Properties

Label 783.2.be.a.665.16
Level $783$
Weight $2$
Character 783.665
Analytic conductor $6.252$
Analytic rank $0$
Dimension $672$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(8,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(84)) chi = DirichletCharacter(H, H._module([14, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.be (of order \(84\), degree \(24\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(672\)
Relative dimension: \(28\) over \(\Q(\zeta_{84})\)
Twist minimal: no (minimal twist has level 261)
Sato-Tate group: $\mathrm{SU}(2)[C_{84}]$

Embedding invariants

Embedding label 665.16
Character \(\chi\) \(=\) 783.665
Dual form 783.2.be.a.710.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.234125 + 0.536620i) q^{2} +(1.12720 - 1.21483i) q^{4} +(1.79123 - 0.269985i) q^{5} +(2.59390 - 2.40679i) q^{7} +(2.02104 + 0.707193i) q^{8} +(0.564252 + 0.898002i) q^{10} +(0.974345 + 0.838491i) q^{11} +(-2.06180 - 3.02410i) q^{13} +(1.89883 + 0.828450i) q^{14} +(-0.154007 - 2.05508i) q^{16} +(2.82385 - 2.82385i) q^{17} +(-5.81575 + 3.65428i) q^{19} +(1.69109 - 2.48037i) q^{20} +(-0.221833 + 0.719165i) q^{22} +(-8.33810 + 3.27246i) q^{23} +(-1.64224 + 0.506563i) q^{25} +(1.14008 - 1.81442i) q^{26} -5.86408i q^{28} +(1.28158 + 5.23045i) q^{29} +(3.72396 + 2.74841i) q^{31} +(4.85287 - 2.56482i) q^{32} +(2.17647 + 0.854200i) q^{34} +(3.99648 - 5.01143i) q^{35} +(2.62155 - 7.49197i) q^{37} +(-3.32257 - 2.26529i) q^{38} +(3.81109 + 0.721097i) q^{40} +(-6.95493 + 1.86357i) q^{41} +(1.32201 + 1.79126i) q^{43} +(2.11691 - 0.238518i) q^{44} +(-3.70823 - 3.70823i) q^{46} +(-1.08573 + 1.26165i) q^{47} +(0.412579 - 5.50549i) q^{49} +(-0.656321 - 0.762658i) q^{50} +(-5.99783 - 0.904027i) q^{52} +(-6.55714 + 5.22915i) q^{53} +(1.97166 + 1.23888i) q^{55} +(6.94443 - 3.02983i) q^{56} +(-2.50671 + 1.91230i) q^{58} +(7.47986 + 4.31850i) q^{59} +(13.5329 + 0.506365i) q^{61} +(-0.602979 + 2.64182i) q^{62} +(-0.709949 - 0.566166i) q^{64} +(-4.50962 - 4.86022i) q^{65} +(10.9354 + 0.819497i) q^{67} +(-0.247461 - 6.61353i) q^{68} +(3.62491 + 0.971292i) q^{70} +(3.89744 + 1.87691i) q^{71} +(0.963648 + 8.55261i) q^{73} +(4.63411 - 0.347279i) q^{74} +(-2.11617 + 11.1843i) q^{76} +(4.54542 - 0.170078i) q^{77} +(0.335835 + 1.77493i) q^{79} +(-0.830703 - 3.63955i) q^{80} +(-2.62835 - 3.29585i) q^{82} +(0.302531 + 0.980782i) q^{83} +(4.29577 - 5.82057i) q^{85} +(-0.651711 + 1.12880i) q^{86} +(1.37622 + 2.38367i) q^{88} +(2.15138 + 0.242402i) q^{89} +(-12.6265 - 2.88191i) q^{91} +(-5.42320 + 13.8181i) q^{92} +(-0.931222 - 0.287244i) q^{94} +(-9.43077 + 8.11583i) q^{95} +(-0.817727 + 1.54721i) q^{97} +(3.05095 - 1.06757i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 672 q + 36 q^{2} - 14 q^{4} + 42 q^{5} - 10 q^{7} - 56 q^{10} + 48 q^{11} - 14 q^{13} + 24 q^{14} - 54 q^{16} - 48 q^{19} + 30 q^{20} - 14 q^{22} + 30 q^{23} + 30 q^{25} - 12 q^{31} - 24 q^{32} - 14 q^{34}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.234125 + 0.536620i 0.165551 + 0.379448i 0.979487 0.201507i \(-0.0645840\pi\)
−0.813936 + 0.580955i \(0.802679\pi\)
\(3\) 0 0
\(4\) 1.12720 1.21483i 0.563599 0.607416i
\(5\) 1.79123 0.269985i 0.801064 0.120741i 0.264264 0.964450i \(-0.414871\pi\)
0.536800 + 0.843709i \(0.319633\pi\)
\(6\) 0 0
\(7\) 2.59390 2.40679i 0.980401 0.909680i −0.0155222 0.999880i \(-0.504941\pi\)
0.995924 + 0.0901999i \(0.0287506\pi\)
\(8\) 2.02104 + 0.707193i 0.714546 + 0.250030i
\(9\) 0 0
\(10\) 0.564252 + 0.898002i 0.178432 + 0.283973i
\(11\) 0.974345 + 0.838491i 0.293776 + 0.252815i 0.786810 0.617195i \(-0.211731\pi\)
−0.493034 + 0.870010i \(0.664112\pi\)
\(12\) 0 0
\(13\) −2.06180 3.02410i −0.571839 0.838734i 0.425980 0.904732i \(-0.359929\pi\)
−0.997820 + 0.0659980i \(0.978977\pi\)
\(14\) 1.89883 + 0.828450i 0.507483 + 0.221412i
\(15\) 0 0
\(16\) −0.154007 2.05508i −0.0385017 0.513770i
\(17\) 2.82385 2.82385i 0.684884 0.684884i −0.276213 0.961096i \(-0.589080\pi\)
0.961096 + 0.276213i \(0.0890795\pi\)
\(18\) 0 0
\(19\) −5.81575 + 3.65428i −1.33422 + 0.838349i −0.994757 0.102269i \(-0.967390\pi\)
−0.339468 + 0.940618i \(0.610247\pi\)
\(20\) 1.69109 2.48037i 0.378139 0.554629i
\(21\) 0 0
\(22\) −0.221833 + 0.719165i −0.0472950 + 0.153326i
\(23\) −8.33810 + 3.27246i −1.73861 + 0.682355i −0.738648 + 0.674092i \(0.764535\pi\)
−0.999966 + 0.00826369i \(0.997370\pi\)
\(24\) 0 0
\(25\) −1.64224 + 0.506563i −0.328447 + 0.101313i
\(26\) 1.14008 1.81442i 0.223587 0.355837i
\(27\) 0 0
\(28\) 5.86408i 1.10821i
\(29\) 1.28158 + 5.23045i 0.237983 + 0.971269i
\(30\) 0 0
\(31\) 3.72396 + 2.74841i 0.668843 + 0.493629i 0.874519 0.484992i \(-0.161177\pi\)
−0.205676 + 0.978620i \(0.565939\pi\)
\(32\) 4.85287 2.56482i 0.857874 0.453400i
\(33\) 0 0
\(34\) 2.17647 + 0.854200i 0.373261 + 0.146494i
\(35\) 3.99648 5.01143i 0.675529 0.847086i
\(36\) 0 0
\(37\) 2.62155 7.49197i 0.430981 1.23167i −0.499815 0.866132i \(-0.666599\pi\)
0.930796 0.365540i \(-0.119116\pi\)
\(38\) −3.32257 2.26529i −0.538992 0.367479i
\(39\) 0 0
\(40\) 3.81109 + 0.721097i 0.602586 + 0.114015i
\(41\) −6.95493 + 1.86357i −1.08618 + 0.291040i −0.757124 0.653271i \(-0.773396\pi\)
−0.329053 + 0.944311i \(0.606730\pi\)
\(42\) 0 0
\(43\) 1.32201 + 1.79126i 0.201605 + 0.273165i 0.893723 0.448620i \(-0.148084\pi\)
−0.692118 + 0.721784i \(0.743322\pi\)
\(44\) 2.11691 0.238518i 0.319136 0.0359579i
\(45\) 0 0
\(46\) −3.70823 3.70823i −0.546748 0.546748i
\(47\) −1.08573 + 1.26165i −0.158371 + 0.184030i −0.831551 0.555448i \(-0.812547\pi\)
0.673181 + 0.739478i \(0.264928\pi\)
\(48\) 0 0
\(49\) 0.412579 5.50549i 0.0589399 0.786499i
\(50\) −0.656321 0.762658i −0.0928177 0.107856i
\(51\) 0 0
\(52\) −5.99783 0.904027i −0.831749 0.125366i
\(53\) −6.55714 + 5.22915i −0.900693 + 0.718278i −0.960011 0.279961i \(-0.909679\pi\)
0.0593187 + 0.998239i \(0.481107\pi\)
\(54\) 0 0
\(55\) 1.97166 + 1.23888i 0.265859 + 0.167050i
\(56\) 6.94443 3.02983i 0.927989 0.404877i
\(57\) 0 0
\(58\) −2.50671 + 1.91230i −0.329148 + 0.251097i
\(59\) 7.47986 + 4.31850i 0.973795 + 0.562221i 0.900391 0.435082i \(-0.143281\pi\)
0.0734037 + 0.997302i \(0.476614\pi\)
\(60\) 0 0
\(61\) 13.5329 + 0.506365i 1.73271 + 0.0648334i 0.884989 0.465611i \(-0.154165\pi\)
0.847720 + 0.530445i \(0.177975\pi\)
\(62\) −0.602979 + 2.64182i −0.0765784 + 0.335512i
\(63\) 0 0
\(64\) −0.709949 0.566166i −0.0887436 0.0707707i
\(65\) −4.50962 4.86022i −0.559350 0.602836i
\(66\) 0 0
\(67\) 10.9354 + 0.819497i 1.33597 + 0.100117i 0.723473 0.690352i \(-0.242544\pi\)
