Properties

Label 7803.2.a.cg.1.17
Level $7803$
Weight $2$
Character 7803.1
Self dual yes
Analytic conductor $62.307$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7803,2,Mod(1,7803)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7803.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7803 = 3^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7803.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,24,20,0,0,0,0,0,8,0,4,16,0,24,0,0,4,48,0,0,36,0,28,0, 0,0,64,0,0,0,0,0,0,0,0,0,0,0,36,0,4,16,0,0,0,0,24,0,0,16,0,0,20,80,0,0, 0,0,0,-16,0,-24,72,0,16,0,0,-48,72,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.3072686972\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 459)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Character \(\chi\) \(=\) 7803.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.27156 q^{2} -0.383141 q^{4} +1.88026 q^{5} -0.231288 q^{7} -3.03030 q^{8} +2.39086 q^{10} +3.42484 q^{11} +5.14809 q^{13} -0.294096 q^{14} -3.08692 q^{16} +7.16225 q^{19} -0.720403 q^{20} +4.35488 q^{22} +2.39597 q^{23} -1.46463 q^{25} +6.54609 q^{26} +0.0886158 q^{28} +4.71564 q^{29} -4.64813 q^{31} +2.13540 q^{32} -0.434881 q^{35} -4.22375 q^{37} +9.10722 q^{38} -5.69775 q^{40} -0.157955 q^{41} +8.98677 q^{43} -1.31220 q^{44} +3.04662 q^{46} -8.05136 q^{47} -6.94651 q^{49} -1.86236 q^{50} -1.97244 q^{52} -1.37171 q^{53} +6.43958 q^{55} +0.700872 q^{56} +5.99621 q^{58} +6.47064 q^{59} -12.9905 q^{61} -5.91036 q^{62} +8.88913 q^{64} +9.67973 q^{65} -0.781257 q^{67} -0.552976 q^{70} +7.87370 q^{71} +2.97354 q^{73} -5.37075 q^{74} -2.74415 q^{76} -0.792124 q^{77} +11.0702 q^{79} -5.80421 q^{80} -0.200850 q^{82} -3.34474 q^{83} +11.4272 q^{86} -10.3783 q^{88} -16.6262 q^{89} -1.19069 q^{91} -0.917994 q^{92} -10.2378 q^{94} +13.4669 q^{95} +15.6356 q^{97} -8.83288 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} + 20 q^{5} + 8 q^{11} + 4 q^{13} + 16 q^{14} + 24 q^{16} + 4 q^{19} + 48 q^{20} + 36 q^{23} + 28 q^{25} + 64 q^{29} + 36 q^{41} + 4 q^{43} + 16 q^{44} + 24 q^{49} + 16 q^{52} + 20 q^{55}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.27156 0.899127 0.449564 0.893248i \(-0.351580\pi\)
0.449564 + 0.893248i \(0.351580\pi\)
\(3\) 0 0
\(4\) −0.383141 −0.191570
\(5\) 1.88026 0.840877 0.420439 0.907321i \(-0.361876\pi\)
0.420439 + 0.907321i \(0.361876\pi\)
\(6\) 0 0
\(7\) −0.231288 −0.0874186 −0.0437093 0.999044i \(-0.513918\pi\)
−0.0437093 + 0.999044i \(0.513918\pi\)
\(8\) −3.03030 −1.07137
\(9\) 0 0
\(10\) 2.39086 0.756055
\(11\) 3.42484 1.03263 0.516314 0.856399i \(-0.327304\pi\)
