −0.329053 0.944311i \(-0.606730\pi\)
−0.757124 + 0.653271i \(0.773396\pi\)
\(42\) 0 0
\(43\) 1.32201 1.79126i 0.201605 0.273165i −0.692118 0.721784i \(-0.743322\pi\)
0.893723 + 0.448620i \(0.148084\pi\)
\(44\) 2.11691 + 0.238518i 0.319136 + 0.0359579i
\(45\) 0 0
\(46\) −3.70823 + 3.70823i −0.546748 + 0.546748i
\(47\) −1.08573 1.26165i −0.158371 0.184030i 0.673181 0.739478i \(-0.264928\pi\)
−0.831551 + 0.555448i \(0.812547\pi\)
\(48\) 0 0
\(49\) 0.412579 + 5.50549i 0.0589399 + 0.786499i
\(50\) −0.656321 + 0.762658i −0.0928177 + 0.107856i
\(51\) 0 0
\(52\) −5.99783 + 0.904027i −0.831749 + 0.125366i
\(53\) −6.55714 5.22915i −0.900693 0.718278i 0.0593187 0.998239i \(-0.481107\pi\)
−0.960011 + 0.279961i \(0.909679\pi\)
\(54\) 0 0
\(55\) 1.97166 1.23888i 0.265859 0.167050i
\(56\) 6.94443 + 3.02983i 0.927989 + 0.404877i
\(57\) 0 0
\(58\) −2.50671 1.91230i −0.329148 0.251097i
\(59\) 7.47986 4.31850i 0.973795 0.562221i 0.0734037 0.997302i \(-0.476614\pi\)
0.900391 + 0.435082i \(0.143281\pi\)
\(60\) 0 0
\(61\) 13.5329 0.506365i 1.73271 0.0648334i 0.847720 0.530445i \(-0.177975\pi\)
0.884989 + 0.465611i \(0.154165\pi\)
\(62\) −0.602979 2.64182i −0.0765784 0.335512i
\(63\) 0 0
\(64\) −0.709949 + 0.566166i −0.0887436 + 0.0707707i
\(65\) −4.50962 + 4.86022i −0.559350 + 0.602836i
\(66\) 0 0
\(67\) 10.9354 0.819497i 1.33597 0.100117i 0.612501 0.790470i \(-0.290164\pi\)
0.723473 + 0.690352i \(0.242544\pi\)
\(68\) −0.247461 + 6.61353i −0.0300091 + 0.802009i
\(69\) 0 0
\(70\) 3.62491 0.971292i 0.433260 0.116092i
\(71\) 3.89744 1.87691i 0.462541 0.222748i −0.188075 0.982155i \(-0.560225\pi\)
0.650616 + 0.759407i \(0.274511\pi\)
\(72\) 0 0
\(73\) 0.963648 8.55261i 0.112786 1.00101i −0.802071 0.597229i \(-0.796268\pi\)
0.914857 0.403778i \(-0.132303\pi\)
\(74\) 4.63411 + 0.347279i 0.538705 + 0.0403703i
\(75\) 0 0
\(76\) −2.11617 11.1843i −0.242742 1.28292i
\(77\) 4.54542 + 0.170078i 0.517999 + 0.0193821i
\(78\) 0 0
\(79\) 0.335835 1.77493i 0.0377844 0.199695i −0.958588 0.284797i \(-0.908074\pi\)
0.996372 + 0.0851015i \(0.0271214\pi\)
\(80\) −0.830703 + 3.63955i −0.0928754 + 0.406914i
\(81\) 0 0
\(82\) −2.62835 + 3.29585i −0.290253 + 0.363965i
\(83\) 0.302531 0.980782i 0.0332071 0.107655i −0.937452 0.348115i \(-0.886822\pi\)
0.970659 + 0.240460i \(0.0772982\pi\)
\(84\) 0 0
\(85\) 4.29577 + 5.82057i 0.465942 + 0.631329i
\(86\) −0.651711 1.12880i −0.0702758 0.121721i
\(87\) 0 0
\(88\) 1.37622 2.38367i 0.146705 0.254101i
\(89\) 2.15138 0.242402i 0.228046 0.0256946i 0.00279797 0.999996i \(-0.499109\pi\)
0.225248 + 0.974301i \(0.427681\pi\)
\(90\) 0 0
\(91\) −12.6265 + 2.88191i −1.32361 + 0.302106i
\(92\) −5.42320 13.8181i −0.565408 1.44064i
\(93\) 0 0
\(94\) −0.931222 + 0.287244i −0.0960482 + 0.0296269i
\(95\) −9.43077 8.11583i −0.967576 0.832667i
\(96\) 0 0
\(97\) −0.817727 1.54721i −0.0830276 0.157096i 0.839105 0.543969i \(-0.183079\pi\)
−0.922133 + 0.386873i \(0.873555\pi\)
\(98\) 3.05095 + 1.06757i 0.308193 + 0.107841i
\(99\) 0 0
\(100\) −1.23574 2.56604i −0.123574 0.256604i
\(101\) −1.27105 0.938078i −0.126474 0.0933422i 0.528746 0.848780i \(-0.322662\pi\)
−0.655220 + 0.755438i \(0.727424\pi\)
\(102\) 0 0
\(103\) 8.55107 + 5.83002i 0.842562 + 0.574449i 0.905875 0.423545i \(-0.139214\pi\)
−0.0633131 + 0.997994i \(0.520167\pi\)
\(104\) −2.02835 + 7.56992i −0.198896 + 0.742291i
\(105\) 0 0
\(106\) −4.34126 + 2.29442i −0.421660 + 0.222854i
\(107\) −1.56083 + 3.24109i −0.150891 + 0.313328i −0.962689 0.270610i \(-0.912775\pi\)
0.811798 + 0.583938i \(0.198489\pi\)
\(108\) 0 0
\(109\) −15.2545 3.48174i −1.46111 0.333490i −0.583208 0.812323i \(-0.698203\pi\)
−0.877906 + 0.478833i \(0.841060\pi\)
\(110\) −0.203191 1.34808i −0.0193735 0.128535i
\(111\) 0 0
\(112\) −5.34561 + 4.96000i −0.505113 + 0.468676i
\(113\) 4.36660 8.26201i 0.410775 0.777225i −0.588741 0.808322i \(-0.700376\pi\)
0.999516 + 0.0310970i \(0.00990006\pi\)
\(114\) 0 0
\(115\) −14.0520 8.11291i −1.31035 0.756533i
\(116\) 7.79870 4.33885i 0.724091 0.402852i
\(117\) 0 0
\(118\) −0.566172 5.02491i −0.0521203 0.462581i
\(119\) 0.528377 + 14.1212i 0.0484362 + 1.29449i
\(120\) 0 0
\(121\) −1.39319 + 9.24318i −0.126653 + 0.840289i
\(122\) 2.89666 7.38057i 0.262251 0.668206i
\(123\) 0 0
\(124\) 7.53650 + 1.42598i 0.676797 + 0.128057i
\(125\) −10.9652 5.28058i −0.980761 0.472310i
\(126\) 0 0
\(127\) −0.619721 + 1.77106i −0.0549913 + 0.157156i −0.968103 0.250554i \(-0.919387\pi\)
0.913111 + 0.407711i \(0.133673\pi\)
\(128\) 2.97889 + 11.1174i 0.263299 + 0.982646i
\(129\) 0 0
\(130\) 1.55228 + 3.55785i 0.136144 + 0.312044i
\(131\) 3.80938 + 8.73120i 0.332828 + 0.762849i 0.999842 + 0.0178036i \(0.00566735\pi\)
−0.667014 + 0.745045i \(0.732428\pi\)
\(132\) 0 0
\(133\) −6.29040 23.4761i −0.545447 2.03564i
\(134\) 2.12050 6.06003i 0.183183 0.523507i
\(135\) 0 0
\(136\) 7.70411 + 3.71010i 0.660622 + 0.318139i
\(137\) −1.02757 0.194426i −0.0877910 0.0166110i 0.141830 0.989891i \(-0.454701\pi\)
−0.229622 + 0.973280i \(0.573749\pi\)
\(138\) 0 0
\(139\) −1.26551 + 3.22446i −0.107339 + 0.273495i −0.974444 0.224630i \(-0.927883\pi\)
0.867105 + 0.498125i \(0.165978\pi\)
\(140\) −1.58321 + 10.5039i −0.133806 + 0.887744i
\(141\) 0 0
\(142\) −0.0946987 2.53088i −0.00794694 0.212386i
\(143\) 0.526781 + 4.67531i 0.0440517 + 0.390969i
\(144\) 0 0
\(145\) 3.70775 9.02295i 0.307912 0.749315i
\(146\) −4.36389 2.51949i −0.361158 0.208515i
\(147\) 0 0
\(148\) −6.14647 + 11.6297i −0.505237 + 0.955954i
\(149\) −9.95683 + 9.23859i −0.815696 + 0.756855i −0.973027 0.230691i \(-0.925901\pi\)
0.157332 + 0.987546i \(0.449711\pi\)
\(150\) 0 0
\(151\) −2.55954 16.9814i −0.208292 1.38193i −0.811503 0.584348i \(-0.801350\pi\)
0.603211 0.797582i \(-0.293888\pi\)
\(152\) −14.3381 3.27259i −1.16298 0.265442i
\(153\) 0 0
\(154\) 1.15546 2.39935i 0.0931099 0.193345i