0.612501 + 0.790470i \(0.290164\pi\)
\(68\) −0.247461 6.61353i −0.0300091 0.802009i
\(69\) 0 0
\(70\) 3.62491 + 0.971292i 0.433260 + 0.116092i
\(71\) 3.89744 + 1.87691i 0.462541 + 0.222748i 0.650616 0.759407i \(-0.274511\pi\)
−0.188075 + 0.982155i \(0.560225\pi\)
\(72\) 0 0
\(73\) 0.963648 + 8.55261i 0.112786 + 1.00101i 0.914857 + 0.403778i \(0.132303\pi\)
−0.802071 + 0.597229i \(0.796268\pi\)
\(74\) 4.63411 0.347279i 0.538705 0.0403703i
\(75\) 0 0
\(76\) −2.11617 + 11.1843i −0.242742 + 1.28292i
\(77\) 4.54542 0.170078i 0.517999 0.0193821i
\(78\) 0 0
\(79\) 0.335835 + 1.77493i 0.0377844 + 0.199695i 0.996372 0.0851015i \(-0.0271214\pi\)
−0.958588 + 0.284797i \(0.908074\pi\)
\(80\) −0.830703 3.63955i −0.0928754 0.406914i
\(81\) 0 0
\(82\) −2.62835 3.29585i −0.290253 0.363965i
\(83\) 0.302531 + 0.980782i 0.0332071 + 0.107655i 0.970659 0.240460i \(-0.0772982\pi\)
−0.937452 + 0.348115i \(0.886822\pi\)
\(84\) 0 0
\(85\) 4.29577 5.82057i 0.465942 0.631329i
\(86\) −0.651711 + 1.12880i −0.0702758 + 0.121721i
\(87\) 0 0
\(88\) 1.37622 + 2.38367i 0.146705 + 0.254101i
\(89\) 2.15138 + 0.242402i 0.228046 + 0.0256946i 0.225248 0.974301i \(-0.427681\pi\)
0.00279797 + 0.999996i \(0.499109\pi\)
\(90\) 0 0
\(91\) −12.6265 2.88191i −1.32361 0.302106i
\(92\) −5.42320 + 13.8181i −0.565408 + 1.44064i
\(93\) 0 0
\(94\) −0.931222 0.287244i −0.0960482 0.0296269i
\(95\) −9.43077 + 8.11583i −0.967576 + 0.832667i
\(96\) 0 0
\(97\) −0.817727 + 1.54721i −0.0830276 + 0.157096i −0.922133 0.386873i \(-0.873555\pi\)
0.839105 + 0.543969i \(0.183079\pi\)
\(98\) 3.05095 1.06757i 0.308193 0.107841i
\(99\) 0 0
\(100\) −1.23574 + 2.56604i −0.123574 + 0.256604i
\(101\) −1.27105 + 0.938078i −0.126474 + 0.0933422i −0.655220 0.755438i \(-0.727424\pi\)
0.528746 + 0.848780i \(0.322662\pi\)
\(102\) 0 0
\(103\) 8.55107 5.83002i 0.842562 0.574449i −0.0633131 0.997994i \(-0.520167\pi\)
0.905875 + 0.423545i \(0.139214\pi\)
\(104\) −2.02835 7.56992i −0.198896 0.742291i
\(105\) 0 0
\(106\) −4.34126 2.29442i −0.421660 0.222854i
\(107\) −1.56083 3.24109i −0.150891 0.313328i 0.811798 0.583938i \(-0.198489\pi\)
−0.962689 + 0.270610i \(0.912775\pi\)
\(108\) 0 0
\(109\) −15.2545 + 3.48174i −1.46111 + 0.333490i −0.877906 0.478833i \(-0.841060\pi\)
−0.583208 + 0.812323i \(0.698203\pi\)
\(110\) −0.203191 + 1.34808i −0.0193735 + 0.128535i
\(111\) 0 0
\(112\) −5.34561 4.96000i −0.505113 0.468676i
\(113\) 4.36660 + 8.26201i 0.410775 + 0.777225i 0.999516 0.0310970i \(-0.00990006\pi\)
−0.588741 + 0.808322i \(0.700376\pi\)
\(114\) 0 0
\(115\) −14.0520 + 8.11291i −1.31035 + 0.756533i
\(116\) 7.79870 + 4.33885i 0.724091 + 0.402852i
\(117\) 0 0
\(118\) −0.566172 + 5.02491i −0.0521203 + 0.462581i
\(119\) 0.528377 14.1212i 0.0484362 1.29449i
\(120\) 0 0
\(121\) −1.39319 9.24318i −0.126653 0.840289i
\(122\) 2.89666 + 7.38057i 0.262251 + 0.668206i
\(123\) 0 0
\(124\) 7.53650 1.42598i 0.676797 0.128057i
\(125\) −10.9652 + 5.28058i −0.980761 + 0.472310i
\(126\) 0 0
\(127\) −0.619721 1.77106i −0.0549913 0.157156i 0.913111 0.407711i \(-0.133673\pi\)
−0.968103 + 0.250554i \(0.919387\pi\)
\(128\) 2.97889 11.1174i 0.263299 0.982646i
\(129\) 0 0
\(130\) 1.55228 3.55785i 0.136144 0.312044i
\(131\) 3.80938 8.73120i 0.332828 0.762849i −0.667014 0.745045i \(-0.732428\pi\)
0.999842 0.0178036i \(-0.00566735\pi\)
\(132\) 0 0
\(133\) −6.29040 + 23.4761i −0.545447 + 2.03564i
\(134\) 2.12050 + 6.06003i 0.183183 + 0.523507i
\(135\) 0 0
\(136\) 7.70411 3.71010i 0.660622 0.318139i
\(137\) −1.02757 + 0.194426i −0.0877910 + 0.0166110i −0.229622 0.973280i \(-0.573749\pi\)
0.141830 + 0.989891i \(0.454701\pi\)
\(138\) 0 0
\(139\) −1.26551 3.22446i −0.107339 0.273495i 0.867105 0.498125i \(-0.165978\pi\)
−0.974444 + 0.224630i \(0.927883\pi\)
\(140\) −1.58321 10.5039i −0.133806 0.887744i
\(141\) 0 0
\(142\) −0.0946987 + 2.53088i −0.00794694 + 0.212386i
\(143\) 0.526781 4.67531i 0.0440517 0.390969i
\(144\) 0 0
\(145\) 3.70775 + 9.02295i 0.307912 + 0.749315i
\(146\) −4.36389 + 2.51949i −0.361158 + 0.208515i
\(147\) 0 0
\(148\) −6.14647 11.6297i −0.505237 0.955954i
\(149\) −9.95683 9.23859i −0.815696 0.756855i 0.157332 0.987546i \(-0.449711\pi\)
−0.973027 + 0.230691i \(0.925901\pi\)
\(150\) 0 0
\(151\) −2.55954 + 16.9814i −0.208292 + 1.38193i 0.603211 + 0.797582i \(0.293888\pi\)
−0.811503 + 0.584348i \(0.801350\pi\)
\(152\) −14.3381 + 3.27259i −1.16298 + 0.265442i
\(153\) 0 0
\(154\) 1.15546 + 2.39935i 0.0931099 + 0.193345i
\(155\) 7.41251 + 3.91763i 0.595387 + 0.314671i
\(156\) 0 0
\(157\) −1.11923 4.17702i −0.0893242 0.333362i 0.906774 0.421618i \(-0.138538\pi\)
−0.996098 + 0.0882552i \(0.971871\pi\)
\(158\) −0.873837 + 0.595772i −0.0695187 + 0.0473971i
\(159\) 0 0
\(160\) 8.00016 5.90439i 0.632469 0.466783i
\(161\) −13.7521 + 28.5564i −1.08381 + 2.25056i
\(162\) 0 0
\(163\) −3.67650 + 1.28646i −0.287966 + 0.100764i −0.470397 0.882455i \(-0.655889\pi\)
0.182431 + 0.983219i \(0.441603\pi\)
\(164\) −5.57567 + 10.5497i −0.435386 + 0.823791i
\(165\) 0 0
\(166\) −0.455477 + 0.391970i −0.0353519 + 0.0304228i
\(167\) 9.41264 + 2.90341i 0.728372 + 0.224673i 0.636695 0.771116i \(-0.280301\pi\)
0.0916769 + 0.995789i \(0.470777\pi\)
\(168\) 0 0
\(169\) −0.144743 + 0.368799i −0.0111341 + 0.0283692i
\(170\) 4.12918 + 0.942459i 0.316694 + 0.0722833i
\(171\) 0 0
\(172\) 3.66625 + 0.413087i 0.279549 + 0.0314976i
\(173\) 3.25834 + 5.64362i 0.247727 + 0.429076i 0.962895 0.269877i \(-0.0869830\pi\)
−0.715168 + 0.698953i \(0.753650\pi\)
\(174\) 0 0
\(175\) −3.04061 + 5.26648i −0.229848 + 0.398109i
\(176\) 1.57311 2.13149i 0.118578 0.160667i
\(177\) 0 0
\(178\) 0.373614 + 1.21123i 0.0280035 + 0.0907853i
\(179\) −15.0898 18.9220i −1.12786 1.41429i −0.897403 0.441213i \(-0.854548\pi\)
−0.230460 0.973082i \(-0.574023\pi\)
\(180\) 0 0
\(181\) −2.36553 10.3641i −0.175828 0.770355i −0.983527 0.180759i \(-0.942144\pi\)
0.807699 0.589595i \(-0.200713\pi\)
\(182\) −1.40968 7.45034i −0.104492 0.552256i
\(183\) 0 0
\(184\) −19.1659 + 0.717137i −1.41293 + 0.0528680i
\(185\) 2.67310 14.1277i 0.196530 1.03869i
\(186\) 0 0
\(187\) 5.11917 0.383629i 0.374351 0.0280537i
\(188\) 0.308849 + 2.74111i 0.0225251 + 0.199916i
\(189\) 0 0
\(190\) −6.56310 3.16062i −0.476137 0.229296i
\(191\) −6.01366 1.61136i −0.435133 0.116594i 0.0346015 0.999401i \(-0.488984\pi\)
−0.469735 + 0.882808i \(0.655650\pi\)
\(192\) 0 0
\(193\) −0.614270 16.4167i −0.0442161 1.18170i −0.828022 0.560695i \(-0.810534\pi\)