0.516314 + 0.856399i \(0.327304\pi\)
\(12\) 0 0
\(13\) 5.14809 1.42782 0.713911 0.700236i \(-0.246922\pi\)
0.713911 + 0.700236i \(0.246922\pi\)
\(14\) −0.294096 −0.0786004
\(15\) 0 0
\(16\) −3.08692 −0.771730
\(17\) 0 0
\(18\) 0 0
\(19\) 7.16225 1.64313 0.821567 0.570113i \(-0.193100\pi\)
0.821567 + 0.570113i \(0.193100\pi\)
\(20\) −0.720403 −0.161087
\(21\) 0 0
\(22\) 4.35488 0.928464
\(23\) 2.39597 0.499595 0.249797 0.968298i \(-0.419636\pi\)
0.249797 + 0.968298i \(0.419636\pi\)
\(24\) 0 0
\(25\) −1.46463 −0.292926
\(26\) 6.54609 1.28379
\(27\) 0 0
\(28\) 0.0886158 0.0167468
\(29\) 4.71564 0.875673 0.437836 0.899055i \(-0.355745\pi\)
0.437836 + 0.899055i \(0.355745\pi\)
\(30\) 0 0
\(31\) −4.64813 −0.834828 −0.417414 0.908716i \(-0.637064\pi\)
−0.417414 + 0.908716i \(0.637064\pi\)
\(32\) 2.13540 0.377489
\(33\) 0 0
\(34\) 0 0
\(35\) −0.434881 −0.0735083
\(36\) 0 0
\(37\) −4.22375 −0.694381 −0.347191 0.937795i \(-0.612864\pi\)
−0.347191 + 0.937795i \(0.612864\pi\)
\(38\) 9.10722 1.47739
\(39\) 0 0
\(40\) −5.69775 −0.900893
\(41\) −0.157955 −0.0246685 −0.0123343 0.999924i \(-0.503926\pi\)
−0.0123343 + 0.999924i \(0.503926\pi\)
\(42\) 0 0
\(43\) 8.98677 1.37047 0.685235 0.728322i \(-0.259700\pi\)
0.685235 + 0.728322i \(0.259700\pi\)
\(44\) −1.31220 −0.197821
\(45\) 0 0
\(46\) 3.04662 0.449199
\(47\) −8.05136 −1.17441 −0.587206 0.809437i \(-0.699772\pi\)
−0.587206 + 0.809437i \(0.699772\pi\)
\(48\) 0 0
\(49\) −6.94651 −0.992358
\(50\) −1.86236 −0.263378
\(51\) 0 0
\(52\) −1.97244 −0.273528
\(53\) −1.37171 −0.188419 −0.0942095 0.995552i \(-0.530032\pi\)
−0.0942095 + 0.995552i \(0.530032\pi\)
\(54\) 0 0
\(55\) 6.43958 0.868313
\(56\) 0.700872 0.0936579
\(57\) 0 0
\(58\) 5.99621 0.787341
\(59\) 6.47064 0.842405 0.421203 0.906967i \(-0.361608\pi\)
0.421203 + 0.906967i \(0.361608\pi\)
\(60\) 0 0
\(61\) −12.9905 −1.66326 −0.831629 0.555332i \(-0.812591\pi\)
−0.831629 + 0.555332i \(0.812591\pi\)
\(62\) −5.91036 −0.750617
\(63\) 0 0
\(64\) 8.88913 1.11114
\(65\) 9.67973 1.20062
\(66\) 0 0
\(67\) −0.781257 −0.0954458 −0.0477229 0.998861i \(-0.515196\pi\)
−0.0477229 + 0.998861i \(0.515196\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −0.552976 −0.0660933
\(71\) 7.87370 0.934436 0.467218 0.884142i \(-0.345256\pi\)
0.467218 + 0.884142i \(0.345256\pi\)
\(72\) 0 0
\(73\) 2.97354 0.348027 0.174013 0.984743i \(-0.444326\pi\)
0.174013 + 0.984743i \(0.444326\pi\)
\(74\) −5.37075 −0.624337
\(75\) 0 0
\(76\) −2.74415 −0.314776
\(77\) −0.792124 −0.0902709
\(78\) 0 0