\(155\) 7.41251 3.91763i 0.595387 0.314671i
\(156\) 0 0
\(157\) −1.11923 + 4.17702i −0.0893242 + 0.333362i −0.996098 0.0882552i \(-0.971871\pi\)
0.906774 + 0.421618i \(0.138538\pi\)
\(158\) −0.873837 0.595772i −0.0695187 0.0473971i
\(159\) 0 0
\(160\) 8.00016 + 5.90439i 0.632469 + 0.466783i
\(161\) −13.7521 28.5564i −1.08381 2.25056i
\(162\) 0 0
\(163\) −3.67650 1.28646i −0.287966 0.100764i 0.182431 0.983219i \(-0.441603\pi\)
−0.470397 + 0.882455i \(0.655889\pi\)
\(164\) −5.57567 10.5497i −0.435386 0.823791i
\(165\) 0 0
\(166\) −0.455477 0.391970i −0.0353519 0.0304228i
\(167\) 9.41264 2.90341i 0.728372 0.224673i 0.0916769 0.995789i \(-0.470777\pi\)
0.636695 + 0.771116i \(0.280301\pi\)
\(168\) 0 0
\(169\) −0.144743 0.368799i −0.0111341 0.0283692i
\(170\) 4.12918 0.942459i 0.316694 0.0722833i
\(171\) 0 0
\(172\) 3.66625 0.413087i 0.279549 0.0314976i
\(173\) 3.25834 5.64362i 0.247727 0.429076i −0.715168 0.698953i \(-0.753650\pi\)
0.962895 + 0.269877i \(0.0869830\pi\)
\(174\) 0 0
\(175\) −3.04061 5.26648i −0.229848 0.398109i
\(176\) 1.57311 + 2.13149i 0.118578 + 0.160667i
\(177\) 0 0
\(178\) 0.373614 1.21123i 0.0280035 0.0907853i
\(179\) −15.0898 + 18.9220i −1.12786 + 1.41429i −0.230460 + 0.973082i \(0.574023\pi\)
−0.897403 + 0.441213i \(0.854548\pi\)
\(180\) 0 0
\(181\) −2.36553 + 10.3641i −0.175828 + 0.770355i 0.807699 + 0.589595i \(0.200713\pi\)
−0.983527 + 0.180759i \(0.942144\pi\)
\(182\) −1.40968 + 7.45034i −0.104492 + 0.552256i
\(183\) 0 0
\(184\) −19.1659 0.717137i −1.41293 0.0528680i
\(185\) 2.67310 + 14.1277i 0.196530 + 1.03869i
\(186\) 0 0
\(187\) 5.11917 + 0.383629i 0.374351 + 0.0280537i
\(188\) 0.308849 2.74111i 0.0225251 0.199916i
\(189\) 0 0
\(190\) −6.56310 + 3.16062i −0.476137 + 0.229296i
\(191\) −6.01366 + 1.61136i −0.435133 + 0.116594i −0.469735 0.882808i \(-0.655650\pi\)
0.0346015 + 0.999401i \(0.488984\pi\)
\(192\) 0 0
\(193\) −0.614270 + 16.4167i −0.0442161 + 1.18170i 0.783806 + 0.621006i \(0.213276\pi\)
−0.828022 + 0.560695i \(0.810534\pi\)
\(194\) −1.02172 + 0.0765671i −0.0733550 + 0.00549720i
\(195\) 0 0
\(196\) −6.22318 + 6.70700i −0.444513 + 0.479071i
\(197\) −8.02113 + 6.39664i −0.571482 + 0.455741i −0.866098 0.499874i \(-0.833380\pi\)
0.294616 + 0.955616i \(0.404808\pi\)
\(198\) 0 0
\(199\) −4.26586 18.6900i −0.302399 1.32490i −0.866494 0.499187i \(-0.833632\pi\)
0.564096 0.825709i \(-0.309225\pi\)
\(200\) −3.67726 + 0.137594i −0.260022 + 0.00972933i
\(201\) 0 0
\(202\) −0.800976 + 0.462444i −0.0563565 + 0.0325374i
\(203\) 15.9128 10.4828i 1.11686 0.735746i
\(204\) 0 0
\(205\) −11.9548 5.21581i −0.834957 0.364288i
\(206\) 5.13053 3.22372i 0.357461 0.224608i
\(207\) 0 0
\(208\) −5.89723 4.70288i −0.408899 0.326086i
\(209\) −8.73062 + 1.31593i −0.603910 + 0.0910248i
\(210\) 0 0
\(211\) 8.93001 10.3769i 0.614767 0.714372i −0.361152 0.932507i \(-0.617616\pi\)
0.975919 + 0.218135i \(0.0699973\pi\)
\(212\) −1.03867 13.8601i −0.0713363 0.951916i
\(213\) 0 0
\(214\) 1.37381 + 1.59639i 0.0939114 + 0.109127i
\(215\) 2.85164 2.85164i 0.194480 0.194480i
\(216\) 0 0
\(217\) 16.2744 + 1.83369i 1.10478 + 0.124479i
\(218\) −5.43982 + 7.37070i −0.368431 + 0.499207i
\(219\) 0 0
\(220\) 3.72748 + 0.998775i 0.251306 + 0.0673374i
\(221\) −14.3618 + 2.71740i −0.966079 + 0.182792i
\(222\) 0 0
\(223\) 17.7860 12.1263i 1.19104 0.812035i 0.205032 0.978755i \(-0.434270\pi\)
0.986004 + 0.166721i \(0.0533178\pi\)
\(224\) 6.41489 + 18.3327i 0.428613 + 1.22490i
\(225\) 0 0
\(226\) −3.41123 4.27755i −0.226912 0.284538i
\(227\) −25.1369 + 9.86550i −1.66839 + 0.654796i −0.996322 0.0856896i \(-0.972691\pi\)
−0.672072 + 0.740486i \(0.734595\pi\)
\(228\) 0 0
\(229\) −14.6405 7.73771i −0.967469 0.511322i −0.0926110 0.995702i \(-0.529521\pi\)
−0.874858 + 0.484380i \(0.839045\pi\)
\(230\) −7.64347 + 5.64114i −0.503995 + 0.371965i
\(231\) 0 0
\(232\) −1.10882 11.4773i −0.0727973 0.753519i
\(233\) 18.9493i 1.24141i 0.784044 + 0.620705i \(0.213154\pi\)
−0.784044 + 0.620705i \(0.786846\pi\)
\(234\) 0 0
\(235\) −1.60418 2.55303i −0.104645 0.166542i
\(236\) 13.6775 + 4.21896i 0.890332 + 0.274631i
\(237\) 0 0
\(238\) 7.70141 + 3.02258i 0.499208 + 0.195925i
\(239\) −2.90929 9.43170i −0.188187 0.610086i −0.999669 0.0257096i \(-0.991815\pi\)
0.811483 0.584376i \(-0.198661\pi\)
\(240\) 0 0
\(241\) 1.80931 + 2.65377i 0.116548 + 0.170944i 0.880080 0.474826i \(-0.157489\pi\)
−0.763532 + 0.645770i \(0.776537\pi\)
\(242\) 4.63390 + 2.91167i 0.297878 + 0.187169i
\(243\) 0 0
\(244\) 15.8694 + 15.8694i 1.01593 + 1.01593i
\(245\) −0.747374 + 9.97301i −0.0477480 + 0.637152i
\(246\) 0 0
\(247\) 23.0418 10.0530i 1.46611 0.639659i
\(248\) 5.58262 8.18820i 0.354497 0.519951i
\(249\) 0 0
\(250\) −5.40090 + 4.64785i −0.341583 + 0.293956i
\(251\) −1.44426 + 2.29853i −0.0911610 + 0.145082i −0.889192 0.457535i \(-0.848732\pi\)
0.798031 + 0.602617i \(0.205875\pi\)
\(252\) 0 0
\(253\) −10.8681 + 3.80292i −0.683272 + 0.239087i
\(254\) 0.805295 + 0.747204i 0.0505287 + 0.0468838i
\(255\) 0 0
\(256\) 4.86741 + 0.733644i 0.304213 + 0.0458527i
\(257\) −0.730713 0.787521i −0.0455806 0.0491242i 0.709850 0.704353i \(-0.248763\pi\)
−0.755431 + 0.655229i \(0.772572\pi\)
\(258\) 0 0
\(259\) −11.2315 + 25.7429i −0.697893 + 1.59959i
\(260\) −10.9876 −0.681421
\(261\) 0 0
\(262\) 5.57721 0.344561
\(263\) 7.21655 16.5405i 0.444992 1.01993i −0.539096 0.842245i \(-0.681234\pi\)
0.984087 0.177687i \(-0.0568614\pi\)
\(264\) 0 0
\(265\) −10.3336 11.1370i −0.634787 0.684138i
\(266\) −14.0705 2.12078i −0.862717 0.130034i
\(267\) 0 0
\(268\) 13.3219 + 12.3610i 0.813767 + 0.755066i
\(269\) −4.38546 + 1.53454i −0.267386 + 0.0935625i −0.460642 0.887586i \(-0.652381\pi\)
0.193256 + 0.981148i \(0.438095\pi\)
\(270\) 0 0
\(271\) 1.36275 2.16881i 0.0827813 0.131746i −0.802767 0.596292i \(-0.796640\pi\)
0.885549 + 0.464547i \(0.153783\pi\)