0.783806 0.621006i \(-0.213276\pi\)
\(194\) −1.02172 0.0765671i −0.0733550 0.00549720i
\(195\) 0 0
\(196\) −6.22318 6.70700i −0.444513 0.479071i
\(197\) −8.02113 6.39664i −0.571482 0.455741i 0.294616 0.955616i \(-0.404808\pi\)
−0.866098 + 0.499874i \(0.833380\pi\)
\(198\) 0 0
\(199\) −4.26586 + 18.6900i −0.302399 + 1.32490i 0.564096 + 0.825709i \(0.309225\pi\)
−0.866494 + 0.499187i \(0.833632\pi\)
\(200\) −3.67726 0.137594i −0.260022 0.00972933i
\(201\) 0 0
\(202\) −0.800976 0.462444i −0.0563565 0.0325374i
\(203\) 15.9128 + 10.4828i 1.11686 + 0.735746i
\(204\) 0 0
\(205\) −11.9548 + 5.21581i −0.834957 + 0.364288i
\(206\) 5.13053 + 3.22372i 0.357461 + 0.224608i
\(207\) 0 0
\(208\) −5.89723 + 4.70288i −0.408899 + 0.326086i
\(209\) −8.73062 1.31593i −0.603910 0.0910248i
\(210\) 0 0
\(211\) 8.93001 + 10.3769i 0.614767 + 0.714372i 0.975919 0.218135i \(-0.0699973\pi\)
−0.361152 + 0.932507i \(0.617616\pi\)
\(212\) −1.03867 + 13.8601i −0.0713363 + 0.951916i
\(213\) 0 0
\(214\) 1.37381 1.59639i 0.0939114 0.109127i
\(215\) 2.85164 + 2.85164i 0.194480 + 0.194480i
\(216\) 0 0
\(217\) 16.2744 1.83369i 1.10478 0.124479i
\(218\) −5.43982 7.37070i −0.368431 0.499207i
\(219\) 0 0
\(220\) 3.72748 0.998775i 0.251306 0.0673374i
\(221\) −14.3618 2.71740i −0.966079 0.182792i
\(222\) 0 0
\(223\) 17.7860 + 12.1263i 1.19104 + 0.812035i 0.986004 0.166721i \(-0.0533178\pi\)
0.205032 + 0.978755i \(0.434270\pi\)
\(224\) 6.41489 18.3327i 0.428613 1.22490i
\(225\) 0 0
\(226\) −3.41123 + 4.27755i −0.226912 + 0.284538i
\(227\) −25.1369 9.86550i −1.66839 0.654796i −0.672072 0.740486i \(-0.734595\pi\)
−0.996322 + 0.0856896i \(0.972691\pi\)
\(228\) 0 0
\(229\) −14.6405 + 7.73771i −0.967469 + 0.511322i −0.874858 0.484380i \(-0.839045\pi\)
−0.0926110 + 0.995702i \(0.529521\pi\)
\(230\) −7.64347 5.64114i −0.503995 0.371965i
\(231\) 0 0
\(232\) −1.10882 + 11.4773i −0.0727973 + 0.753519i
\(233\) 18.9493i 1.24141i −0.784044 0.620705i \(-0.786846\pi\)
0.784044 0.620705i \(-0.213154\pi\)
\(234\) 0 0
\(235\) −1.60418 + 2.55303i −0.104645 + 0.166542i
\(236\) 13.6775 4.21896i 0.890332 0.274631i
\(237\) 0 0
\(238\) 7.70141 3.02258i 0.499208 0.195925i
\(239\) −2.90929 + 9.43170i −0.188187 + 0.610086i 0.811483 + 0.584376i \(0.198661\pi\)
−0.999669 + 0.0257096i \(0.991815\pi\)
\(240\) 0 0
\(241\) 1.80931 2.65377i 0.116548 0.170944i −0.763532 0.645770i \(-0.776537\pi\)
0.880080 + 0.474826i \(0.157489\pi\)
\(242\) 4.63390 2.91167i 0.297878 0.187169i
\(243\) 0 0
\(244\) 15.8694 15.8694i 1.01593 1.01593i
\(245\) −0.747374 9.97301i −0.0477480 0.637152i
\(246\) 0 0
\(247\) 23.0418 + 10.0530i 1.46611 + 0.639659i
\(248\) 5.58262 + 8.18820i 0.354497 + 0.519951i
\(249\) 0 0
\(250\) −5.40090 4.64785i −0.341583 0.293956i
\(251\) −1.44426 2.29853i −0.0911610 0.145082i 0.798031 0.602617i \(-0.205875\pi\)
−0.889192 + 0.457535i \(0.848732\pi\)
\(252\) 0 0
\(253\) −10.8681 3.80292i −0.683272 0.239087i
\(254\) 0.805295 0.747204i 0.0505287 0.0468838i
\(255\) 0 0
\(256\) 4.86741 0.733644i 0.304213 0.0458527i
\(257\) −0.730713 + 0.787521i −0.0455806 + 0.0491242i −0.755431 0.655229i \(-0.772572\pi\)
0.709850 + 0.704353i \(0.248763\pi\)
\(258\) 0 0
\(259\) −11.2315 25.7429i −0.697893 1.59959i
\(260\) −10.9876 −0.681421
\(261\) 0 0
\(262\) 5.57721 0.344561
\(263\) 7.21655 + 16.5405i 0.444992 + 1.01993i 0.984087 + 0.177687i \(0.0568614\pi\)
−0.539096 + 0.842245i \(0.681234\pi\)
\(264\) 0 0
\(265\) −10.3336 + 11.1370i −0.634787 + 0.684138i
\(266\) −14.0705 + 2.12078i −0.862717 + 0.130034i
\(267\) 0 0
\(268\) 13.3219 12.3610i 0.813767 0.755066i
\(269\) −4.38546 1.53454i −0.267386 0.0935625i 0.193256 0.981148i \(-0.438095\pi\)
−0.460642 + 0.887586i \(0.652381\pi\)
\(270\) 0 0
\(271\) 1.36275 + 2.16881i 0.0827813 + 0.131746i 0.885549 0.464547i \(-0.153783\pi\)
−0.802767 + 0.596292i \(0.796640\pi\)
\(272\) −6.23812 5.36833i −0.378241 0.325503i
\(273\) 0 0
\(274\) −0.344912 0.505894i −0.0208369 0.0305621i
\(275\) −2.02485 0.883434i −0.122103 0.0532731i
\(276\) 0 0
\(277\) −0.222034 2.96284i −0.0133407 0.178020i −0.999894 0.0145781i \(-0.995359\pi\)
0.986553 0.163442i \(-0.0522596\pi\)
\(278\) 1.43402 1.43402i 0.0860071 0.0860071i
\(279\) 0 0
\(280\) 11.6211 7.30202i 0.694494 0.436379i
\(281\) −2.90516 + 4.26109i −0.173308 + 0.254195i −0.903058 0.429518i \(-0.858684\pi\)
0.729751 + 0.683713i \(0.239636\pi\)
\(282\) 0 0
\(283\) −4.73199 + 15.3407i −0.281287 + 0.911911i 0.699132 + 0.714992i \(0.253570\pi\)
−0.980420 + 0.196919i \(0.936906\pi\)
\(284\) 6.67332 2.61908i 0.395988 0.155414i
\(285\) 0 0
\(286\) 2.63220 0.811927i 0.155645 0.0480102i
\(287\) −13.5552 + 21.5729i −0.800136 + 1.27341i
\(288\) 0 0
\(289\) 1.05178i 0.0618692i
\(290\) −3.97382 + 4.10215i −0.233351 + 0.240886i
\(291\) 0 0
\(292\) 11.4762 + 8.46982i 0.671594 + 0.495659i
\(293\) 18.5869 9.82349i 1.08586 0.573894i 0.174147 0.984720i \(-0.444283\pi\)
0.911714 + 0.410826i \(0.134759\pi\)
\(294\) 0 0
\(295\) 14.5641 + 5.71599i 0.847955 + 0.332798i
\(296\) 10.5965 13.2876i 0.615911 0.772328i
\(297\) 0 0
\(298\) 2.62647 7.50602i 0.152147 0.434812i
\(299\) 27.0877 + 18.4681i 1.56652 + 1.06804i
\(300\) 0 0
\(301\) 7.74034 + 1.46455i 0.446146 + 0.0844153i
\(302\) −9.71183 + 2.60228i −0.558853 + 0.149744i
\(303\) 0 0
\(304\) 8.40549 + 11.3890i 0.482088 + 0.653206i
\(305\) 24.3773 2.74666i 1.39584 0.157273i
\(306\) 0 0
\(307\) −1.65888 1.65888i −0.0946772 0.0946772i 0.658182 0.752859i \(-0.271326\pi\)
−0.752859 + 0.658182i \(0.771326\pi\)
\(308\) 4.91698 5.71363i 0.280171 0.325564i
\(309\) 0 0
\(310\) −0.366824 + 4.89492i −0.0208342 + 0.278013i
\(311\) 4.21991 + 4.90363i 0.239289 + 0.278059i 0.864757 0.502191i \(-0.167473\pi\)
−0.625467 + 0.780250i \(0.715092\pi\)
\(312\) 0 0
\(313\) −19.8385 2.99017i −1.12134 0.169014i −0.437900 0.899024i \(-0.644278\pi\)
−0.683437 + 0.730009i \(0.739516\pi\)
\(314\) 1.97943 1.57855i 0.111706 0.0890825i
\(315\) 0 0
\(316\) 2.53480 + 1.59272i 0.142593 + 0.0895974i
\(317\) 10.4430 4.55625i 0.586539 0.255904i −0.0855997 0.996330i \(-0.527281\pi\)
0.672139 + 0.740425i \(0.265376\pi\)
\(318\) 0 0
\(319\) −3.13699 + 6.17085i −0.175638 + 0.345501i
\(320\) −1.42454 0.822459i −0.0796343 0.0459769i
\(321\) 0 0
\(322\) −18.5437 0.693855i −1.03340 0.0386670i
\(323\) −6.10367 + 26.7419i −0.339617 + 1.48796i
\(324\) 0 0
\(325\) 4.91785 + 3.92186i 0.272793 + 0.217546i
\(326\) −1.55110 1.67169i −0.0859076 0.0925864i
\(327\) 0 0
\(328\) −15.3741 1.15213i −0.848892 0.0636157i
\(329\) 0.220228 + 5.88571i 0.0121415 + 0.324490i