\(79\) 11.0702 1.24550 0.622750 0.782421i \(-0.286015\pi\)
0.622750 + 0.782421i \(0.286015\pi\)
\(80\) −5.80421 −0.648930
\(81\) 0 0
\(82\) −0.200850 −0.0221801
\(83\) −3.34474 −0.367133 −0.183566 0.983007i \(-0.558764\pi\)
−0.183566 + 0.983007i \(0.558764\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 11.4272 1.23223
\(87\) 0 0
\(88\) −10.3783 −1.10633
\(89\) −16.6262 −1.76237 −0.881187 0.472767i \(-0.843255\pi\)
−0.881187 + 0.472767i \(0.843255\pi\)
\(90\) 0 0
\(91\) −1.19069 −0.124818
\(92\) −0.917994 −0.0957075
\(93\) 0 0
\(94\) −10.2378 −1.05595
\(95\) 13.4669 1.38167
\(96\) 0 0
\(97\) 15.6356 1.58756 0.793779 0.608206i \(-0.208110\pi\)
0.793779 + 0.608206i \(0.208110\pi\)
\(98\) −8.83288 −0.892256
\(99\) 0 0
\(100\) 0.561159 0.0561159
\(101\) 0.195673 0.0194702 0.00973509 0.999953i \(-0.496901\pi\)
0.00973509 + 0.999953i \(0.496901\pi\)
\(102\) 0 0
\(103\) −0.355474 −0.0350259 −0.0175129 0.999847i \(-0.505575\pi\)
−0.0175129 + 0.999847i \(0.505575\pi\)
\(104\) −15.6003 −1.52973
\(105\) 0 0
\(106\) −1.74421 −0.169413
\(107\) 10.0649 0.973013 0.486507 0.873677i \(-0.338271\pi\)
0.486507 + 0.873677i \(0.338271\pi\)
\(108\) 0 0
\(109\) 10.2939 0.985976 0.492988 0.870036i \(-0.335905\pi\)
0.492988 + 0.870036i \(0.335905\pi\)
\(110\) 8.18830 0.780724
\(111\) 0 0
\(112\) 0.713967 0.0674636
\(113\) −14.5799 −1.37156 −0.685780 0.727808i \(-0.740539\pi\)
−0.685780 + 0.727808i \(0.740539\pi\)
\(114\) 0 0
\(115\) 4.50505 0.420098
\(116\) −1.80675 −0.167753
\(117\) 0 0
\(118\) 8.22779 0.757429
\(119\) 0 0
\(120\) 0 0
\(121\) 0.729533 0.0663211
\(122\) −16.5181 −1.49548
\(123\) 0 0
\(124\) 1.78089 0.159928
\(125\) −12.1552 −1.08719
\(126\) 0 0
\(127\) −3.06420 −0.271904 −0.135952 0.990715i \(-0.543409\pi\)
−0.135952 + 0.990715i \(0.543409\pi\)
\(128\) 7.03224 0.621568
\(129\) 0 0
\(130\) 12.3083 1.07951
\(131\) 7.50146 0.655406 0.327703 0.944781i \(-0.393726\pi\)
0.327703 + 0.944781i \(0.393726\pi\)
\(132\) 0 0
\(133\) −1.65654 −0.143640
\(134\) −0.993414 −0.0858179
\(135\) 0 0
\(136\) 0 0
\(137\) 9.35686 0.799411 0.399705 0.916644i \(-0.369112\pi\)
0.399705 + 0.916644i \(0.369112\pi\)
\(138\) 0 0
\(139\) 5.07571 0.430516 0.215258 0.976557i \(-0.430941\pi\)
0.215258 + 0.976557i \(0.430941\pi\)
\(140\) 0.166621 0.0140820
\(141\) 0 0
\(142\) 10.0119 0.840177
\(143\) 17.6314 1.47441
\(144\) 0 0
\(145\) 8.86662 0.736333
\(146\) 3.78103 0.312920
\(147\) 0 0
\(148\) 1.61829 0.133023
\(149\) 3.54068 0.290063 0.145032 0.989427i \(-0.453672\pi\)
0.145032 + 0.989427i \(0.453672\pi\)
\(150\) 0 0