\(272\) −6.23812 + 5.36833i −0.378241 + 0.325503i
\(273\) 0 0
\(274\) −0.344912 + 0.505894i −0.0208369 + 0.0305621i
\(275\) −2.02485 + 0.883434i −0.122103 + 0.0532731i
\(276\) 0 0
\(277\) −0.222034 + 2.96284i −0.0133407 + 0.178020i 0.986553 + 0.163442i \(0.0522596\pi\)
−0.999894 + 0.0145781i \(0.995359\pi\)
\(278\) 1.43402 + 1.43402i 0.0860071 + 0.0860071i
\(279\) 0 0
\(280\) 11.6211 + 7.30202i 0.694494 + 0.436379i
\(281\) −2.90516 4.26109i −0.173308 0.254195i 0.729751 0.683713i \(-0.239636\pi\)
−0.903058 + 0.429518i \(0.858684\pi\)
\(282\) 0 0
\(283\) −4.73199 15.3407i −0.281287 0.911911i −0.980420 0.196919i \(-0.936906\pi\)
0.699132 0.714992i \(-0.253570\pi\)
\(284\) 6.67332 + 2.61908i 0.395988 + 0.155414i
\(285\) 0 0
\(286\) 2.63220 + 0.811927i 0.155645 + 0.0480102i
\(287\) −13.5552 21.5729i −0.800136 1.27341i
\(288\) 0 0
\(289\) 1.05178i 0.0618692i
\(290\) −3.97382 4.10215i −0.233351 0.240886i
\(291\) 0 0
\(292\) 11.4762 8.46982i 0.671594 0.495659i
\(293\) 18.5869 + 9.82349i 1.08586 + 0.573894i 0.911714 0.410826i \(-0.134759\pi\)
0.174147 + 0.984720i \(0.444283\pi\)
\(294\) 0 0
\(295\) 14.5641 5.71599i 0.847955 0.332798i
\(296\) 10.5965 + 13.2876i 0.615911 + 0.772328i
\(297\) 0 0
\(298\) 2.62647 + 7.50602i 0.152147 + 0.434812i
\(299\) 27.0877 18.4681i 1.56652 1.06804i
\(300\) 0 0
\(301\) 7.74034 1.46455i 0.446146 0.0844153i
\(302\) −9.71183 2.60228i −0.558853 0.149744i
\(303\) 0 0
\(304\) 8.40549 11.3890i 0.482088 0.653206i
\(305\) 24.3773 + 2.74666i 1.39584 + 0.157273i
\(306\) 0 0
\(307\) −1.65888 + 1.65888i −0.0946772 + 0.0946772i −0.752859 0.658182i \(-0.771326\pi\)
0.658182 + 0.752859i \(0.271326\pi\)
\(308\) 4.91698 + 5.71363i 0.280171 + 0.325564i
\(309\) 0 0
\(310\) −0.366824 4.89492i −0.0208342 0.278013i
\(311\) 4.21991 4.90363i 0.239289 0.278059i −0.625467 0.780250i \(-0.715092\pi\)
0.864757 + 0.502191i \(0.167473\pi\)
\(312\) 0 0
\(313\) −19.8385 + 2.99017i −1.12134 + 0.169014i −0.683437 0.730009i \(-0.739516\pi\)
−0.437900 + 0.899024i \(0.644278\pi\)
\(314\) 1.97943 + 1.57855i 0.111706 + 0.0890825i
\(315\) 0 0
\(316\) 2.53480 1.59272i 0.142593 0.0895974i
\(317\) 10.4430 + 4.55625i 0.586539 + 0.255904i 0.672139 0.740425i \(-0.265376\pi\)
−0.0855997 + 0.996330i \(0.527281\pi\)
\(318\) 0 0
\(319\) −3.13699 6.17085i −0.175638 0.345501i
\(320\) −1.42454 + 0.822459i −0.0796343 + 0.0459769i
\(321\) 0 0
\(322\) −18.5437 + 0.693855i −1.03340 + 0.0386670i
\(323\) −6.10367 26.7419i −0.339617 1.48796i
\(324\) 0 0
\(325\) 4.91785 3.92186i 0.272793 0.217546i
\(326\) −1.55110 + 1.67169i −0.0859076 + 0.0925864i
\(327\) 0 0
\(328\) −15.3741 + 1.15213i −0.848892 + 0.0636157i
\(329\) 0.220228 5.88571i 0.0121415 0.324490i
\(330\) 0 0
\(331\) 2.13003 0.570739i 0.117077 0.0313706i −0.199805 0.979836i \(-0.564031\pi\)
0.316882 + 0.948465i \(0.397364\pi\)
\(332\) 1.53250 0.738012i 0.0841067 0.0405037i
\(333\) 0 0
\(334\) 0.645703 5.73077i 0.0353313 0.313574i
\(335\) 19.8092 + 1.48449i 1.08229 + 0.0811064i
\(336\) 0 0
\(337\) 6.29336 + 33.2612i 0.342821 + 1.81185i 0.551849 + 0.833944i \(0.313923\pi\)
−0.209027 + 0.977910i \(0.567030\pi\)
\(338\) −0.231793 0.00867309i −0.0126079 0.000471754i
\(339\) 0 0
\(340\) −2.22882 + 11.7796i −0.120875 + 0.638837i
\(341\) 1.32390 5.80041i 0.0716935 0.314110i
\(342\) 0 0
\(343\) 3.26315 4.09186i 0.176193 0.220940i
\(344\) 1.40507 4.55512i 0.0757563 0.245596i
\(345\) 0 0
\(346\) −2.26562 3.06981i −0.121800 0.165034i
\(347\) 1.41886 + 2.45753i 0.0761683 + 0.131927i 0.901594 0.432584i \(-0.142398\pi\)
−0.825425 + 0.564511i \(0.809065\pi\)
\(348\) 0 0
\(349\) −13.2134 + 22.8862i −0.707295 + 1.22507i 0.258562 + 0.965995i \(0.416751\pi\)
−0.965857 + 0.259076i \(0.916582\pi\)
\(350\) −3.53798 + 0.398635i −0.189113 + 0.0213079i
\(351\) 0 0
\(352\) 6.87895 1.57007i 0.366649 0.0836852i
\(353\) −1.72127 4.38573i −0.0916142 0.233429i 0.877721 0.479172i \(-0.159063\pi\)
−0.969335 + 0.245743i \(0.920968\pi\)
\(354\) 0 0
\(355\) 7.48796 2.30973i 0.397420 0.122588i
\(356\) 2.71951 + 2.34033i 0.144134 + 0.124037i
\(357\) 0 0
\(358\) 6.62102 + 12.5276i 0.349932 + 0.662103i
\(359\) 12.5299 + 4.38440i 0.661303 + 0.231400i 0.640002 0.768373i \(-0.278933\pi\)
0.0213010 + 0.999773i \(0.493219\pi\)
\(360\) 0 0
\(361\) 12.2254 + 25.3863i 0.643442 + 1.33612i
\(362\) 5.00773 + 3.69588i 0.263201 + 0.194251i
\(363\) 0 0
\(364\) −17.7336 12.0905i −0.929491 0.633716i
\(365\) 4.03520 15.0596i 0.211212 0.788253i
\(366\) 0 0
\(367\) −18.6655 + 9.86501i −0.974332 + 0.514950i −0.877098 0.480312i \(-0.840523\pi\)
−0.0972343 + 0.995262i \(0.531000\pi\)
\(368\) 8.00929 16.6315i 0.417513 0.866975i
\(369\) 0 0
\(370\) 8.20702 + 1.87320i 0.426663 + 0.0973830i
\(371\) −4.42312 29.3455i −0.229637 1.52354i
\(372\) 0 0
\(373\) −0.342406 + 0.317706i −0.0177291 + 0.0164502i −0.688988 0.724773i \(-0.741945\pi\)
0.671258 + 0.741223i \(0.265754\pi\)
\(374\) 1.40439 2.65723i 0.0726192 0.137402i
\(375\) 0 0
\(376\) −3.08654 1.78201i −0.159176 0.0919003i
\(377\) 13.1750 + 14.6597i 0.678549 + 0.755014i
\(378\) 0 0
\(379\) 1.42454 + 12.6431i 0.0731737 + 0.649435i 0.975747 + 0.218899i \(0.0702466\pi\)
−0.902574 + 0.430535i \(0.858325\pi\)
\(380\) −0.770983 20.6049i −0.0395506 1.05701i
\(381\) 0 0
\(382\) −0.543262 + 3.60431i −0.0277957 + 0.184413i
\(383\) 4.00297 10.1994i 0.204542 0.521165i −0.791386 0.611317i \(-0.790640\pi\)
0.995928 + 0.0901518i \(0.0287352\pi\)
\(384\) 0 0
\(385\) 8.09599 + 1.53184i 0.412610 + 0.0780700i
\(386\) 8.66573 + 4.17319i 0.441074 + 0.212410i
\(387\) 0 0
\(388\) 0.957864 2.73742i 0.0486282 0.138971i
\(389\) 4.93448 + 18.4157i 0.250188 + 0.933715i 0.970704 + 0.240277i \(0.0772383\pi\)
−0.720516 + 0.693438i \(0.756095\pi\)
\(390\) 0 0
\(391\) −14.3046 32.7864i −0.723414 1.65808i
\(392\) 4.72728 + 10.8350i 0.238764 + 0.547252i
\(393\) 0 0
\(394\) 1.55462 + 5.80191i 0.0783205 + 0.292296i