\(330\) 0 0
\(331\) 2.13003 + 0.570739i 0.117077 + 0.0313706i 0.316882 0.948465i \(-0.397364\pi\)
−0.199805 + 0.979836i \(0.564031\pi\)
\(332\) 1.53250 + 0.738012i 0.0841067 + 0.0405037i
\(333\) 0 0
\(334\) 0.645703 + 5.73077i 0.0353313 + 0.313574i
\(335\) 19.8092 1.48449i 1.08229 0.0811064i
\(336\) 0 0
\(337\) 6.29336 33.2612i 0.342821 1.81185i −0.209027 0.977910i \(-0.567030\pi\)
0.551849 0.833944i \(-0.313923\pi\)
\(338\) −0.231793 + 0.00867309i −0.0126079 + 0.000471754i
\(339\) 0 0
\(340\) −2.22882 11.7796i −0.120875 0.638837i
\(341\) 1.32390 + 5.80041i 0.0716935 + 0.314110i
\(342\) 0 0
\(343\) 3.26315 + 4.09186i 0.176193 + 0.220940i
\(344\) 1.40507 + 4.55512i 0.0757563 + 0.245596i
\(345\) 0 0
\(346\) −2.26562 + 3.06981i −0.121800 + 0.165034i
\(347\) 1.41886 2.45753i 0.0761683 0.131927i −0.825425 0.564511i \(-0.809065\pi\)
0.901594 + 0.432584i \(0.142398\pi\)
\(348\) 0 0
\(349\) −13.2134 22.8862i −0.707295 1.22507i −0.965857 0.259076i \(-0.916582\pi\)
0.258562 0.965995i \(-0.416751\pi\)
\(350\) −3.53798 0.398635i −0.189113 0.0213079i
\(351\) 0 0
\(352\) 6.87895 + 1.57007i 0.366649 + 0.0836852i
\(353\) −1.72127 + 4.38573i −0.0916142 + 0.233429i −0.969335 0.245743i \(-0.920968\pi\)
0.877721 + 0.479172i \(0.159063\pi\)
\(354\) 0 0
\(355\) 7.48796 + 2.30973i 0.397420 + 0.122588i
\(356\) 2.71951 2.34033i 0.144134 0.124037i
\(357\) 0 0
\(358\) 6.62102 12.5276i 0.349932 0.662103i
\(359\) 12.5299 4.38440i 0.661303 0.231400i 0.0213010 0.999773i \(-0.493219\pi\)
0.640002 + 0.768373i \(0.278933\pi\)
\(360\) 0 0
\(361\) 12.2254 25.3863i 0.643442 1.33612i
\(362\) 5.00773 3.69588i 0.263201 0.194251i
\(363\) 0 0
\(364\) −17.7336 + 12.0905i −0.929491 + 0.633716i
\(365\) 4.03520 + 15.0596i 0.211212 + 0.788253i
\(366\) 0 0
\(367\) −18.6655 9.86501i −0.974332 0.514950i −0.0972343 0.995262i \(-0.531000\pi\)
−0.877098 + 0.480312i \(0.840523\pi\)
\(368\) 8.00929 + 16.6315i 0.417513 + 0.866975i
\(369\) 0 0
\(370\) 8.20702 1.87320i 0.426663 0.0973830i
\(371\) −4.42312 + 29.3455i −0.229637 + 1.52354i
\(372\) 0 0
\(373\) −0.342406 0.317706i −0.0177291 0.0164502i 0.671258 0.741223i \(-0.265754\pi\)
−0.688988 + 0.724773i \(0.741945\pi\)
\(374\) 1.40439 + 2.65723i 0.0726192 + 0.137402i
\(375\) 0 0
\(376\) −3.08654 + 1.78201i −0.159176 + 0.0919003i
\(377\) 13.1750 14.6597i 0.678549 0.755014i
\(378\) 0 0
\(379\) 1.42454 12.6431i 0.0731737 0.649435i −0.902574 0.430535i \(-0.858325\pi\)
0.975747 0.218899i \(-0.0702466\pi\)
\(380\) −0.770983 + 20.6049i −0.0395506 + 1.05701i
\(381\) 0 0
\(382\) −0.543262 3.60431i −0.0277957 0.184413i
\(383\) 4.00297 + 10.1994i 0.204542 + 0.521165i 0.995928 0.0901518i \(-0.0287352\pi\)
−0.791386 + 0.611317i \(0.790640\pi\)
\(384\) 0 0
\(385\) 8.09599 1.53184i 0.412610 0.0780700i
\(386\) 8.66573 4.17319i 0.441074 0.212410i
\(387\) 0 0
\(388\) 0.957864 + 2.73742i 0.0486282 + 0.138971i
\(389\) 4.93448 18.4157i 0.250188 0.933715i −0.720516 0.693438i \(-0.756095\pi\)
0.970704 0.240277i \(-0.0772383\pi\)
\(390\) 0 0
\(391\) −14.3046 + 32.7864i −0.723414 + 1.65808i
\(392\) 4.72728 10.8350i 0.238764 0.547252i
\(393\) 0 0
\(394\) 1.55462 5.80191i 0.0783205 0.292296i
\(395\) 1.08076 + 3.08865i 0.0543792 + 0.155407i
\(396\) 0 0
\(397\) −17.4974 + 8.42630i −0.878169 + 0.422904i −0.817955 0.575282i \(-0.804892\pi\)
−0.0602137 + 0.998186i \(0.519178\pi\)
\(398\) −11.0282 + 2.08664i −0.552791 + 0.104594i
\(399\) 0 0
\(400\) 1.29394 + 3.29691i 0.0646971 + 0.164846i
\(401\) −5.30567 35.2008i −0.264952 1.75784i −0.585557 0.810631i \(-0.699124\pi\)
0.320605 0.947213i \(-0.396114\pi\)
\(402\) 0 0
\(403\) 0.633412 16.9283i 0.0315525 0.843258i
\(404\) −0.293120 + 2.60151i −0.0145833 + 0.129430i
\(405\) 0 0
\(406\) −1.89967 + 10.9934i −0.0942790 + 0.545595i
\(407\) 8.83625 5.10161i 0.437997 0.252878i
\(408\) 0 0
\(409\) 5.87118 + 11.1088i 0.290311 + 0.549296i 0.985530 0.169503i \(-0.0542162\pi\)
−0.695218 + 0.718798i \(0.744692\pi\)
\(410\) −5.59782 5.19402i −0.276457 0.256514i
\(411\) 0 0
\(412\) 2.55626 16.9597i 0.125938 0.835545i
\(413\) 29.7957 6.80067i 1.46615 0.334639i
\(414\) 0 0
\(415\) 0.806700 + 1.67513i 0.0395994 + 0.0822289i
\(416\) −17.7619 9.38743i −0.870848 0.460257i
\(417\) 0 0
\(418\) −1.33790 4.99312i −0.0654390 0.244222i
\(419\) −8.10443 + 5.52551i −0.395927 + 0.269939i −0.744876 0.667203i \(-0.767491\pi\)
0.348948 + 0.937142i \(0.386539\pi\)
\(420\) 0 0
\(421\) −3.24358 + 2.39387i −0.158083 + 0.116670i −0.669989 0.742371i \(-0.733701\pi\)
0.511907 + 0.859041i \(0.328939\pi\)
\(422\) −3.47769 + 7.22150i −0.169291 + 0.351537i
\(423\) 0 0
\(424\) −16.9503 + 5.93115i −0.823177 + 0.288042i
\(425\) −3.20697 + 6.06788i −0.155561 + 0.294335i
\(426\) 0 0
\(427\) 36.3217 31.2573i 1.75773 1.51265i
\(428\) −5.69674 1.75721i −0.275362 0.0849380i
\(429\) 0 0
\(430\) −0.862608 + 2.19789i −0.0415987 + 0.105992i
\(431\) −30.2968 6.91504i −1.45934 0.333086i −0.582095 0.813121i \(-0.697767\pi\)
−0.877249 + 0.480035i \(0.840624\pi\)
\(432\) 0 0
\(433\) −17.4126 1.96193i −0.836797 0.0942844i −0.316843 0.948478i \(-0.602623\pi\)
−0.519955 + 0.854194i \(0.674051\pi\)
\(434\) 4.79424 + 8.30386i 0.230131 + 0.398598i
\(435\) 0 0
\(436\) −12.9651 + 22.4562i −0.620916 + 1.07546i
\(437\) 36.5338 49.5015i 1.74765 2.36798i
\(438\) 0 0
\(439\) 2.94163 + 9.53652i 0.140396 + 0.455153i 0.998276 0.0586975i \(-0.0186947\pi\)
−0.857880 + 0.513851i \(0.828219\pi\)
\(440\) 3.10868 + 3.89816i 0.148200 + 0.185838i
\(441\) 0 0
\(442\) −1.90424 8.34304i −0.0905757 0.396838i
\(443\) 2.02742 + 10.7152i 0.0963257 + 0.509094i 0.997185 + 0.0749821i \(0.0238900\pi\)
−0.900859 + 0.434111i \(0.857062\pi\)
\(444\) 0 0
\(445\) 3.91907 0.146641i 0.185782 0.00695146i
\(446\) −2.34306 + 12.3834i −0.110947 + 0.586370i
\(447\) 0 0
\(448\) −3.20418 + 0.240120i −0.151383 + 0.0113446i
\(449\) −0.405760 3.60122i −0.0191490 0.169952i 0.980498 0.196530i \(-0.0629674\pi\)
−0.999647 + 0.0265783i \(0.991539\pi\)
\(450\) 0 0
\(451\) −8.33908 4.01589i −0.392672 0.189101i
\(452\) 14.9590 + 4.00825i 0.703611 + 0.188532i
\(453\) 0 0
\(454\) −0.591146 15.7987i −0.0277439 0.741471i
\(455\) −23.3950 1.75321i −1.09677 0.0821919i
\(456\) 0 0
\(457\) 9.09607 + 9.80323i 0.425496 + 0.458576i 0.909018 0.416756i \(-0.136833\pi\)
−0.483522 + 0.875332i \(0.660643\pi\)
\(458\) −7.57991 6.04477i −0.354186 0.282454i
\(459\) 0 0
\(460\) −5.98355 + 26.2156i −0.278984 + 1.22231i
\(461\) −18.6864 0.699194i −0.870311 0.0325647i −0.401496 0.915861i \(-0.631509\pi\)