\(151\) −12.4560 −1.01366 −0.506829 0.862047i \(-0.669182\pi\)
−0.506829 + 0.862047i \(0.669182\pi\)
\(152\) −21.7038 −1.76041
\(153\) 0 0
\(154\) −1.00723 −0.0811650
\(155\) −8.73968 −0.701988
\(156\) 0 0
\(157\) 11.6965 0.933485 0.466742 0.884393i \(-0.345428\pi\)
0.466742 + 0.884393i \(0.345428\pi\)
\(158\) 14.0765 1.11986
\(159\) 0 0
\(160\) 4.01511 0.317422
\(161\) −0.554159 −0.0436739
\(162\) 0 0
\(163\) 15.7122 1.23068 0.615338 0.788263i \(-0.289019\pi\)
0.615338 + 0.788263i \(0.289019\pi\)
\(164\) 0.0605192 0.00472575
\(165\) 0 0
\(166\) −4.25303 −0.330099
\(167\) −5.17428 −0.400398 −0.200199 0.979755i \(-0.564159\pi\)
−0.200199 + 0.979755i \(0.564159\pi\)
\(168\) 0 0
\(169\) 13.5028 1.03868
\(170\) 0 0
\(171\) 0 0
\(172\) −3.44320 −0.262541
\(173\) 18.1521 1.38008 0.690039 0.723772i \(-0.257593\pi\)
0.690039 + 0.723772i \(0.257593\pi\)
\(174\) 0 0
\(175\) 0.338751 0.0256072
\(176\) −10.5722 −0.796911
\(177\) 0 0
\(178\) −21.1412 −1.58460
\(179\) 8.82243 0.659419 0.329710 0.944082i \(-0.393049\pi\)
0.329710 + 0.944082i \(0.393049\pi\)
\(180\) 0 0
\(181\) 23.1721 1.72237 0.861184 0.508293i \(-0.169723\pi\)
0.861184 + 0.508293i \(0.169723\pi\)
\(182\) −1.51403 −0.112227
\(183\) 0 0
\(184\) −7.26052 −0.535252
\(185\) −7.94175 −0.583889
\(186\) 0 0
\(187\) 0 0
\(188\) 3.08481 0.224983
\(189\) 0 0
\(190\) 17.1239 1.24230
\(191\) 25.4613 1.84231 0.921157 0.389191i \(-0.127245\pi\)
0.921157 + 0.389191i \(0.127245\pi\)
\(192\) 0 0
\(193\) 8.15435 0.586963 0.293481 0.955965i \(-0.405186\pi\)
0.293481 + 0.955965i \(0.405186\pi\)
\(194\) 19.8816 1.42742
\(195\) 0 0
\(196\) 2.66149 0.190106
\(197\) −14.2837 −1.01767 −0.508836 0.860864i \(-0.669924\pi\)
−0.508836 + 0.860864i \(0.669924\pi\)
\(198\) 0 0
\(199\) 0.538435 0.0381686 0.0190843 0.999818i \(-0.493925\pi\)
0.0190843 + 0.999818i \(0.493925\pi\)
\(200\) 4.43827 0.313833
\(201\) 0 0
\(202\) 0.248809 0.0175062
\(203\) −1.09067 −0.0765501
\(204\) 0 0
\(205\) −0.296997 −0.0207432
\(206\) −0.452006 −0.0314927
\(207\) 0 0
\(208\) −15.8917 −1.10189
\(209\) 24.5296 1.69675
\(210\) 0 0
\(211\) 3.41620 0.235181 0.117591 0.993062i \(-0.462483\pi\)
0.117591 + 0.993062i \(0.462483\pi\)
\(212\) 0.525559 0.0360955
\(213\) 0 0
\(214\) 12.7981 0.874863
\(215\) 16.8974 1.15240
\(216\) 0 0
\(217\) 1.07506 0.0729795
\(218\) 13.0893 0.886518
\(219\) 0 0
\(220\) −2.46727 −0.166343
\(221\) 0 0
\(222\) 0 0
\(223\) −20.1879 −1.35188 −0.675941 0.736956i \(-0.736263\pi\)
−0.675941 + 0.736956i \(0.736263\pi\)
\(224\) −0.493893 −0.0329996
\(225\) 0 0
\(226\) −18.5392 −1.23321