\(395\) 1.08076 3.08865i 0.0543792 0.155407i
\(396\) 0 0
\(397\) −17.4974 8.42630i −0.878169 0.422904i −0.0602137 0.998186i \(-0.519178\pi\)
−0.817955 + 0.575282i \(0.804892\pi\)
\(398\) −11.0282 2.08664i −0.552791 0.104594i
\(399\) 0 0
\(400\) 1.29394 3.29691i 0.0646971 0.164846i
\(401\) −5.30567 + 35.2008i −0.264952 + 1.75784i 0.320605 + 0.947213i \(0.396114\pi\)
−0.585557 + 0.810631i \(0.699124\pi\)
\(402\) 0 0
\(403\) 0.633412 + 16.9283i 0.0315525 + 0.843258i
\(404\) −0.293120 2.60151i −0.0145833 0.129430i
\(405\) 0 0
\(406\) −1.89967 10.9934i −0.0942790 0.545595i
\(407\) 8.83625 + 5.10161i 0.437997 + 0.252878i
\(408\) 0 0
\(409\) 5.87118 11.1088i 0.290311 0.549296i −0.695218 0.718798i \(-0.744692\pi\)
0.985530 + 0.169503i \(0.0542162\pi\)
\(410\) −5.59782 + 5.19402i −0.276457 + 0.256514i
\(411\) 0 0
\(412\) 2.55626 + 16.9597i 0.125938 + 0.835545i
\(413\) 29.7957 + 6.80067i 1.46615 + 0.334639i
\(414\) 0 0
\(415\) 0.806700 1.67513i 0.0395994 0.0822289i
\(416\) −17.7619 + 9.38743i −0.870848 + 0.460257i
\(417\) 0 0
\(418\) −1.33790 + 4.99312i −0.0654390 + 0.244222i
\(419\) −8.10443 5.52551i −0.395927 0.269939i 0.348948 0.937142i \(-0.386539\pi\)
−0.744876 + 0.667203i \(0.767491\pi\)
\(420\) 0 0
\(421\) −3.24358 2.39387i −0.158083 0.116670i 0.511907 0.859041i \(-0.328939\pi\)
−0.669989 + 0.742371i \(0.733701\pi\)
\(422\) −3.47769 7.22150i −0.169291 0.351537i
\(423\) 0 0
\(424\) −16.9503 5.93115i −0.823177 0.288042i
\(425\) −3.20697 6.06788i −0.155561 0.294335i
\(426\) 0 0
\(427\) 36.3217 + 31.2573i 1.75773 + 1.51265i
\(428\) −5.69674 + 1.75721i −0.275362 + 0.0849380i
\(429\) 0 0
\(430\) −0.862608 2.19789i −0.0415987 0.105992i
\(431\) −30.2968 + 6.91504i −1.45934 + 0.333086i −0.877249 0.480035i \(-0.840624\pi\)
−0.582095 + 0.813121i \(0.697767\pi\)
\(432\) 0 0
\(433\) −17.4126 + 1.96193i −0.836797 + 0.0942844i −0.519955 0.854194i \(-0.674051\pi\)
−0.316843 + 0.948478i \(0.602623\pi\)
\(434\) 4.79424 8.30386i 0.230131 0.398598i
\(435\) 0 0
\(436\) −12.9651 22.4562i −0.620916 1.07546i
\(437\) 36.5338 + 49.5015i 1.74765 + 2.36798i
\(438\) 0 0
\(439\) 2.94163 9.53652i 0.140396 0.455153i −0.857880 0.513851i \(-0.828219\pi\)
0.998276 + 0.0586975i \(0.0186947\pi\)
\(440\) 3.10868 3.89816i 0.148200 0.185838i
\(441\) 0 0
\(442\) −1.90424 + 8.34304i −0.0905757 + 0.396838i
\(443\) 2.02742 10.7152i 0.0963257 0.509094i −0.900859 0.434111i \(-0.857062\pi\)
0.997185 0.0749821i \(-0.0238900\pi\)
\(444\) 0 0
\(445\) 3.91907 + 0.146641i 0.185782 + 0.00695146i
\(446\) −2.34306 12.3834i −0.110947 0.586370i
\(447\) 0 0
\(448\) −3.20418 0.240120i −0.151383 0.0113446i
\(449\) −0.405760 + 3.60122i −0.0191490 + 0.169952i −0.999647 0.0265783i \(-0.991539\pi\)
0.980498 + 0.196530i \(0.0629674\pi\)
\(450\) 0 0
\(451\) −8.33908 + 4.01589i −0.392672 + 0.189101i
\(452\) 14.9590 4.00825i 0.703611 0.188532i
\(453\) 0 0
\(454\) −0.591146 + 15.7987i −0.0277439 + 0.741471i
\(455\) −23.3950 + 1.75321i −1.09677 + 0.0821919i
\(456\) 0 0
\(457\) 9.09607 9.80323i 0.425496 0.458576i −0.483522 0.875332i \(-0.660643\pi\)
0.909018 + 0.416756i \(0.136833\pi\)
\(458\) −7.57991 + 6.04477i −0.354186 + 0.282454i
\(459\) 0 0
\(460\) −5.98355 26.2156i −0.278984 1.22231i
\(461\) −18.6864 + 0.699194i −0.870311 + 0.0325647i −0.468815 0.883296i \(-0.655319\pi\)
−0.401496 + 0.915861i \(0.631509\pi\)
\(462\) 0 0
\(463\) −9.86520 + 5.69568i −0.458475 + 0.264701i −0.711403 0.702785i \(-0.751940\pi\)
0.252928 + 0.967485i \(0.418606\pi\)
\(464\) 10.5516 + 3.43926i 0.489846 + 0.159664i
\(465\) 0 0
\(466\) 10.1686 + 4.43651i 0.471051 + 0.205517i
\(467\) 17.6805 11.1094i 0.818158 0.514083i −0.0567408 0.998389i \(-0.518071\pi\)
0.874898 + 0.484306i \(0.160928\pi\)
\(468\) 0 0
\(469\) 30.3377 + 24.1935i 1.40087 + 1.11715i
\(470\) −1.74559 + 0.263105i −0.0805180 + 0.0121361i
\(471\) 0 0
\(472\) 12.0631 14.0176i 0.555249 0.645210i
\(473\) −0.213863 2.85380i −0.00983342 0.131218i
\(474\) 0 0
\(475\) 7.69971 + 8.94723i 0.353287 + 0.410527i
\(476\) −16.5593 + 16.5593i −0.758992 + 0.758992i
\(477\) 0 0
\(478\) −5.74238 0.647011i −0.262650 0.0295936i
\(479\) 7.60424 10.3034i 0.347446 0.470773i −0.595673 0.803227i \(-0.703115\pi\)
0.943120 + 0.332454i \(0.107877\pi\)
\(480\) 0 0
\(481\) −28.0616 7.51908i −1.27950 0.342840i
\(482\) 1.84767 0.349598i 0.0841591 0.0159238i
\(483\) 0 0
\(484\) −12.7993 + 8.72642i −0.581786 + 0.396655i
\(485\) −1.04701 2.99220i −0.0475425 0.135869i
\(486\) 0 0
\(487\) 16.0848 + 20.1697i 0.728873 + 0.913978i 0.998804 0.0489019i \(-0.0155722\pi\)
−0.269930 + 0.962880i \(0.587001\pi\)
\(488\) 26.9924 10.5937i 1.22189 0.479556i
\(489\) 0 0
\(490\) 5.17674 + 2.73599i 0.233861 + 0.123599i
\(491\) −25.5288 + 18.8411i −1.15210 + 0.850287i −0.990628 0.136591i \(-0.956385\pi\)
−0.161470 + 0.986878i \(0.551623\pi\)
\(492\) 0 0
\(493\) 18.3890 11.1510i 0.828197 0.502216i
\(494\) 14.7184i 0.662210i
\(495\) 0 0
\(496\) 5.07468 + 8.07630i 0.227860 + 0.362637i
\(497\) 14.6269 + 4.51180i 0.656105 + 0.202382i
\(498\) 0 0
\(499\) −6.47222 2.54016i −0.289736 0.113713i 0.216022 0.976389i \(-0.430692\pi\)
−0.505758 + 0.862676i \(0.668787\pi\)
\(500\) −5.94499 19.2732i −0.265868 0.861923i
\(501\) 0 0
\(502\) 0.895300 + 1.31316i 0.0399592 + 0.0586093i
\(503\) 20.7948 + 13.0663i 0.927197 + 0.582596i 0.908799 0.417235i \(-0.137001\pi\)
0.0183977 + 0.999831i \(0.494144\pi\)
\(504\) 0 0
\(505\) −2.02348 2.02348i −0.0900438 0.0900438i
\(506\) −0.503775 + 6.72241i −0.0223955 + 0.298847i
\(507\) 0 0
\(508\) −2.85009 + 1.24348i −0.126452 + 0.0551705i
\(509\) 22.6715 33.2529i 1.00489 1.47391i 0.128859 0.991663i \(-0.458868\pi\)
0.876035 0.482247i \(-0.160179\pi\)
\(510\) 0 0
\(511\) 23.0839 19.8653i 1.02117 0.878790i
\(512\) −10.7136 + 17.0506i −0.473480 + 0.753539i
\(513\) 0 0
\(514\) −0.593678 + 0.207737i −0.0261860 + 0.00916289i