−0.468815 + 0.883296i \(0.655319\pi\)
\(462\) 0 0
\(463\) −9.86520 5.69568i −0.458475 0.264701i 0.252928 0.967485i \(-0.418606\pi\)
−0.711403 + 0.702785i \(0.751940\pi\)
\(464\) 10.5516 3.43926i 0.489846 0.159664i
\(465\) 0 0
\(466\) 10.1686 4.43651i 0.471051 0.205517i
\(467\) 17.6805 + 11.1094i 0.818158 + 0.514083i 0.874898 0.484306i \(-0.160928\pi\)
−0.0567408 + 0.998389i \(0.518071\pi\)
\(468\) 0 0
\(469\) 30.3377 24.1935i 1.40087 1.11715i
\(470\) −1.74559 0.263105i −0.0805180 0.0121361i
\(471\) 0 0
\(472\) 12.0631 + 14.0176i 0.555249 + 0.645210i
\(473\) −0.213863 + 2.85380i −0.00983342 + 0.131218i
\(474\) 0 0
\(475\) 7.69971 8.94723i 0.353287 0.410527i
\(476\) −16.5593 16.5593i −0.758992 0.758992i
\(477\) 0 0
\(478\) −5.74238 + 0.647011i −0.262650 + 0.0295936i
\(479\) 7.60424 + 10.3034i 0.347446 + 0.470773i 0.943120 0.332454i \(-0.107877\pi\)
−0.595673 + 0.803227i \(0.703115\pi\)
\(480\) 0 0
\(481\) −28.0616 + 7.51908i −1.27950 + 0.342840i
\(482\) 1.84767 + 0.349598i 0.0841591 + 0.0159238i
\(483\) 0 0
\(484\) −12.7993 8.72642i −0.581786 0.396655i
\(485\) −1.04701 + 2.99220i −0.0475425 + 0.135869i
\(486\) 0 0
\(487\) 16.0848 20.1697i 0.728873 0.913978i −0.269930 0.962880i \(-0.587001\pi\)
0.998804 + 0.0489019i \(0.0155722\pi\)
\(488\) 26.9924 + 10.5937i 1.22189 + 0.479556i
\(489\) 0 0
\(490\) 5.17674 2.73599i 0.233861 0.123599i
\(491\) −25.5288 18.8411i −1.15210 0.850287i −0.161470 0.986878i \(-0.551623\pi\)
−0.990628 + 0.136591i \(0.956385\pi\)
\(492\) 0 0
\(493\) 18.3890 + 11.1510i 0.828197 + 0.502216i
\(494\) 14.7184i 0.662210i
\(495\) 0 0
\(496\) 5.07468 8.07630i 0.227860 0.362637i
\(497\) 14.6269 4.51180i 0.656105 0.202382i
\(498\) 0 0
\(499\) −6.47222 + 2.54016i −0.289736 + 0.113713i −0.505758 0.862676i \(-0.668787\pi\)
0.216022 + 0.976389i \(0.430692\pi\)
\(500\) −5.94499 + 19.2732i −0.265868 + 0.861923i
\(501\) 0 0
\(502\) 0.895300 1.31316i 0.0399592 0.0586093i
\(503\) 20.7948 13.0663i 0.927197 0.582596i 0.0183977 0.999831i \(-0.494144\pi\)
0.908799 + 0.417235i \(0.137001\pi\)
\(504\) 0 0
\(505\) −2.02348 + 2.02348i −0.0900438 + 0.0900438i
\(506\) −0.503775 6.72241i −0.0223955 0.298847i
\(507\) 0 0
\(508\) −2.85009 1.24348i −0.126452 0.0551705i
\(509\) 22.6715 + 33.2529i 1.00489 + 1.47391i 0.876035 + 0.482247i \(0.160179\pi\)
0.128859 + 0.991663i \(0.458868\pi\)
\(510\) 0 0
\(511\) 23.0839 + 19.8653i 1.02117 + 0.878790i
\(512\) −10.7136 17.0506i −0.473480 0.753539i
\(513\) 0 0
\(514\) −0.593678 0.207737i −0.0261860 0.00916289i
\(515\) 13.7430 12.7516i 0.605587 0.561903i
\(516\) 0 0
\(517\) −2.11576 + 0.318899i −0.0930509 + 0.0140252i
\(518\) 11.1846 12.0541i 0.491423 0.529628i
\(519\) 0 0
\(520\) −5.67702 13.0119i −0.248954 0.570608i
\(521\) −3.70615 −0.162370 −0.0811848 0.996699i \(-0.525870\pi\)
−0.0811848 + 0.996699i \(0.525870\pi\)
\(522\) 0 0
\(523\) 21.1827 0.926256 0.463128 0.886291i \(-0.346727\pi\)
0.463128 + 0.886291i \(0.346727\pi\)
\(524\) −6.31300 14.4696i −0.275785 0.632106i
\(525\) 0 0
\(526\) −7.18640 + 7.74509i −0.313342 + 0.337702i
\(527\) 18.2770 2.75481i 0.796158 0.120001i
\(528\) 0 0
\(529\) 41.9547 38.9282i 1.82412 1.69253i
\(530\) −8.39567 2.93777i −0.364684 0.127609i
\(531\) 0 0
\(532\) 21.4290 + 34.1040i 0.929063 + 1.47860i
\(533\) 19.9753 + 17.1901i 0.865225 + 0.744586i
\(534\) 0 0
\(535\) −3.67085 5.38415i −0.158705 0.232777i
\(536\) 21.5214 + 9.38968i 0.929582 + 0.405573i
\(537\) 0 0
\(538\) −0.203281 2.71260i −0.00876408 0.116949i
\(539\) 5.01830 5.01830i 0.216154 0.216154i
\(540\) 0 0
\(541\) −33.4037 + 20.9889i −1.43614 + 0.902385i −0.436140 + 0.899879i \(0.643655\pi\)
−0.999997 + 0.00250608i \(0.999202\pi\)
\(542\) −0.844771 + 1.23905i −0.0362860 + 0.0532218i
\(543\) 0 0
\(544\) 6.46111 20.9464i 0.277018 0.898070i
\(545\) −26.3843 + 10.3551i −1.13018 + 0.443563i
\(546\) 0 0
\(547\) 2.92690 0.902828i 0.125145 0.0386021i −0.231550 0.972823i \(-0.574380\pi\)
0.356695 + 0.934221i \(0.383904\pi\)
\(548\) −0.922078 + 1.46748i −0.0393892 + 0.0626876i
\(549\) 0 0
\(550\) 1.29341i 0.0551512i
\(551\) −26.5668 25.7357i −1.13178 1.09638i
\(552\) 0 0
\(553\) 5.14300 + 3.79571i 0.218703 + 0.161410i
\(554\) 1.53794 0.812823i 0.0653407 0.0345336i
\(555\) 0 0
\(556\) −5.34366 2.09723i −0.226622 0.0889424i
\(557\) −9.78635 + 12.2717i −0.414661 + 0.519969i −0.944669 0.328024i \(-0.893617\pi\)
0.530008 + 0.847992i \(0.322189\pi\)
\(558\) 0 0
\(559\) 2.69123 7.69110i 0.113827 0.325299i
\(560\) −10.9144 7.44129i −0.461216 0.314452i
\(561\) 0 0
\(562\) −2.96676 0.561341i −0.125145 0.0236787i
\(563\) −26.3568 + 7.06228i −1.11081 + 0.297640i −0.767157 0.641459i \(-0.778330\pi\)
−0.343648 + 0.939098i \(0.611663\pi\)
\(564\) 0 0
\(565\) 10.0522 + 13.6203i 0.422900 + 0.573009i
\(566\) −9.34002 + 1.05237i −0.392590 + 0.0442343i
\(567\) 0 0
\(568\) 6.54955 + 6.54955i 0.274813 + 0.274813i
\(569\) 19.7647 22.9671i 0.828581 0.962829i −0.171167 0.985242i \(-0.554754\pi\)
0.999749 + 0.0224130i \(0.00713486\pi\)
\(570\) 0 0
\(571\) −0.146362 + 1.95307i −0.00612506 + 0.0817333i −0.999429 0.0338007i \(-0.989239\pi\)
0.993304 + 0.115534i \(0.0368579\pi\)
\(572\) −5.08593 5.90996i −0.212653 0.247108i
\(573\) 0 0
\(574\) −14.7501 2.22322i −0.615656 0.0927952i
\(575\) 12.0354 9.59793i 0.501912 0.400261i
\(576\) 0 0
\(577\) 13.6071 + 8.54991i 0.566471 + 0.355937i 0.784619 0.619978i \(-0.212859\pi\)
−0.218148 + 0.975916i \(0.570002\pi\)
\(578\) −0.564404 + 0.246247i −0.0234761 + 0.0102425i
\(579\) 0 0
\(580\) 15.1407 + 5.66637i 0.628684 + 0.235283i
\(581\) 3.14527 + 1.81592i 0.130488 + 0.0753371i
\(582\) 0 0
\(583\) −10.7735 0.403116i −0.446193 0.0166954i
\(584\) −4.10077 + 17.9667i −0.169691 + 0.743465i
\(585\) 0 0
\(586\) 9.62315 + 7.67421i 0.397529 + 0.317019i
\(587\) −9.97283 10.7482i −0.411623 0.443624i 0.492876 0.870099i \(-0.335945\pi\)
−0.904499 + 0.426476i \(0.859755\pi\)
\(588\) 0 0
\(589\) −31.7011 2.37567i −1.30622 0.0978876i
\(590\) 0.342505 + 9.15365i 0.0141007 + 0.376850i
\(591\) 0 0
\(592\) −15.8003 4.23368i −0.649389 0.174003i
\(593\) −3.15432 1.51904i −0.129533 0.0623796i 0.367995 0.929828i \(-0.380044\pi\)
−0.497527 + 0.867448i \(0.665759\pi\)
\(594\) 0 0
\(595\) −2.86606 25.4370i −0.117497 1.04281i
\(596\) −22.4467 + 1.68214i −0.919451 + 0.0689033i
\(597\) 0 0
\(598\) −3.56844 + 18.8597i −0.145924 + 0.771229i
\(599\) −43.8025 + 1.63897i −1.78972 + 0.0669666i −0.911503 0.411294i \(-0.865077\pi\)
−0.878218 + 0.478261i \(0.841267\pi\)
\(600\) 0 0
\(601\) −4.34605 22.9694i −0.177279 0.936942i −0.952336 0.305051i \(-0.901327\pi\)