\(227\) −1.44153 −0.0956779 −0.0478390 0.998855i \(-0.515233\pi\)
−0.0478390 + 0.998855i \(0.515233\pi\)
\(228\) 0 0
\(229\) −10.5245 −0.695480 −0.347740 0.937591i \(-0.613051\pi\)
−0.347740 + 0.937591i \(0.613051\pi\)
\(230\) 5.72843 0.377721
\(231\) 0 0
\(232\) −14.2898 −0.938172
\(233\) 13.4456 0.880852 0.440426 0.897789i \(-0.354828\pi\)
0.440426 + 0.897789i \(0.354828\pi\)
\(234\) 0 0
\(235\) −15.1386 −0.987536
\(236\) −2.47916 −0.161380
\(237\) 0 0
\(238\) 0 0
\(239\) 17.3220 1.12047 0.560233 0.828335i \(-0.310712\pi\)
0.560233 + 0.828335i \(0.310712\pi\)
\(240\) 0 0
\(241\) −14.8368 −0.955722 −0.477861 0.878435i \(-0.658588\pi\)
−0.477861 + 0.878435i \(0.658588\pi\)
\(242\) 0.927643 0.0596311
\(243\) 0 0
\(244\) 4.97717 0.318631
\(245\) −13.0612 −0.834451
\(246\) 0 0
\(247\) 36.8719 2.34610
\(248\) 14.0852 0.894412
\(249\) 0 0
\(250\) −15.4560 −0.977524
\(251\) −28.1651 −1.77776 −0.888882 0.458136i \(-0.848517\pi\)
−0.888882 + 0.458136i \(0.848517\pi\)
\(252\) 0 0
\(253\) 8.20582 0.515896
\(254\) −3.89631 −0.244476
\(255\) 0 0
\(256\) −8.83636 −0.552273
\(257\) 4.45435 0.277855 0.138927 0.990303i \(-0.455635\pi\)
0.138927 + 0.990303i \(0.455635\pi\)
\(258\) 0 0
\(259\) 0.976903 0.0607018
\(260\) −3.70870 −0.230004
\(261\) 0 0
\(262\) 9.53854 0.589293
\(263\) −17.4190 −1.07410 −0.537050 0.843551i \(-0.680461\pi\)
−0.537050 + 0.843551i \(0.680461\pi\)
\(264\) 0 0
\(265\) −2.57917 −0.158437
\(266\) −2.10639 −0.129151
\(267\) 0 0
\(268\) 0.299332 0.0182846
\(269\) 21.6846 1.32213 0.661066 0.750328i \(-0.270104\pi\)
0.661066 + 0.750328i \(0.270104\pi\)
\(270\) 0 0
\(271\) −27.4783 −1.66919 −0.834593 0.550866i \(-0.814297\pi\)
−0.834593 + 0.550866i \(0.814297\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 11.8978 0.718772
\(275\) −5.01612 −0.302484
\(276\) 0 0
\(277\) 25.4864 1.53133 0.765664 0.643240i \(-0.222410\pi\)
0.765664 + 0.643240i \(0.222410\pi\)
\(278\) 6.45405 0.387088
\(279\) 0 0
\(280\) 1.31782 0.0787548
\(281\) 21.5893 1.28791 0.643955 0.765063i \(-0.277292\pi\)
0.643955 + 0.765063i \(0.277292\pi\)
\(282\) 0 0
\(283\) 8.65063 0.514227 0.257113 0.966381i \(-0.417229\pi\)
0.257113 + 0.966381i \(0.417229\pi\)
\(284\) −3.01673 −0.179010
\(285\) 0 0
\(286\) 22.4193 1.32568
\(287\) 0.0365332 0.00215649
\(288\) 0 0
\(289\) 0 0
\(290\) 11.2744 0.662057
\(291\) 0 0
\(292\) −1.13928 −0.0666716
\(293\) 15.4778 0.904222 0.452111 0.891962i \(-0.350671\pi\)
0.452111 + 0.891962i \(0.350671\pi\)
\(294\) 0 0
\(295\) 12.1665 0.708359
\(296\) 12.7992 0.743941
\(297\) 0 0
\(298\) 4.50217 0.260804