\(515\) 13.7430 + 12.7516i 0.605587 + 0.561903i
\(516\) 0 0
\(517\) −2.11576 0.318899i −0.0930509 0.0140252i
\(518\) 11.1846 + 12.0541i 0.491423 + 0.529628i
\(519\) 0 0
\(520\) −5.67702 + 13.0119i −0.248954 + 0.570608i
\(521\) −3.70615 −0.162370 −0.0811848 0.996699i \(-0.525870\pi\)
−0.0811848 + 0.996699i \(0.525870\pi\)
\(522\) 0 0
\(523\) 21.1827 0.926256 0.463128 0.886291i \(-0.346727\pi\)
0.463128 + 0.886291i \(0.346727\pi\)
\(524\) −6.31300 + 14.4696i −0.275785 + 0.632106i
\(525\) 0 0
\(526\) −7.18640 7.74509i −0.313342 0.337702i
\(527\) 18.2770 + 2.75481i 0.796158 + 0.120001i
\(528\) 0 0
\(529\) 41.9547 + 38.9282i 1.82412 + 1.69253i
\(530\) −8.39567 + 2.93777i −0.364684 + 0.127609i
\(531\) 0 0
\(532\) 21.4290 34.1040i 0.929063 1.47860i
\(533\) 19.9753 17.1901i 0.865225 0.744586i
\(534\) 0 0
\(535\) −3.67085 + 5.38415i −0.158705 + 0.232777i
\(536\) 21.5214 9.38968i 0.929582 0.405573i
\(537\) 0 0
\(538\) −0.203281 + 2.71260i −0.00876408 + 0.116949i
\(539\) 5.01830 + 5.01830i 0.216154 + 0.216154i
\(540\) 0 0
\(541\) −33.4037 20.9889i −1.43614 0.902385i −0.999997 0.00250608i \(-0.999202\pi\)
−0.436140 0.899879i \(-0.643655\pi\)
\(542\) −0.844771 1.23905i −0.0362860 0.0532218i
\(543\) 0 0
\(544\) 6.46111 + 20.9464i 0.277018 + 0.898070i
\(545\) −26.3843 10.3551i −1.13018 0.443563i
\(546\) 0 0
\(547\) 2.92690 + 0.902828i 0.125145 + 0.0386021i 0.356695 0.934221i \(-0.383904\pi\)
−0.231550 + 0.972823i \(0.574380\pi\)
\(548\) −0.922078 1.46748i −0.0393892 0.0626876i
\(549\) 0 0
\(550\) 1.29341i 0.0551512i
\(551\) −26.5668 + 25.7357i −1.13178 + 1.09638i
\(552\) 0 0
\(553\) 5.14300 3.79571i 0.218703 0.161410i
\(554\) 1.53794 + 0.812823i 0.0653407 + 0.0345336i
\(555\) 0 0
\(556\) −5.34366 + 2.09723i −0.226622 + 0.0889424i
\(557\) −9.78635 12.2717i −0.414661 0.519969i 0.530008 0.847992i \(-0.322189\pi\)
−0.944669 + 0.328024i \(0.893617\pi\)
\(558\) 0 0
\(559\) 2.69123 + 7.69110i 0.113827 + 0.325299i
\(560\) −10.9144 + 7.44129i −0.461216 + 0.314452i
\(561\) 0 0
\(562\) −2.96676 + 0.561341i −0.125145 + 0.0236787i
\(563\) −26.3568 7.06228i −1.11081 0.297640i −0.343648 0.939098i \(-0.611663\pi\)
−0.767157 + 0.641459i \(0.778330\pi\)
\(564\) 0 0
\(565\) 10.0522 13.6203i 0.422900 0.573009i
\(566\) −9.34002 1.05237i −0.392590 0.0442343i
\(567\) 0 0
\(568\) 6.54955 6.54955i 0.274813 0.274813i
\(569\) 19.7647 + 22.9671i 0.828581 + 0.962829i 0.999749 0.0224130i \(-0.00713486\pi\)
−0.171167 + 0.985242i \(0.554754\pi\)
\(570\) 0 0
\(571\) −0.146362 1.95307i −0.00612506 0.0817333i 0.993304 0.115534i \(-0.0368579\pi\)
−0.999429 + 0.0338007i \(0.989239\pi\)
\(572\) −5.08593 + 5.90996i −0.212653 + 0.247108i
\(573\) 0 0
\(574\) −14.7501 + 2.22322i −0.615656 + 0.0927952i
\(575\) 12.0354 + 9.59793i 0.501912 + 0.400261i
\(576\) 0 0
\(577\) 13.6071 8.54991i 0.566471 0.355937i −0.218148 0.975916i \(-0.570002\pi\)
0.784619 + 0.619978i \(0.212859\pi\)
\(578\) −0.564404 0.246247i −0.0234761 0.0102425i
\(579\) 0 0
\(580\) 15.1407 5.66637i 0.628684 0.235283i
\(581\) 3.14527 1.81592i 0.130488 0.0753371i
\(582\) 0 0
\(583\) −10.7735 + 0.403116i −0.446193 + 0.0166954i
\(584\) −4.10077 17.9667i −0.169691 0.743465i
\(585\) 0 0
\(586\) 9.62315 7.67421i 0.397529 0.317019i
\(587\) −9.97283 + 10.7482i −0.411623 + 0.443624i −0.904499 0.426476i \(-0.859755\pi\)
0.492876 + 0.870099i \(0.335945\pi\)
\(588\) 0 0
\(589\) −31.7011 + 2.37567i −1.30622 + 0.0978876i
\(590\) 0.342505 9.15365i 0.0141007 0.376850i
\(591\) 0 0
\(592\) −15.8003 + 4.23368i −0.649389 + 0.174003i
\(593\) −3.15432 + 1.51904i −0.129533 + 0.0623796i −0.497527 0.867448i \(-0.665759\pi\)
0.367995 + 0.929828i \(0.380044\pi\)
\(594\) 0 0
\(595\) −2.86606 + 25.4370i −0.117497 + 1.04281i
\(596\) −22.4467 1.68214i −0.919451 0.0689033i
\(597\) 0 0
\(598\) −3.56844 18.8597i −0.145924 0.771229i
\(599\) −43.8025 1.63897i −1.78972 0.0669666i −0.878218 0.478261i \(-0.841267\pi\)
−0.911503 + 0.411294i \(0.865077\pi\)
\(600\) 0 0
\(601\) −4.34605 + 22.9694i −0.177279 + 0.936942i 0.775057 + 0.631891i \(0.217721\pi\)
−0.952336 + 0.305051i \(0.901327\pi\)
\(602\) 1.02630 4.49651i 0.0418288 0.183264i
\(603\) 0 0
\(604\) 17.7445 22.2509i 0.722012 0.905375i
\(605\) −4.99104 + 16.1806i −0.202915 + 0.657833i
\(606\) 0 0
\(607\) 20.2804 + 27.4790i 0.823157 + 1.11534i 0.991564 + 0.129620i \(0.0413759\pi\)
−0.168407 + 0.985718i \(0.553862\pi\)
\(608\) −18.8505 32.6501i −0.764490 1.32413i
\(609\) 0 0
\(610\) 7.18125 12.4383i 0.290760 0.503611i
\(611\) 6.05390 0.682111i 0.244915 0.0275953i
\(612\) 0 0
\(613\) 16.5394 3.77501i 0.668020 0.152471i 0.124955 0.992162i \(-0.460121\pi\)
0.543064 + 0.839691i \(0.317264\pi\)
\(614\) 0.501803 + 1.27857i 0.0202511 + 0.0515990i
\(615\) 0 0
\(616\) 9.30676 2.87075i 0.374980 0.115666i
\(617\) −27.2867 23.4821i −1.09852 0.945354i −0.0997552 0.995012i \(-0.531806\pi\)
−0.998766 + 0.0496578i \(0.984187\pi\)
\(618\) 0 0
\(619\) −13.2327 25.0374i −0.531865 1.00634i −0.992900 0.118956i \(-0.962045\pi\)
0.461034 0.887382i \(-0.347479\pi\)
\(620\) 13.1146 + 4.58901i 0.526696 + 0.184299i
\(621\) 0 0
\(622\) −1.64340 3.41255i −0.0658943 0.136831i
\(623\) 6.16387 + 4.54914i 0.246950 + 0.182258i
\(624\) 0 0
\(625\) −11.1158 7.57863i −0.444632 0.303145i
\(626\) −3.04010 + 11.3458i −0.121507 + 0.453469i
\(627\) 0 0
\(628\) −6.33597 + 3.34866i −0.252833 + 0.133626i
\(629\) −13.7533 + 28.5590i −0.548380 + 1.13872i
\(630\) 0 0
\(631\) 1.09042 + 0.248881i 0.0434088 + 0.00990778i 0.244170 0.969732i \(-0.421484\pi\)
−0.200761 + 0.979640i \(0.564342\pi\)
\(632\) −0.576482 3.82471i −0.0229312 0.152139i
\(633\) 0 0
\(634\) 4.88995 4.53721i 0.194205 0.180196i
\(635\) −1.58822 + 3.00507i −0.0630268 + 0.119252i
\(636\) 0 0
\(637\) −17.4998 10.1035i −0.693368 0.400316i
\(638\) −4.04585 + 0.238621i −0.160177 + 0.00944709i
\(639\) 0 0
\(640\) 2.33437 + 20.7181i 0.0922739 + 0.818954i