0.775057 0.631891i \(-0.217721\pi\)
\(602\) 1.02630 + 4.49651i 0.0418288 + 0.183264i
\(603\) 0 0
\(604\) 17.7445 + 22.2509i 0.722012 + 0.905375i
\(605\) −4.99104 16.1806i −0.202915 0.657833i
\(606\) 0 0
\(607\) 20.2804 27.4790i 0.823157 1.11534i −0.168407 0.985718i \(-0.553862\pi\)
0.991564 0.129620i \(-0.0413759\pi\)
\(608\) −18.8505 + 32.6501i −0.764490 + 1.32413i
\(609\) 0 0
\(610\) 7.18125 + 12.4383i 0.290760 + 0.503611i
\(611\) 6.05390 + 0.682111i 0.244915 + 0.0275953i
\(612\) 0 0
\(613\) 16.5394 + 3.77501i 0.668020 + 0.152471i 0.543064 0.839691i \(-0.317264\pi\)
0.124955 + 0.992162i \(0.460121\pi\)
\(614\) 0.501803 1.27857i 0.0202511 0.0515990i
\(615\) 0 0
\(616\) 9.30676 + 2.87075i 0.374980 + 0.115666i
\(617\) −27.2867 + 23.4821i −1.09852 + 0.945354i −0.998766 0.0496578i \(-0.984187\pi\)
−0.0997552 + 0.995012i \(0.531806\pi\)
\(618\) 0 0
\(619\) −13.2327 + 25.0374i −0.531865 + 1.00634i 0.461034 + 0.887382i \(0.347479\pi\)
−0.992900 + 0.118956i \(0.962045\pi\)
\(620\) 13.1146 4.58901i 0.526696 0.184299i
\(621\) 0 0
\(622\) −1.64340 + 3.41255i −0.0658943 + 0.136831i
\(623\) 6.16387 4.54914i 0.246950 0.182258i
\(624\) 0 0
\(625\) −11.1158 + 7.57863i −0.444632 + 0.303145i
\(626\) −3.04010 11.3458i −0.121507 0.453469i
\(627\) 0 0
\(628\) −6.33597 3.34866i −0.252833 0.133626i
\(629\) −13.7533 28.5590i −0.548380 1.13872i
\(630\) 0 0
\(631\) 1.09042 0.248881i 0.0434088 0.00990778i −0.200761 0.979640i \(-0.564342\pi\)
0.244170 + 0.969732i \(0.421484\pi\)
\(632\) −0.576482 + 3.82471i −0.0229312 + 0.152139i
\(633\) 0 0
\(634\) 4.88995 + 4.53721i 0.194205 + 0.180196i
\(635\) −1.58822 3.00507i −0.0630268 0.119252i
\(636\) 0 0
\(637\) −17.4998 + 10.1035i −0.693368 + 0.400316i
\(638\) −4.04585 0.238621i −0.160177 0.00944709i
\(639\) 0 0
\(640\) 2.33437 20.7181i 0.0922739 0.818954i
\(641\) −1.69467 + 45.2909i −0.0669353 + 1.78888i 0.412152 + 0.911115i \(0.364777\pi\)
−0.479087 + 0.877767i \(0.659032\pi\)
\(642\) 0 0
\(643\) 1.46511 + 9.72037i 0.0577783 + 0.383334i 0.998967 + 0.0454513i \(0.0144726\pi\)
−0.941188 + 0.337883i \(0.890289\pi\)
\(644\) 19.1900 + 48.8952i 0.756190 + 1.92674i
\(645\) 0 0
\(646\) −15.7793 + 2.98560i −0.620827 + 0.117467i
\(647\) −19.9433 + 9.60419i −0.784052 + 0.377580i −0.782684 0.622420i \(-0.786150\pi\)
−0.00136817 + 0.999999i \(0.500436\pi\)
\(648\) 0 0
\(649\) 3.66694 + 10.4795i 0.143940 + 0.411356i
\(650\) −0.953156 + 3.55723i −0.0373858 + 0.139526i
\(651\) 0 0
\(652\) −2.58131 + 5.91643i −0.101092 + 0.231705i
\(653\) 14.9925 34.3631i 0.586701 1.34473i −0.329554 0.944137i \(-0.606898\pi\)
0.916255 0.400596i \(-0.131197\pi\)
\(654\) 0 0
\(655\) 4.46621 16.6681i 0.174509 0.651277i
\(656\) 4.90088 + 14.0059i 0.191347 + 0.546839i
\(657\) 0 0
\(658\) −3.10683 + 1.49617i −0.121117 + 0.0583268i
\(659\) −34.7249 + 6.57030i −1.35269 + 0.255943i −0.811202 0.584766i \(-0.801186\pi\)
−0.541488 + 0.840709i \(0.682139\pi\)
\(660\) 0 0
\(661\) −7.47190 19.0381i −0.290623 0.740496i −0.999386 0.0350489i \(-0.988841\pi\)
0.708762 0.705447i \(-0.249254\pi\)
\(662\) 0.192422 + 1.27664i 0.00747871 + 0.0496180i
\(663\) 0 0
\(664\) −0.0821740 + 2.19615i −0.00318897 + 0.0852270i
\(665\) −4.92938 + 43.7495i −0.191153 + 1.69653i
\(666\) 0 0
\(667\) −27.8023 39.4181i −1.07651 1.52627i
\(668\) 14.1371 8.16204i 0.546980 0.315799i
\(669\) 0 0
\(670\) 5.43443 + 10.2824i 0.209950 + 0.397245i
\(671\) 12.7611 + 11.8406i 0.492637 + 0.457101i
\(672\) 0 0
\(673\) −0.605378 + 4.01642i −0.0233356 + 0.154822i −0.997464 0.0711740i \(-0.977325\pi\)
0.974128 + 0.225996i \(0.0725635\pi\)
\(674\) 19.3221 4.41014i 0.744259 0.169872i
\(675\) 0 0
\(676\) 0.284875 + 0.591549i 0.0109567 + 0.0227519i
\(677\) −42.7466 22.5923i −1.64289 0.868291i −0.994237 0.107204i \(-0.965810\pi\)
−0.648650 0.761087i \(-0.724666\pi\)
\(678\) 0 0
\(679\) 1.60271 + 5.98141i 0.0615065 + 0.229545i
\(680\) 12.7982 8.72566i 0.490788 0.334614i
\(681\) 0 0
\(682\) −2.80266 + 2.06845i −0.107319 + 0.0792052i
\(683\) 19.0377 39.5323i 0.728459 1.51266i −0.125372 0.992110i \(-0.540012\pi\)
0.853831 0.520551i \(-0.174273\pi\)
\(684\) 0 0
\(685\) −1.78812 + 0.625691i −0.0683206 + 0.0239064i
\(686\) −1.43179 + 2.70908i −0.0546660 + 0.103433i
\(687\) 0 0
\(688\) 3.47758 2.99270i 0.132582 0.114096i
\(689\) 29.3330 + 9.04802i 1.11750 + 0.344702i
\(690\) 0 0
\(691\) −6.47640 + 16.5016i −0.246374 + 0.627750i −0.999548 0.0300710i \(-0.990427\pi\)
0.753174 + 0.657822i \(0.228522\pi\)
\(692\) 10.5288 + 2.40314i 0.400247 + 0.0913537i
\(693\) 0 0
\(694\) 1.65095 + 0.186018i 0.0626693 + 0.00706113i
\(695\) −3.13738 5.43410i −0.119008 0.206127i
\(696\) 0 0
\(697\) −14.3772 + 24.9021i −0.544576 + 0.943234i
\(698\) 9.18762 12.4488i 0.347757 0.471194i
\(699\) 0 0
\(700\) 2.97052 + 9.63020i 0.112275 + 0.363987i
\(701\) −28.4724 35.7032i −1.07539 1.34849i −0.933487 0.358611i \(-0.883251\pi\)
−0.141899 0.989881i \(-0.545321\pi\)
\(702\) 0 0
\(703\) 12.1314 + 53.1513i 0.457546 + 2.00464i
\(704\) −0.217010 1.14693i −0.00817888 0.0432264i
\(705\) 0 0
\(706\) −2.75647 + 0.103140i −0.103741 + 0.00388171i
\(707\) −1.03922 + 5.49243i −0.0390840 + 0.206564i
\(708\) 0 0
\(709\) −25.9681 + 1.94604i −0.975253 + 0.0730851i −0.552812 0.833306i \(-0.686445\pi\)
−0.422440 + 0.906391i \(0.638826\pi\)
\(710\) 0.513671 + 4.55896i 0.0192777 + 0.171095i
\(711\) 0 0
\(712\) 4.17660 + 2.01134i 0.156525 + 0.0753783i
\(713\) −40.0448 10.7300i −1.49969 0.401841i
\(714\) 0 0
\(715\) −0.318676 8.51681i −0.0119178 0.318510i
\(716\) −39.9962 2.99730i −1.49473 0.112014i
\(717\) 0 0
\(718\) 5.28632 + 5.69730i 0.197284 + 0.212621i
\(719\) −17.9950 14.3506i −0.671101 0.535185i 0.227596 0.973756i \(-0.426914\pi\)
−0.898697 + 0.438570i \(0.855485\pi\)
\(720\) 0 0
\(721\) 8.14900 35.7031i 0.303485 1.32965i
\(722\) 16.4851 + 0.616828i 0.613511 + 0.0229560i
\(723\) 0 0
\(724\) −15.2570 8.80864i −0.567022 0.327370i
\(725\) −4.75420 7.94043i −0.176567 0.294900i
\(726\) 0 0
\(727\) 25.5756 11.1585i 0.948547 0.413847i 0.132080 0.991239i \(-0.457834\pi\)
0.816467 + 0.577392i \(0.195930\pi\)
\(728\) −23.4805 14.7538i −0.870245 0.546811i
\(729\) 0 0
\(730\) −7.13652 + 5.69119i −0.264135 + 0.210640i
\(731\) 8.79140 + 1.32509i 0.325162 + 0.0490102i
\(732\) 0 0
\(733\) −24.3536 28.2994i −0.899520 1.04526i −0.998739 0.0501960i \(-0.984015\pi\)
0.0992190 0.995066i \(-0.468366\pi\)
\(734\) 0.923701 12.3259i 0.0340944 0.454959i
\(735\) 0 0
\(736\) −32.0704 + 37.2665i −1.18213 + 1.37366i