\(299\) 12.3347 0.713332
\(300\) 0 0
\(301\) −2.07853 −0.119804
\(302\) −15.8386 −0.911407
\(303\) 0 0
\(304\) −22.1093 −1.26806
\(305\) −24.4254 −1.39860
\(306\) 0 0
\(307\) −31.1421 −1.77737 −0.888687 0.458514i \(-0.848382\pi\)
−0.888687 + 0.458514i \(0.848382\pi\)
\(308\) 0.303495 0.0172932
\(309\) 0 0
\(310\) −11.1130 −0.631176
\(311\) 29.5655 1.67650 0.838252 0.545283i \(-0.183578\pi\)
0.838252 + 0.545283i \(0.183578\pi\)
\(312\) 0 0
\(313\) −13.4364 −0.759468 −0.379734 0.925096i \(-0.623984\pi\)
−0.379734 + 0.925096i \(0.623984\pi\)
\(314\) 14.8728 0.839321
\(315\) 0 0
\(316\) −4.24146 −0.238601
\(317\) 0.407831 0.0229061 0.0114530 0.999934i \(-0.496354\pi\)
0.0114530 + 0.999934i \(0.496354\pi\)
\(318\) 0 0
\(319\) 16.1503 0.904244
\(320\) 16.7139 0.934333
\(321\) 0 0
\(322\) −0.704645 −0.0392684
\(323\) 0 0
\(324\) 0 0
\(325\) −7.54004 −0.418246
\(326\) 19.9790 1.10653
\(327\) 0 0
\(328\) 0.478653 0.0264292
\(329\) 1.86218 0.102665
\(330\) 0 0
\(331\) −8.25686 −0.453838 −0.226919 0.973914i \(-0.572865\pi\)
−0.226919 + 0.973914i \(0.572865\pi\)
\(332\) 1.28151 0.0703317
\(333\) 0 0
\(334\) −6.57940 −0.360009
\(335\) −1.46897 −0.0802582
\(336\) 0 0
\(337\) 23.7049 1.29129 0.645643 0.763640i \(-0.276590\pi\)
0.645643 + 0.763640i \(0.276590\pi\)
\(338\) 17.1696 0.933902
\(339\) 0 0
\(340\) 0 0
\(341\) −15.9191 −0.862067
\(342\) 0 0
\(343\) 3.22566 0.174169
\(344\) −27.2326 −1.46828
\(345\) 0 0
\(346\) 23.0814 1.24087
\(347\) −29.7545 −1.59731 −0.798653 0.601792i \(-0.794453\pi\)
−0.798653 + 0.601792i \(0.794453\pi\)
\(348\) 0 0
\(349\) −18.5714 −0.994105 −0.497053 0.867720i \(-0.665584\pi\)
−0.497053 + 0.867720i \(0.665584\pi\)
\(350\) 0.430741 0.0230241
\(351\) 0 0
\(352\) 7.31341 0.389806
\(353\) −32.4661 −1.72800 −0.863999 0.503494i \(-0.832047\pi\)
−0.863999 + 0.503494i \(0.832047\pi\)
\(354\) 0 0
\(355\) 14.8046 0.785746
\(356\) 6.37018 0.337619
\(357\) 0 0
\(358\) 11.2182 0.592902
\(359\) −30.9584 −1.63392 −0.816962 0.576692i \(-0.804343\pi\)
−0.816962 + 0.576692i \(0.804343\pi\)
\(360\) 0 0
\(361\) 32.2978 1.69989
\(362\) 29.4647 1.54863
\(363\) 0 0
\(364\) 0.456202 0.0239115
\(365\) 5.59102 0.292647
\(366\) 0 0
\(367\) −3.73792 −0.195118 −0.0975589 0.995230i \(-0.531103\pi\)
−0.0975589 + 0.995230i \(0.531103\pi\)
\(368\) −7.39618 −0.385552
\(369\) 0 0
\(370\) −10.0984 −0.524991
\(371\) 0.317260 0.0164713
\(372\) 0 0
\(373\) 14.3295 0.741954 0.370977 0.928642i \(-0.379023\pi\)
0.370977 + 0.928642i \(0.379023\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 24.3981 1.25823
