Properties

Label 2-783-261.101-c1-0-14
Degree $2$
Conductor $783$
Sign $0.902 - 0.431i$
Analytic cond. $6.25228$
Root an. cond. $2.50045$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.234 − 0.536i)2-s + (1.12 + 1.21i)4-s + (1.79 + 0.269i)5-s + (2.59 + 2.40i)7-s + (2.02 − 0.707i)8-s + (0.564 − 0.898i)10-s + (0.974 − 0.838i)11-s + (−2.06 + 3.02i)13-s + (1.89 − 0.828i)14-s + (−0.154 + 2.05i)16-s + (2.82 + 2.82i)17-s + (−5.81 − 3.65i)19-s + (1.69 + 2.48i)20-s + (−0.221 − 0.719i)22-s + (−8.33 − 3.27i)23-s + ⋯
L(s)  = 1  + (0.165 − 0.379i)2-s + (0.563 + 0.607i)4-s + (0.801 + 0.120i)5-s + (0.980 + 0.909i)7-s + (0.714 − 0.250i)8-s + (0.178 − 0.283i)10-s + (0.293 − 0.252i)11-s + (−0.571 + 0.838i)13-s + (0.507 − 0.221i)14-s + (−0.0385 + 0.513i)16-s + (0.684 + 0.684i)17-s + (−1.33 − 0.838i)19-s + (0.378 + 0.554i)20-s + (−0.0472 − 0.153i)22-s + (−1.73 − 0.682i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.902 - 0.431i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.902 - 0.431i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(783\)    =    \(3^{3} \cdot 29\)
Sign: $0.902 - 0.431i$
Analytic conductor: \(6.25228\)
Root analytic conductor: \(2.50045\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{783} (710, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 783,\ (\ :1/2),\ 0.902 - 0.431i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.35598 + 0.534427i\)
\(L(\frac12)\) \(\approx\) \(2.35598 + 0.534427i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 + (-1.28 + 5.23i)T \)
good2 \( 1 + (-0.234 + 0.536i)T + (-1.36 - 1.46i)T^{2} \)
5 \( 1 + (-1.79 - 0.269i)T + (4.77 + 1.47i)T^{2} \)
7 \( 1 + (-2.59 - 2.40i)T + (0.523 + 6.98i)T^{2} \)
11 \( 1 + (-0.974 + 0.838i)T + (1.63 - 10.8i)T^{2} \)
13 \( 1 + (2.06 - 3.02i)T + (-4.74 - 12.1i)T^{2} \)
17 \( 1 + (-2.82 - 2.82i)T + 17iT^{2} \)
19 \( 1 + (5.81 + 3.65i)T + (8.24 + 17.1i)T^{2} \)
23 \( 1 + (8.33 + 3.27i)T + (16.8 + 15.6i)T^{2} \)
31 \( 1 + (-3.72 + 2.74i)T + (9.13 - 29.6i)T^{2} \)
37 \( 1 + (-2.62 - 7.49i)T + (-28.9 + 23.0i)T^{2} \)
41 \( 1 + (6.95 + 1.86i)T + (35.5 + 20.5i)T^{2} \)
43 \( 1 + (-1.32 + 1.79i)T + (-12.6 - 41.0i)T^{2} \)
47 \( 1 + (1.08 + 1.26i)T + (-7.00 + 46.4i)T^{2} \)
53 \( 1 + (6.55 + 5.22i)T + (11.7 + 51.6i)T^{2} \)
59 \( 1 + (-7.47 + 4.31i)T + (29.5 - 51.0i)T^{2} \)
61 \( 1 + (-13.5 + 0.506i)T + (60.8 - 4.55i)T^{2} \)
67 \( 1 + (-10.9 + 0.819i)T + (66.2 - 9.98i)T^{2} \)
71 \( 1 + (-3.89 + 1.87i)T + (44.2 - 55.5i)T^{2} \)
73 \( 1 + (-0.963 + 8.55i)T + (-71.1 - 16.2i)T^{2} \)
79 \( 1 + (-0.335 + 1.77i)T + (-73.5 - 28.8i)T^{2} \)
83 \( 1 + (-0.302 + 0.980i)T + (-68.5 - 46.7i)T^{2} \)
89 \( 1 + (-2.15 + 0.242i)T + (86.7 - 19.8i)T^{2} \)
97 \( 1 + (0.817 + 1.54i)T + (-54.6 + 80.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.35983274690129947569425892643, −9.699237968553404717837398259309, −8.360319260858654856430361674423, −8.142478609573053273993985793468, −6.64676945544776247745013127329, −6.11885163815333948326567566379, −4.84424631574911541335792057393, −3.90518001411876091110519162229, −2.27192774003502227559949433850, −2.03115972647279126678143172410, 1.30005540456404295328312943212, 2.24951883128407025259987872770, 4.00016693982987628565207577291, 5.09837601362028438615505902626, 5.73445722009731912236963950213, 6.71251560080733190304495625064, 7.62006136157079168450901941464, 8.230643661159382781908078382463, 9.788051838498493678375383849492, 10.12525679574809509982505246793

Graph of the $Z$-function along the critical line