\(737\) 9.96773 + 9.96773i 0.367166 + 0.367166i
\(738\) 0 0
\(739\) 2.57887 0.290569i 0.0948654 0.0106888i −0.0644041 0.997924i \(-0.520515\pi\)
0.159270 + 0.987235i \(0.449086\pi\)
\(740\) −14.1496 19.1720i −0.520150 0.704778i
\(741\) 0 0
\(742\) −16.7830 + 4.49698i −0.616122 + 0.165089i
\(743\) −4.49542 0.850580i −0.164921 0.0312048i 0.102795 0.994703i \(-0.467221\pi\)
−0.267716 + 0.963498i \(0.586269\pi\)
\(744\) 0 0
\(745\) −20.3293 13.8603i −0.744808 0.507801i
\(746\) 0.0903218 0.258125i 0.00330692 0.00945063i
\(747\) 0 0
\(748\) 5.30428 6.65136i 0.193944 0.243198i
\(749\) −11.8492 4.65048i −0.432962 0.169925i
\(750\) 0 0
\(751\) 25.0618 13.2455i 0.914517 0.483337i 0.0573382 0.998355i \(-0.481739\pi\)
0.857179 + 0.515018i \(0.172215\pi\)
\(752\) 2.75999 + 2.03697i 0.100646 + 0.0742805i
\(753\) 0 0
\(754\) 10.9513 + 3.63778i 0.398823 + 0.132480i
\(755\) 31.1088i 1.13216i
\(756\) 0 0
\(757\) −6.75132 + 10.7447i −0.245381 + 0.390521i −0.946593 0.322432i \(-0.895500\pi\)
0.701212 + 0.712953i \(0.252643\pi\)
\(758\) 7.11809 2.19564i 0.258541 0.0797492i
\(759\) 0 0
\(760\) −24.7994 + 9.73305i −0.899569 + 0.353055i
\(761\) 13.8324 44.8437i 0.501425 1.62558i −0.251772 0.967787i \(-0.581013\pi\)
0.753197 0.657795i \(-0.228511\pi\)
\(762\) 0 0
\(763\) −31.1888 + 45.7455i −1.12911 + 1.65610i
\(764\) −8.73612 + 5.48927i −0.316062 + 0.198595i
\(765\) 0 0
\(766\) −4.53601 + 4.53601i −0.163893 + 0.163893i
\(767\) −2.36238 31.5237i −0.0853004 1.13826i
\(768\) 0 0
\(769\) 10.5381 + 4.59771i 0.380012 + 0.165798i 0.581211 0.813753i \(-0.302579\pi\)
−0.201199 + 0.979550i \(0.564484\pi\)
\(770\) 2.71749 + 3.98583i 0.0979317 + 0.143639i
\(771\) 0 0
\(772\) −20.6359 17.7587i −0.742704 0.639149i
\(773\) 23.2548 + 37.0098i 0.836416 + 1.33115i 0.941613 + 0.336698i \(0.109310\pi\)
−0.105196 + 0.994451i \(0.533547\pi\)
\(774\) 0 0
\(775\) −7.50787 2.62712i −0.269691 0.0943688i
\(776\) −2.74684 + 2.54869i −0.0986057 + 0.0914927i
\(777\) 0 0
\(778\) 11.0375 1.66364i 0.395715 0.0596445i
\(779\) 33.6381 36.2533i 1.20521 1.29891i
\(780\) 0 0
\(781\) 2.22368 + 5.09673i 0.0795695 + 0.182375i
\(782\) −20.9429 −0.748918
\(783\) 0 0
\(784\) −11.3778 −0.406348
\(785\) −3.13253 7.17984i −0.111805 0.256260i
\(786\) 0 0
\(787\) 6.05694 6.52783i 0.215906 0.232692i −0.615807 0.787897i \(-0.711170\pi\)
0.831713 + 0.555205i \(0.187360\pi\)
\(788\) −16.8122 + 2.53404i −0.598911 + 0.0902713i
\(789\) 0 0
\(790\) −1.40440 + 1.30309i −0.0499662 + 0.0463619i
\(791\) 31.2114 + 10.9213i 1.10975 + 0.388318i
\(792\) 0 0
\(793\) −26.3708 41.9688i −0.936453 1.49036i
\(794\) −8.61830 7.41665i −0.305852 0.263207i
\(795\) 0 0
\(796\) 17.8967 + 26.2496i 0.634331 + 0.930392i
\(797\) 36.7249 + 16.0229i 1.30086 + 0.567560i 0.932180 0.361996i \(-0.117905\pi\)
0.368682 + 0.929556i \(0.379809\pi\)
\(798\) 0 0
\(799\) 0.496748 + 6.62864i 0.0175737 + 0.234504i
\(800\) −6.67032 + 6.67032i −0.235831 + 0.235831i
\(801\) 0 0
\(802\) 17.6473 11.0885i 0.623147 0.391549i
\(803\) −6.23237 + 9.14120i −0.219935 + 0.322586i
\(804\) 0 0
\(805\) −16.9233 + 54.8641i −0.596470 + 1.93371i
\(806\) 9.23236 3.62343i 0.325196 0.127630i
\(807\) 0 0
\(808\) −3.23225 + 0.997016i −0.113710 + 0.0350749i
\(809\) −0.548274 + 0.872572i −0.0192763 + 0.0306780i −0.856223 0.516606i \(-0.827195\pi\)
0.836947 + 0.547284i \(0.184338\pi\)
\(810\) 0 0
\(811\) 5.29060i 0.185778i 0.995676 + 0.0928891i \(0.0296102\pi\)
−0.995676 + 0.0928891i \(0.970390\pi\)
\(812\) 30.6717 7.51526i 1.07637 0.263734i
\(813\) 0 0
\(814\) 4.80642 + 3.54730i 0.168465 + 0.124333i
\(815\) −6.23815 + 3.29696i −0.218513 + 0.115487i
\(816\) 0 0
\(817\) −14.2342 5.58653i −0.497993 0.195448i
\(818\) −4.58663 + 5.75145i −0.160368 + 0.201095i
\(819\) 0 0
\(820\) −7.13907 + 20.4023i −0.249307 + 0.712479i
\(821\) 29.0659 + 19.8168i 1.01441 + 0.691611i 0.951892 0.306433i \(-0.0991355\pi\)
0.0625149 + 0.998044i \(0.480088\pi\)
\(822\) 0 0
\(823\) 13.1045 + 2.47951i 0.456795 + 0.0864303i 0.409217 0.912437i \(-0.365802\pi\)
0.0475784 + 0.998868i \(0.484850\pi\)
\(824\) 21.4050 5.73546i 0.745679 0.199804i
\(825\) 0 0
\(826\) 10.6253 + 14.3968i 0.369701 + 0.500928i
\(827\) 47.5270 5.35500i 1.65267 0.186212i 0.764149 0.645039i \(-0.223159\pi\)
0.888525 + 0.458828i \(0.151730\pi\)
\(828\) 0 0
\(829\) 39.4991 + 39.4991i 1.37186 + 1.37186i 0.857686 + 0.514174i \(0.171902\pi\)
0.514174 + 0.857686i \(0.328098\pi\)
\(830\) −0.710040 + 0.825082i −0.0246459 + 0.0286390i
\(831\) 0 0
\(832\) −0.248371 + 3.31428i −0.00861070 + 0.114902i
\(833\) −14.3816 16.7117i −0.498293 0.579027i
\(834\) 0 0
\(835\) 17.6441 + 2.65942i 0.610600 + 0.0920331i
\(836\) −11.4398 + 9.12292i −0.395653 + 0.315523i
\(837\) 0 0
\(838\) −4.86255 3.05534i −0.167974 0.105545i
\(839\) −18.2703 + 7.97124i −0.630760 + 0.275198i −0.690853 0.722995i \(-0.742765\pi\)
0.0600932 + 0.998193i \(0.480860\pi\)
\(840\) 0 0
\(841\) −25.7151 + 13.4064i −0.886728 + 0.462291i
\(842\) −2.04401 1.18011i −0.0704411 0.0406692i
\(843\) 0 0
\(844\) 22.6720 + 0.848327i 0.780403 + 0.0292006i
\(845\) −0.159698 + 0.699684i −0.00549379 + 0.0240699i
\(846\) 0 0
\(847\) −25.8601 20.6228i −0.888565 0.708607i
\(848\) 11.7561 + 12.6701i 0.403708 + 0.435094i
\(849\) 0 0
\(850\) −4.00698 0.300282i −0.137438 0.0102996i
\(851\) 2.65842 + 71.0477i 0.0911294 + 2.43548i
\(852\) 0 0
\(853\) 1.54122 + 0.412969i 0.0527704 + 0.0141398i 0.285108 0.958496i \(-0.407971\pi\)
−0.232337 + 0.972635i \(0.574637\pi\)
\(854\) 25.2771 + 12.1728i 0.864965 + 0.416545i
\(855\) 0 0
\(856\) −0.862419 7.65418i −0.0294769 0.261614i
\(857\) 4.58909 0.343904i 0.156760 0.0117476i 0.00388120 0.999992i \(-0.498765\pi\)
0.152879 + 0.988245i \(0.451146\pi\)
\(858\) 0 0
\(859\) 7.08136 37.4259i 0.241613 1.27696i −0.626042 0.779789i \(-0.715326\pi\)
0.867655 0.497166i \(-0.165626\pi\)
\(860\) 6.67863 0.249897i 0.227740 0.00852141i
\(861\) 0 0
\(862\) −3.38248 17.8768i −0.115208 0.608888i
\(863\) 1.48533 + 6.50765i 0.0505612 + 0.221523i 0.993896 0.110319i \(-0.0351872\pi\)
−0.943335 + 0.331842i \(0.892330\pi\)
\(864\) 0 0
\(865\) 7.36015 + 9.22934i 0.250253 + 0.313807i
\(866\) −3.02392 9.80331i −0.102757 0.333130i
\(867\) 0 0
\(868\) 16.1169 21.8376i 0.547042 0.741216i
\(869\) −1.16105 + 2.01099i −0.0393858 + 0.0682182i
\(870\) 0 0
\(871\) −20.0684 34.7594i −0.679991 1.17778i
\(872\) −33.2922 3.75113i −1.12742 0.127029i
\(873\) 0 0
\(874\) 35.1170 + 8.01523i 1.18785 + 0.271119i
\(875\) −15.7335 + 40.0883i −0.531889 + 1.35523i
\(876\) 0 0