\(377\) 24.2765 1.25030
\(378\) 0 0
\(379\) −16.3486 −0.839769 −0.419884 0.907578i \(-0.637929\pi\)
−0.419884 + 0.907578i \(0.637929\pi\)
\(380\) −5.15971 −0.264688
\(381\) 0 0
\(382\) 32.3755 1.65647
\(383\) 11.4346 0.584279 0.292139 0.956376i \(-0.405633\pi\)
0.292139 + 0.956376i \(0.405633\pi\)
\(384\) 0 0
\(385\) −1.48940 −0.0759067
\(386\) 10.3687 0.527754
\(387\) 0 0
\(388\) −5.99065 −0.304129
\(389\) 36.2589 1.83840 0.919198 0.393795i \(-0.128838\pi\)
0.919198 + 0.393795i \(0.128838\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 21.0500 1.06319
\(393\) 0 0
\(394\) −18.1625 −0.915016
\(395\) 20.8149 1.04731
\(396\) 0 0
\(397\) −21.1987 −1.06393 −0.531966 0.846766i \(-0.678547\pi\)
−0.531966 + 0.846766i \(0.678547\pi\)
\(398\) 0.684651 0.0343185
\(399\) 0 0
\(400\) 4.52120 0.226060
\(401\) −7.74570 −0.386802 −0.193401 0.981120i \(-0.561952\pi\)
−0.193401 + 0.981120i \(0.561952\pi\)
\(402\) 0 0
\(403\) −23.9290 −1.19199
\(404\) −0.0749703 −0.00372991
\(405\) 0 0
\(406\) −1.38685 −0.0688283
\(407\) −14.4657 −0.717037
\(408\) 0 0
\(409\) −18.6180 −0.920599 −0.460300 0.887764i \(-0.652258\pi\)
−0.460300 + 0.887764i \(0.652258\pi\)
\(410\) −0.377649 −0.0186508
\(411\) 0 0
\(412\) 0.136197 0.00670992
\(413\) −1.49658 −0.0736419
\(414\) 0 0
\(415\) −6.28897 −0.308713
\(416\) 10.9932 0.538988
\(417\) 0 0
\(418\) 31.1908 1.52559
\(419\) −30.9529 −1.51215 −0.756073 0.654487i \(-0.772885\pi\)
−0.756073 + 0.654487i \(0.772885\pi\)
\(420\) 0 0
\(421\) −12.6804 −0.618004 −0.309002 0.951061i \(-0.599995\pi\)
−0.309002 + 0.951061i \(0.599995\pi\)
\(422\) 4.34390 0.211458
\(423\) 0 0
\(424\) 4.15670 0.201867
\(425\) 0 0
\(426\) 0 0
\(427\) 3.00453 0.145400
\(428\) −3.85628 −0.186400
\(429\) 0 0
\(430\) 21.4861 1.03615
\(431\) −4.38639 −0.211285 −0.105642 0.994404i \(-0.533690\pi\)
−0.105642 + 0.994404i \(0.533690\pi\)
\(432\) 0 0
\(433\) 23.7292 1.14035 0.570175 0.821523i \(-0.306875\pi\)
0.570175 + 0.821523i \(0.306875\pi\)
\(434\) 1.36699 0.0656178
\(435\) 0 0
\(436\) −3.94401 −0.188884
\(437\) 17.1606 0.820901
\(438\) 0 0
\(439\) 16.0889 0.767884 0.383942 0.923357i \(-0.374566\pi\)
0.383942 + 0.923357i \(0.374566\pi\)
\(440\) −19.5139 −0.930288
\(441\) 0 0
\(442\) 0 0
\(443\) −1.22288 −0.0581009 −0.0290505 0.999578i \(-0.509248\pi\)
−0.0290505 + 0.999578i \(0.509248\pi\)
\(444\) 0 0
\(445\) −31.2616 −1.48194
\(446\) −25.6701 −1.21551
\(447\) 0 0
\(448\) −2.05595 −0.0971344
\(449\) 23.4697 1.10760 0.553802 0.832649i \(-0.313177\pi\)
0.553802 + 0.832649i \(0.313177\pi\)
\(450\) 0 0