\(641\) −1.69467 45.2909i −0.0669353 1.78888i −0.479087 0.877767i \(-0.659032\pi\)
0.412152 0.911115i \(-0.364777\pi\)
\(642\) 0 0
\(643\) 1.46511 9.72037i 0.0577783 0.383334i −0.941188 0.337883i \(-0.890289\pi\)
0.998967 0.0454513i \(-0.0144726\pi\)
\(644\) 19.1900 48.8952i 0.756190 1.92674i
\(645\) 0 0
\(646\) −15.7793 2.98560i −0.620827 0.117467i
\(647\) −19.9433 9.60419i −0.784052 0.377580i −0.00136817 0.999999i \(-0.500436\pi\)
−0.782684 + 0.622420i \(0.786150\pi\)
\(648\) 0 0
\(649\) 3.66694 10.4795i 0.143940 0.411356i
\(650\) −0.953156 3.55723i −0.0373858 0.139526i
\(651\) 0 0
\(652\) −2.58131 5.91643i −0.101092 0.231705i
\(653\) 14.9925 + 34.3631i 0.586701 + 1.34473i 0.916255 + 0.400596i \(0.131197\pi\)
−0.329554 + 0.944137i \(0.606898\pi\)
\(654\) 0 0
\(655\) 4.46621 + 16.6681i 0.174509 + 0.651277i
\(656\) 4.90088 14.0059i 0.191347 0.546839i
\(657\) 0 0
\(658\) −3.10683 1.49617i −0.121117 0.0583268i
\(659\) −34.7249 6.57030i −1.35269 0.255943i −0.541488 0.840709i \(-0.682139\pi\)
−0.811202 + 0.584766i \(0.801186\pi\)
\(660\) 0 0
\(661\) −7.47190 + 19.0381i −0.290623 + 0.740496i 0.708762 + 0.705447i \(0.249254\pi\)
−0.999386 + 0.0350489i \(0.988841\pi\)
\(662\) 0.192422 1.27664i 0.00747871 0.0496180i
\(663\) 0 0
\(664\) −0.0821740 2.19615i −0.00318897 0.0852270i
\(665\) −4.92938 43.7495i −0.191153 1.69653i
\(666\) 0 0
\(667\) −27.8023 + 39.4181i −1.07651 + 1.52627i
\(668\) 14.1371 + 8.16204i 0.546980 + 0.315799i
\(669\) 0 0
\(670\) 5.43443 10.2824i 0.209950 0.397245i
\(671\) 12.7611 11.8406i 0.492637 0.457101i
\(672\) 0 0
\(673\) −0.605378 4.01642i −0.0233356 0.154822i 0.974128 0.225996i \(-0.0725635\pi\)
−0.997464 + 0.0711740i \(0.977325\pi\)
\(674\) 19.3221 + 4.41014i 0.744259 + 0.169872i
\(675\) 0 0
\(676\) 0.284875 0.591549i 0.0109567 0.0227519i
\(677\) −42.7466 + 22.5923i −1.64289 + 0.868291i −0.648650 + 0.761087i \(0.724666\pi\)
−0.994237 + 0.107204i \(0.965810\pi\)
\(678\) 0 0
\(679\) 1.60271 5.98141i 0.0615065 0.229545i
\(680\) 12.7982 + 8.72566i 0.490788 + 0.334614i
\(681\) 0 0
\(682\) −2.80266 2.06845i −0.107319 0.0792052i
\(683\) 19.0377 + 39.5323i 0.728459 + 1.51266i 0.853831 + 0.520551i \(0.174273\pi\)
−0.125372 + 0.992110i \(0.540012\pi\)
\(684\) 0 0
\(685\) −1.78812 0.625691i −0.0683206 0.0239064i
\(686\) −1.43179 2.70908i −0.0546660 0.103433i
\(687\) 0 0
\(688\) 3.47758 + 2.99270i 0.132582 + 0.114096i
\(689\) 29.3330 9.04802i 1.11750 0.344702i
\(690\) 0 0
\(691\) −6.47640 16.5016i −0.246374 0.627750i 0.753174 0.657822i \(-0.228522\pi\)
−0.999548 + 0.0300710i \(0.990427\pi\)
\(692\) 10.5288 2.40314i 0.400247 0.0913537i
\(693\) 0 0
\(694\) 1.65095 0.186018i 0.0626693 0.00706113i
\(695\) −3.13738 + 5.43410i −0.119008 + 0.206127i
\(696\) 0 0
\(697\) −14.3772 24.9021i −0.544576 0.943234i
\(698\) 9.18762 + 12.4488i 0.347757 + 0.471194i
\(699\) 0 0
\(700\) 2.97052 9.63020i 0.112275 0.363987i
\(701\) −28.4724 + 35.7032i −1.07539 + 1.34849i −0.141899 + 0.989881i \(0.545321\pi\)
−0.933487 + 0.358611i \(0.883251\pi\)
\(702\) 0 0
\(703\) 12.1314 53.1513i 0.457546 2.00464i
\(704\) −0.217010 + 1.14693i −0.00817888 + 0.0432264i
\(705\) 0 0
\(706\) −2.75647 0.103140i −0.103741 0.00388171i
\(707\) −1.03922 5.49243i −0.0390840 0.206564i
\(708\) 0 0
\(709\) −25.9681 1.94604i −0.975253 0.0730851i −0.422440 0.906391i \(-0.638826\pi\)
−0.552812 + 0.833306i \(0.686445\pi\)
\(710\) 0.513671 4.55896i 0.0192777 0.171095i
\(711\) 0 0
\(712\) 4.17660 2.01134i 0.156525 0.0753783i
\(713\) −40.0448 + 10.7300i −1.49969 + 0.401841i
\(714\) 0 0
\(715\) −0.318676 + 8.51681i −0.0119178 + 0.318510i
\(716\) −39.9962 + 2.99730i −1.49473 + 0.112014i
\(717\) 0 0
\(718\) 5.28632 5.69730i 0.197284 0.212621i
\(719\) −17.9950 + 14.3506i −0.671101 + 0.535185i −0.898697 0.438570i \(-0.855485\pi\)
0.227596 + 0.973756i \(0.426914\pi\)
\(720\) 0 0
\(721\) 8.14900 + 35.7031i 0.303485 + 1.32965i
\(722\) 16.4851 0.616828i 0.613511 0.0229560i
\(723\) 0 0
\(724\) −15.2570 + 8.80864i −0.567022 + 0.327370i
\(725\) −4.75420 + 7.94043i −0.176567 + 0.294900i
\(726\) 0 0
\(727\) 25.5756 + 11.1585i 0.948547 + 0.413847i 0.816467 0.577392i \(-0.195930\pi\)
0.132080 + 0.991239i \(0.457834\pi\)
\(728\) −23.4805 + 14.7538i −0.870245 + 0.546811i
\(729\) 0 0
\(730\) −7.13652 5.69119i −0.264135 0.210640i
\(731\) 8.79140 1.32509i 0.325162 0.0490102i
\(732\) 0 0
\(733\) −24.3536 + 28.2994i −0.899520 + 1.04526i 0.0992190 + 0.995066i \(0.468366\pi\)
−0.998739 + 0.0501960i \(0.984015\pi\)
\(734\) 0.923701 + 12.3259i 0.0340944 + 0.454959i
\(735\) 0 0
\(736\) −32.0704 37.2665i −1.18213 1.37366i
\(737\) 9.96773 9.96773i 0.367166 0.367166i
\(738\) 0 0
\(739\) 2.57887 + 0.290569i 0.0948654 + 0.0106888i 0.159270 0.987235i \(-0.449086\pi\)
−0.0644041 + 0.997924i \(0.520515\pi\)
\(740\) −14.1496 + 19.1720i −0.520150 + 0.704778i
\(741\) 0 0
\(742\) −16.7830 4.49698i −0.616122 0.165089i
\(743\) −4.49542 + 0.850580i −0.164921 + 0.0312048i −0.267716 0.963498i \(-0.586269\pi\)
0.102795 + 0.994703i \(0.467221\pi\)
\(744\) 0 0
\(745\) −20.3293 + 13.8603i −0.744808 + 0.507801i
\(746\) 0.0903218 + 0.258125i 0.00330692 + 0.00945063i
\(747\) 0 0
\(748\) 5.30428 + 6.65136i 0.193944 + 0.243198i
\(749\) −11.8492 + 4.65048i −0.432962 + 0.169925i
\(750\) 0 0
\(751\) 25.0618 + 13.2455i 0.914517 + 0.483337i 0.857179 0.515018i \(-0.172215\pi\)
0.0573382 + 0.998355i \(0.481739\pi\)
\(752\) 2.75999 2.03697i 0.100646 0.0742805i
\(753\) 0 0
\(754\) 10.9513 3.63778i 0.398823 0.132480i
\(755\) 31.1088i 1.13216i
\(756\) 0 0
\(757\) −6.75132 10.7447i −0.245381 0.390521i 0.701212 0.712953i \(-0.252643\pi\)
−0.946593 + 0.322432i \(0.895500\pi\)
\(758\) 7.11809 + 2.19564i 0.258541 + 0.0797492i
\(759\) 0 0
\(760\) −24.7994 9.73305i −0.899569 0.353055i
\(761\) 13.8324 + 44.8437i 0.501425 + 1.62558i 0.753197 + 0.657795i \(0.228511\pi\)