\(877\) −22.2970 6.87772i −0.752916 0.232244i −0.105541 0.994415i \(-0.533657\pi\)
−0.647376 + 0.762171i \(0.724134\pi\)
\(878\) −4.42878 + 3.81127i −0.149464 + 0.128624i
\(879\) 0 0
\(880\) 2.24234 4.24271i 0.0755892 0.143022i
\(881\) −5.99551 + 2.09792i −0.201994 + 0.0706808i −0.429380 0.903124i \(-0.641268\pi\)
0.227386 + 0.973805i \(0.426982\pi\)
\(882\) 0 0
\(883\) −13.4568 + 27.9434i −0.452859 + 0.940371i 0.542121 + 0.840300i \(0.317621\pi\)
−0.994980 + 0.100071i \(0.968093\pi\)
\(884\) −19.4898 + 14.3841i −0.655512 + 0.483790i
\(885\) 0 0
\(886\) −5.27531 + 3.59665i −0.177228 + 0.120832i
\(887\) 7.38642 + 27.5665i 0.248012 + 0.925592i 0.971846 + 0.235618i \(0.0757115\pi\)
−0.723834 + 0.689974i \(0.757622\pi\)
\(888\) 0 0
\(889\) −5.87006 3.10242i −0.196875 0.104052i
\(890\) 0.996243 + 2.06872i 0.0333941 + 0.0693437i
\(891\) 0 0
\(892\) 34.7797 7.93824i 1.16451 0.265792i
\(893\) 1.70395 11.3050i 0.0570206 0.378307i
\(894\) 0 0
\(895\) −32.1380 29.8197i −1.07425 0.996762i
\(896\) −19.0302 36.0069i −0.635754 1.20291i
\(897\) 0 0
\(898\) 1.83749 1.06088i 0.0613178 0.0354019i
\(899\) −9.60286 + 23.0003i −0.320273 + 0.767102i
\(900\) 0 0
\(901\) −3.75006 + 33.2827i −0.124933 + 1.10881i
\(902\) 0.202620 5.41514i 0.00674652 0.180304i
\(903\) 0 0
\(904\) 2.98224 + 19.7859i 0.0991879 + 0.658069i
\(905\) −7.03536 17.9258i −0.233863 0.595874i
\(906\) 0 0
\(907\) −31.4200 + 5.94498i −1.04328 + 0.197400i −0.679190 0.733962i \(-0.737669\pi\)
−0.364094 + 0.931362i \(0.618621\pi\)
\(908\) −40.3192 + 19.4167i −1.33804 + 0.644366i
\(909\) 0 0
\(910\) −4.53655 12.9647i −0.150385 0.429776i
\(911\) −8.67377 + 32.3709i −0.287375 + 1.07250i 0.659712 + 0.751519i \(0.270678\pi\)
−0.947086 + 0.320979i \(0.895988\pi\)
\(912\) 0 0
\(913\) −0.527608 + 1.20929i −0.0174613 + 0.0400216i
\(914\) −3.13099 + 7.17631i −0.103564 + 0.237371i
\(915\) 0 0
\(916\) −7.10269 + 26.5076i −0.234680 + 0.875836i
\(917\) −11.1330 31.8162i −0.367643 1.05066i
\(918\) 0 0
\(919\) 2.37687 1.14464i 0.0784057 0.0377582i −0.394270 0.918995i \(-0.629003\pi\)
0.472676 + 0.881236i \(0.343288\pi\)
\(920\) −34.1370 + 6.45907i −1.12546 + 0.212949i
\(921\) 0 0
\(922\) −3.99974 10.1912i −0.131725 0.335629i
\(923\) −2.35977 15.6561i −0.0776728 0.515325i
\(924\) 0 0
\(925\) −0.510057 + 13.6316i −0.0167706 + 0.448203i
\(926\) 0.746725 6.62737i 0.0245389 0.217789i
\(927\) 0 0
\(928\) 19.6345 + 22.0957i 0.644533 + 0.725326i
\(929\) 8.30673 4.79589i 0.272535 0.157348i −0.357504 0.933912i \(-0.616372\pi\)
0.630039 + 0.776563i \(0.283039\pi\)
\(930\) 0 0
\(931\) 17.7191 + 33.5262i 0.580721 + 1.09878i
\(932\) −23.0202 21.3596i −0.754052 0.699658i
\(933\) 0 0
\(934\) −1.82208 + 12.0887i −0.0596204 + 0.395555i
\(935\) 9.06606 2.06927i 0.296492 0.0676723i
\(936\) 0 0
\(937\) −5.49690 11.4144i −0.179576 0.372893i 0.791678 0.610938i \(-0.209208\pi\)
−0.971254 + 0.238045i \(0.923493\pi\)
\(938\) 20.0856 + 10.6155i 0.655817 + 0.346609i
\(939\) 0 0
\(940\) 1.29328 + 4.82658i 0.0421821 + 0.157426i
\(941\) −27.9758 + 19.0736i −0.911986 + 0.621781i −0.925755 0.378124i \(-0.876569\pi\)
0.0137692 + 0.999905i \(0.495617\pi\)
\(942\) 0 0
\(943\) 51.8924 38.2983i 1.68985 1.24717i
\(944\) 7.72290 16.0368i 0.251359 0.521952i
\(945\) 0 0
\(946\) −1.58148 + 0.553383i −0.0514182 + 0.0179920i
\(947\) −0.835381 + 1.58062i −0.0271462 + 0.0513632i −0.897315 0.441390i \(-0.854486\pi\)
0.870169 + 0.492753i \(0.164009\pi\)
\(948\) 0 0
\(949\) 23.8771 20.5479i 0.775084 0.667013i
\(950\) 6.60396 + 2.03705i 0.214261 + 0.0660907i
\(951\) 0 0
\(952\) 11.0543 28.1658i 0.358270 0.912858i
\(953\) −12.7383 2.90744i −0.412635 0.0941812i 0.0111637 0.999938i \(-0.496446\pi\)
−0.423799 + 0.905756i \(0.639304\pi\)
\(954\) 0 0
\(955\) −11.2069 1.26272i −0.362647 0.0408605i
\(956\) 8.17857 + 14.1657i 0.264514 + 0.458151i
\(957\) 0 0
\(958\) −3.74866 + 6.49287i −0.121114 + 0.209775i
\(959\) −2.19746 + 2.97746i −0.0709598 + 0.0961471i
\(960\) 0 0
\(961\) −2.82327 9.15283i −0.0910733 0.295253i
\(962\) −10.6048 13.2980i −0.341913 0.428745i
\(963\) 0 0
\(964\) −1.18443 5.18933i −0.0381480 0.167137i
\(965\) −5.53257 29.2403i −0.178100 0.941280i
\(966\) 0 0
\(967\) −17.2340 + 0.644851i −0.554208 + 0.0207370i −0.313029 0.949744i \(-0.601344\pi\)
−0.241179 + 0.970481i \(0.577534\pi\)
\(968\) 3.72102 19.6661i 0.119598 0.632092i
\(969\) 0 0
\(970\) −1.85081 + 0.138699i −0.0594258 + 0.00445335i
\(971\) 2.65467 + 23.5608i 0.0851923 + 0.756102i 0.961585 + 0.274506i \(0.0885143\pi\)
−0.876393 + 0.481596i \(0.840057\pi\)
\(972\) 0 0
\(973\) −11.0432 5.31812i −0.354029 0.170491i
\(974\) 14.5893 + 3.90920i 0.467473 + 0.125259i
\(975\) 0 0
\(976\) −1.04354 27.8891i −0.0334028 0.892709i
\(977\) 45.2855 + 3.39368i 1.44881 + 0.108573i 0.775763 0.631024i \(-0.217365\pi\)
0.673049 + 0.739598i \(0.264984\pi\)
\(978\) 0 0
\(979\) 1.89293 + 2.04010i 0.0604984 + 0.0652018i
\(980\) −12.9580 10.3336i −0.413927 0.330096i
\(981\) 0 0
\(982\) 4.13359 18.1104i 0.131908 0.577927i
\(983\) 41.2564 + 1.54371i 1.31587 + 0.0492366i 0.686081 0.727526i \(-0.259330\pi\)
0.629794 + 0.776762i \(0.283139\pi\)
\(984\) 0 0
\(985\) −16.0947 9.29229i −0.512820 0.296077i
\(986\) −1.67854 + 12.4786i −0.0534556 + 0.397400i
\(987\) 0 0
\(988\) 38.1854 16.6601i 1.21484 0.530029i
\(989\) −16.8849 10.6095i −0.536908 0.337362i
\(990\) 0 0
\(991\) −15.2058 + 12.1262i −0.483028 + 0.385202i −0.834510 0.550993i \(-0.814249\pi\)
0.351482 + 0.936195i \(0.385678\pi\)
\(992\) 25.1211 + 3.78639i 0.797595 + 0.120218i
\(993\) 0 0
\(994\) 5.84564 + 6.79276i 0.185412 + 0.215453i
\(995\) −2.59515 + 34.6298i −0.0822716 + 1.09784i
\(996\) 0 0
\(997\) −6.74063 + 7.83275i −0.213478 + 0.248066i −0.854494 0.519462i \(-0.826132\pi\)
0.641016 + 0.767528i \(0.278513\pi\)
\(998\) −2.87841 2.87841i −0.0911144 0.0911144i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.be.a.665.16 672
3.2 odd 2 261.2.x.a.230.13 yes 672
9.2 odd 6 inner 783.2.be.a.143.13 672
9.7 even 3 261.2.x.a.56.16 yes 672
29.14 odd 28 inner 783.2.be.a.449.13 672
87.14 even 28 261.2.x.a.14.16 672
261.43 odd 84 261.2.x.a.101.13 yes 672
261.101 even 84 inner 783.2.be.a.710.16 672
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
261.2.x.a.14.16 672 87.14 even 28
261.2.x.a.56.16 yes 672 9.7 even 3
261.2.x.a.101.13 yes 672 261.43 odd 84
261.2.x.a.230.13 yes 672 3.2 odd 2
783.2.be.a.143.13 672 9.2 odd 6 inner
783.2.be.a.449.13 672 29.14 odd 28 inner
783.2.be.a.665.16 672 1.1 even 1 trivial
783.2.be.a.710.16 672 261.101 even 84 inner