−0.251772 + 0.967787i \(0.581013\pi\)
\(762\) 0 0
\(763\) −31.1888 45.7455i −1.12911 1.65610i
\(764\) −8.73612 5.48927i −0.316062 0.198595i
\(765\) 0 0
\(766\) −4.53601 4.53601i −0.163893 0.163893i
\(767\) −2.36238 + 31.5237i −0.0853004 + 1.13826i
\(768\) 0 0
\(769\) 10.5381 4.59771i 0.380012 0.165798i −0.201199 0.979550i \(-0.564484\pi\)
0.581211 + 0.813753i \(0.302579\pi\)
\(770\) 2.71749 3.98583i 0.0979317 0.143639i
\(771\) 0 0
\(772\) −20.6359 + 17.7587i −0.742704 + 0.639149i
\(773\) 23.2548 37.0098i 0.836416 1.33115i −0.105196 0.994451i \(-0.533547\pi\)
0.941613 0.336698i \(-0.109310\pi\)
\(774\) 0 0
\(775\) −7.50787 + 2.62712i −0.269691 + 0.0943688i
\(776\) −2.74684 2.54869i −0.0986057 0.0914927i
\(777\) 0 0
\(778\) 11.0375 + 1.66364i 0.395715 + 0.0596445i
\(779\) 33.6381 + 36.2533i 1.20521 + 1.29891i
\(780\) 0 0
\(781\) 2.22368 5.09673i 0.0795695 0.182375i
\(782\) −20.9429 −0.748918
\(783\) 0 0
\(784\) −11.3778 −0.406348
\(785\) −3.13253 + 7.17984i −0.111805 + 0.256260i
\(786\) 0 0
\(787\) 6.05694 + 6.52783i 0.215906 + 0.232692i 0.831713 0.555205i \(-0.187360\pi\)
−0.615807 + 0.787897i \(0.711170\pi\)
\(788\) −16.8122 2.53404i −0.598911 0.0902713i
\(789\) 0 0
\(790\) −1.40440 1.30309i −0.0499662 0.0463619i
\(791\) 31.2114 10.9213i 1.10975 0.388318i
\(792\) 0 0
\(793\) −26.3708 + 41.9688i −0.936453 + 1.49036i
\(794\) −8.61830 + 7.41665i −0.305852 + 0.263207i
\(795\) 0 0
\(796\) 17.8967 26.2496i 0.634331 0.930392i
\(797\) 36.7249 16.0229i 1.30086 0.567560i 0.368682 0.929556i \(-0.379809\pi\)
0.932180 + 0.361996i \(0.117905\pi\)
\(798\) 0 0
\(799\) 0.496748 6.62864i 0.0175737 0.234504i
\(800\) −6.67032 6.67032i −0.235831 0.235831i
\(801\) 0 0
\(802\) 17.6473 + 11.0885i 0.623147 + 0.391549i
\(803\) −6.23237 9.14120i −0.219935 0.322586i
\(804\) 0 0
\(805\) −16.9233 54.8641i −0.596470 1.93371i
\(806\) 9.23236 + 3.62343i 0.325196 + 0.127630i
\(807\) 0 0
\(808\) −3.23225 0.997016i −0.113710 0.0350749i
\(809\) −0.548274 0.872572i −0.0192763 0.0306780i 0.836947 0.547284i \(-0.184338\pi\)
−0.856223 + 0.516606i \(0.827195\pi\)
\(810\) 0 0
\(811\) 5.29060i 0.185778i −0.995676 0.0928891i \(-0.970390\pi\)
0.995676 0.0928891i \(-0.0296102\pi\)
\(812\) 30.6717 + 7.51526i 1.07637 + 0.263734i
\(813\) 0 0
\(814\) 4.80642 3.54730i 0.168465 0.124333i
\(815\) −6.23815 3.29696i −0.218513 0.115487i
\(816\) 0 0
\(817\) −14.2342 + 5.58653i −0.497993 + 0.195448i
\(818\) −4.58663 5.75145i −0.160368 0.201095i
\(819\) 0 0
\(820\) −7.13907 20.4023i −0.249307 0.712479i
\(821\) 29.0659 19.8168i 1.01441 0.691611i 0.0625149 0.998044i \(-0.480088\pi\)
0.951892 + 0.306433i \(0.0991355\pi\)
\(822\) 0 0
\(823\) 13.1045 2.47951i 0.456795 0.0864303i 0.0475784 0.998868i \(-0.484850\pi\)
0.409217 + 0.912437i \(0.365802\pi\)
\(824\) 21.4050 + 5.73546i 0.745679 + 0.199804i
\(825\) 0 0
\(826\) 10.6253 14.3968i 0.369701 0.500928i
\(827\) 47.5270 + 5.35500i 1.65267 + 0.186212i 0.888525 0.458828i \(-0.151730\pi\)
0.764149 + 0.645039i \(0.223159\pi\)
\(828\) 0 0
\(829\) 39.4991 39.4991i 1.37186 1.37186i 0.514174 0.857686i \(-0.328098\pi\)
0.857686 0.514174i \(-0.171902\pi\)
\(830\) −0.710040 0.825082i −0.0246459 0.0286390i
\(831\) 0 0
\(832\) −0.248371 3.31428i −0.00861070 0.114902i
\(833\) −14.3816 + 16.7117i −0.498293 + 0.579027i
\(834\) 0 0
\(835\) 17.6441 2.65942i 0.610600 0.0920331i
\(836\) −11.4398 9.12292i −0.395653 0.315523i
\(837\) 0 0
\(838\) −4.86255 + 3.05534i −0.167974 + 0.105545i
\(839\) −18.2703 7.97124i −0.630760 0.275198i 0.0600932 0.998193i \(-0.480860\pi\)
−0.690853 + 0.722995i \(0.742765\pi\)
\(840\) 0 0
\(841\) −25.7151 13.4064i −0.886728 0.462291i
\(842\) −2.04401 + 1.18011i −0.0704411 + 0.0406692i
\(843\) 0 0
\(844\) 22.6720 0.848327i 0.780403 0.0292006i
\(845\) −0.159698 0.699684i −0.00549379 0.0240699i
\(846\) 0 0
\(847\) −25.8601 + 20.6228i −0.888565 + 0.708607i
\(848\) 11.7561 12.6701i 0.403708 0.435094i
\(849\) 0 0
\(850\) −4.00698 + 0.300282i −0.137438 + 0.0102996i
\(851\) 2.65842 71.0477i 0.0911294 2.43548i
\(852\) 0 0
\(853\) 1.54122 0.412969i 0.0527704 0.0141398i −0.232337 0.972635i \(-0.574637\pi\)
0.285108 + 0.958496i \(0.407971\pi\)
\(854\) 25.2771 12.1728i 0.864965 0.416545i
\(855\) 0 0
\(856\) −0.862419 + 7.65418i −0.0294769 + 0.261614i
\(857\) 4.58909 + 0.343904i 0.156760 + 0.0117476i 0.152879 0.988245i \(-0.451146\pi\)
0.00388120 + 0.999992i \(0.498765\pi\)
\(858\) 0 0
\(859\) 7.08136 + 37.4259i 0.241613 + 1.27696i 0.867655 + 0.497166i \(0.165626\pi\)
−0.626042 + 0.779789i \(0.715326\pi\)
\(860\) 6.67863 + 0.249897i 0.227740 + 0.00852141i
\(861\) 0 0
\(862\) −3.38248 + 17.8768i −0.115208 + 0.608888i
\(863\) 1.48533 6.50765i 0.0505612 0.221523i −0.943335 0.331842i \(-0.892330\pi\)
0.993896 + 0.110319i \(0.0351872\pi\)
\(864\) 0 0
\(865\) 7.36015 9.22934i 0.250253 0.313807i
\(866\) −3.02392 + 9.80331i −0.102757 + 0.333130i
\(867\) 0 0
\(868\) 16.1169 + 21.8376i 0.547042 + 0.741216i
\(869\) −1.16105 2.01099i −0.0393858 0.0682182i
\(870\) 0 0
\(871\) −20.0684 + 34.7594i −0.679991 + 1.17778i
\(872\) −33.2922 + 3.75113i −1.12742 + 0.127029i
\(873\) 0 0
\(874\) 35.1170 8.01523i 1.18785 0.271119i
\(875\) −15.7335 40.0883i −0.531889 1.35523i
\(876\) 0 0
\(877\) −22.2970 + 6.87772i −0.752916 + 0.232244i −0.647376 0.762171i \(-0.724134\pi\)
−0.105541 + 0.994415i \(0.533657\pi\)
\(878\) −4.42878 3.81127i −0.149464 0.128624i
\(879\) 0 0
\(880\) 2.24234 + 4.24271i 0.0755892 + 0.143022i
\(881\) −5.99551 2.09792i −0.201994 0.0706808i 0.227386 0.973805i \(-0.426982\pi\)
−0.429380 + 0.903124i \(0.641268\pi\)
\(882\) 0 0
\(883\) −13.4568 27.9434i −0.452859 0.940371i −0.994980 0.100071i \(-0.968093\pi\)
0.542121 0.840300i \(-0.317621\pi\)
\(884\) −19.4898 14.3841i −0.655512 0.483790i
\(885\) 0 0
\(886\) −5.27531 3.59665i −0.177228 0.120832i
\(887\) 7.38642 27.5665i 0.248012 0.925592i −0.723834 0.689974i \(-0.757622\pi\)
0.971846 0.235618i \(-0.0757115\pi\)
\(888\) 0 0
\(889\) −5.87006 + 3.10242i −0.196875 + 0.104052i
\(890\) 0.996243 2.06872i 0.0333941 0.0693437i
\(891\) 0 0
\(892\) 34.7797 + 7.93824i 1.16451 + 0.265792i
\(893\) 1.70395 + 11.3050i 0.0570206 + 0.378307i
\(894\) 0 0
\(895\) −32.1380 + 29.8197i −1.07425 + 0.996762i
\(896\) −19.0302 + 36.0069i −0.635754 + 1.20291i
\(897\) 0 0
\(898\) 1.83749 + 1.06088i 0.0613178 + 0.0354019i
\(899\) −9.60286 23.0003i −0.320273 0.767102i
\(900\) 0 0
\(901\) −3.75006 33.2827i −0.124933 1.10881i
\(902\) 0.202620 + 5.41514i 0.00674652 + 0.180304i
\(903\) 0 0
\(904\) 2.98224 19.7859i 0.0991879 0.658069i
\(905\) −7.03536 + 17.9258i −0.233863 + 0.595874i
\(906\) 0 0
\(907\) −31.4200 5.94498i −1.04328 0.197400i −0.364094 0.931362i \(-0.618621\pi\)
−0.679190 + 0.733962i \(0.737669\pi\)
\(908\) −40.3192 19.4167i −1.33804 0.644366i
\(909\) 0 0
\(910\) −4.53655 + 12.9647i −0.150385 + 0.429776i
\(911\) −8.67377 32.3709i −0.287375 1.07250i −0.947086 0.320979i \(-0.895988\pi\)
0.659712 0.751519i \(-0.270678\pi\)
\(912\) 0 0
\(913\) −0.527608 1.20929i −0.0174613 0.0400216i
\(914\) −3.13099 7.17631i −0.103564 0.237371i
\(915\) 0 0
\(916\) −7.10269 26.5076i −0.234680 0.875836i
\(917\) −11.1330 + 31.8162i −0.367643 + 1.05066i
\(918\) 0 0
\(919\) 2.37687 + 1.14464i 0.0784057 + 0.0377582i 0.472676 0.881236i \(-0.343288\pi\)
−0.394270 + 0.918995i \(0.629003\pi\)
\(920\) −34.1370 6.45907i −1.12546 0.212949i
\(921\) 0 0
\(922\) −3.99974 + 10.1912i −0.131725 + 0.335629i
\(923\) −2.35977 + 15.6561i −0.0776728 + 0.515325i
\(924\) 0 0
\(925\) −0.510057 13.6316i −0.0167706 0.448203i
\(926\) 0.746725 + 6.62737i 0.0245389 + 0.217789i
\(927\) 0 0
\(928\) 19.6345 22.0957i 0.644533 0.725326i
\(929\) 8.30673 + 4.79589i 0.272535 + 0.157348i 0.630039 0.776563i \(-0.283039\pi\)
−0.357504 + 0.933912i \(0.616372\pi\)
\(930\) 0 0
\(931\) 17.7191 33.5262i 0.580721 1.09878i
\(932\) −23.0202 + 21.3596i −0.754052 + 0.699658i
\(933\) 0 0
\(934\) −1.82208 12.0887i −0.0596204 0.395555i
\(935\) 9.06606 + 2.06927i 0.296492 + 0.0676723i
\(936\) 0 0
\(937\) −5.49690 + 11.4144i −0.179576 + 0.372893i −0.971254 0.238045i \(-0.923493\pi\)
0.791678 + 0.610938i \(0.209208\pi\)
\(938\) 20.0856 10.6155i 0.655817 0.346609i
\(939\) 0 0
\(940\) 1.29328 4.82658i 0.0421821 0.157426i
\(941\) −27.9758 19.0736i −0.911986 0.621781i 0.0137692 0.999905i \(-0.495617\pi\)
−0.925755 + 0.378124i \(0.876569\pi\)
\(942\) 0 0
\(943\) 51.8924 + 38.2983i 1.68985 + 1.24717i
\(944\) 7.72290 + 16.0368i 0.251359 + 0.521952i
\(945\) 0 0
\(946\) −1.58148 0.553383i −0.0514182 0.0179920i
\(947\) −0.835381 1.58062i −0.0271462 0.0513632i 0.870169 0.492753i \(-0.164009\pi\)
−0.897315 + 0.441390i \(0.854486\pi\)
\(948\) 0 0
\(949\) 23.8771 + 20.5479i 0.775084 + 0.667013i
\(950\) 6.60396 2.03705i 0.214261 0.0660907i
\(951\) 0 0
\(952\) 11.0543 + 28.1658i 0.358270 + 0.912858i
\(953\) −12.7383 + 2.90744i −0.412635 + 0.0941812i −0.423799 0.905756i \(-0.639304\pi\)
0.0111637 + 0.999938i \(0.496446\pi\)
\(954\) 0 0
\(955\) −11.2069 + 1.26272i −0.362647 + 0.0408605i
\(956\) 8.17857 14.1657i 0.264514 0.458151i
\(957\) 0 0
\(958\) −3.74866 6.49287i −0.121114 0.209775i
\(959\) −2.19746 2.97746i −0.0709598 0.0961471i
\(960\) 0 0
\(961\) −2.82327 + 9.15283i −0.0910733 + 0.295253i
\(962\) −10.6048 + 13.2980i −0.341913 + 0.428745i
\(963\) 0 0
\(964\) −1.18443 + 5.18933i −0.0381480 + 0.167137i
\(965\) −5.53257 + 29.2403i −0.178100 + 0.941280i
\(966\) 0 0
\(967\) −17.2340 0.644851i −0.554208 0.0207370i −0.241179 0.970481i \(-0.577534\pi\)
−0.313029 + 0.949744i \(0.601344\pi\)
\(968\) 3.72102 + 19.6661i 0.119598 + 0.632092i
\(969\) 0 0
\(970\) −1.85081 0.138699i −0.0594258 0.00445335i
\(971\) 2.65467 23.5608i 0.0851923 0.756102i −0.876393 0.481596i \(-0.840057\pi\)
0.961585 0.274506i \(-0.0885143\pi\)
\(972\) 0 0
\(973\) −11.0432 + 5.31812i −0.354029 + 0.170491i
\(974\) 14.5893 3.90920i 0.467473 0.125259i
\(975\) 0 0
\(976\) −1.04354 + 27.8891i −0.0334028 + 0.892709i
\(977\) 45.2855 3.39368i 1.44881 0.108573i 0.673049 0.739598i \(-0.264984\pi\)
0.775763 + 0.631024i \(0.217365\pi\)
\(978\) 0 0
\(979\) 1.89293 2.04010i 0.0604984 0.0652018i
\(980\) −12.9580 + 10.3336i −0.413927 + 0.330096i
\(981\) 0 0
\(982\) 4.13359 + 18.1104i 0.131908 + 0.577927i
\(983\) 41.2564 1.54371i 1.31587 0.0492366i 0.629794 0.776762i \(-0.283139\pi\)
0.686081 + 0.727526i \(0.259330\pi\)
\(984\) 0 0
\(985\) −16.0947 + 9.29229i −0.512820 + 0.296077i
\(986\) −1.67854 12.4786i −0.0534556 0.397400i
\(987\) 0 0
\(988\) 38.1854 + 16.6601i 1.21484 + 0.530029i
\(989\) −16.8849 + 10.6095i −0.536908 + 0.337362i
\(990\) 0 0
\(991\) −15.2058 12.1262i −0.483028 0.385202i 0.351482 0.936195i \(-0.385678\pi\)
−0.834510 + 0.550993i \(0.814249\pi\)
\(992\) 25.1211 3.78639i 0.797595 0.120218i
\(993\) 0 0
\(994\) 5.84564 6.79276i 0.185412 0.215453i
\(995\) −2.59515 34.6298i −0.0822716 1.09784i
\(996\) 0 0
\(997\) −6.74063 7.83275i −0.213478 0.248066i 0.641016 0.767528i \(-0.278513\pi\)
−0.854494 + 0.519462i \(0.826132\pi\)
\(998\) −2.87841 + 2.87841i −0.0911144 + 0.0911144i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.be.a.710.16 672
3.2 odd 2 261.2.x.a.101.13 yes 672
9.4 even 3 261.2.x.a.14.16 672
9.5 odd 6 inner 783.2.be.a.449.13 672
29.27 odd 28 inner 783.2.be.a.143.13 672
87.56 even 28 261.2.x.a.56.16 yes 672
261.85 odd 84 261.2.x.a.230.13 yes 672
261.230 even 84 inner 783.2.be.a.665.16 672
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
261.2.x.a.14.16 672 9.4 even 3
261.2.x.a.56.16 yes 672 87.56 even 28
261.2.x.a.101.13 yes 672 3.2 odd 2
261.2.x.a.230.13 yes 672 261.85 odd 84
783.2.be.a.143.13 672 29.27 odd 28 inner
783.2.be.a.449.13 672 9.5 odd 6 inner
783.2.be.a.665.16 672 261.230 even 84 inner
783.2.be.a.710.16 672 1.1 even 1 trivial