\(451\) −0.540972 −0.0254734
\(452\) 5.58615 0.262750
\(453\) 0 0
\(454\) −1.83299 −0.0860266
\(455\) −2.23880 −0.104957
\(456\) 0 0
\(457\) −38.6263 −1.80686 −0.903431 0.428734i \(-0.858960\pi\)
−0.903431 + 0.428734i \(0.858960\pi\)
\(458\) −13.3825 −0.625325
\(459\) 0 0
\(460\) −1.72607 −0.0804783
\(461\) 17.9331 0.835227 0.417613 0.908625i \(-0.362867\pi\)
0.417613 + 0.908625i \(0.362867\pi\)
\(462\) 0 0
\(463\) −9.71279 −0.451392 −0.225696 0.974198i \(-0.572466\pi\)
−0.225696 + 0.974198i \(0.572466\pi\)
\(464\) −14.5568 −0.675783
\(465\) 0 0
\(466\) 17.0969 0.791998
\(467\) 33.6249 1.55597 0.777987 0.628281i \(-0.216241\pi\)
0.777987 + 0.628281i \(0.216241\pi\)
\(468\) 0 0
\(469\) 0.180695 0.00834374
\(470\) −19.2497 −0.887921
\(471\) 0 0
\(472\) −19.6080 −0.902530
\(473\) 30.7782 1.41519
\(474\) 0 0
\(475\) −10.4900 −0.481316
\(476\) 0 0
\(477\) 0 0
\(478\) 22.0259 1.00744
\(479\) −29.2755 −1.33763 −0.668815 0.743429i \(-0.733198\pi\)
−0.668815 + 0.743429i \(0.733198\pi\)
\(480\) 0 0
\(481\) −21.7443 −0.991453
\(482\) −18.8659 −0.859316
\(483\) 0 0
\(484\) −0.279514 −0.0127052
\(485\) 29.3990 1.33494
\(486\) 0 0
\(487\) −27.3459 −1.23916 −0.619580 0.784934i \(-0.712697\pi\)
−0.619580 + 0.784934i \(0.712697\pi\)
\(488\) 39.3650 1.78197
\(489\) 0 0
\(490\) −16.6081 −0.750278
\(491\) −0.811216 −0.0366097 −0.0183048 0.999832i \(-0.505827\pi\)
−0.0183048 + 0.999832i \(0.505827\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 46.8847 2.10944
\(495\) 0 0
\(496\) 14.3484 0.644262
\(497\) −1.82109 −0.0816871
\(498\) 0 0
\(499\) −28.5393 −1.27759 −0.638797 0.769375i \(-0.720568\pi\)
−0.638797 + 0.769375i \(0.720568\pi\)
\(500\) 4.65714 0.208274
\(501\) 0 0
\(502\) −35.8135 −1.59844
\(503\) −7.74450 −0.345310 −0.172655 0.984982i \(-0.555235\pi\)
−0.172655 + 0.984982i \(0.555235\pi\)
\(504\) 0 0
\(505\) 0.367916 0.0163720
\(506\) 10.4342 0.463856
\(507\) 0 0
\(508\) 1.17402 0.0520887
\(509\) 24.2954 1.07687 0.538437 0.842666i \(-0.319015\pi\)
0.538437 + 0.842666i \(0.319015\pi\)
\(510\) 0 0
\(511\) −0.687744 −0.0304240
\(512\) −25.3004 −1.11813
\(513\) 0 0
\(514\) 5.66396 0.249827
\(515\) −0.668383 −0.0294525
\(516\) 0 0
\(517\) −27.5746 −1.21273
\(518\) 1.24219 0.0545786
\(519\) 0 0
\(520\) −29.3325 −1.28632
\(521\) 38.3077 1.67829 0.839146 0.543906i \(-0.183055\pi\)
0.839146 + 0.543906i \(0.183055\pi\)
\(522\) 0 0
\(523\) 34.6641 1.51576 0.757878 0.652397i \(-0.226236\pi\)
0.757878 + 0.652397i \(0.226236\pi\)
\(524\) −2.87412 −0.125556
\(525\) 0 0
\(526\) −22.1492 −0.965752
\(527\) 0 0
\(528\) 0 0
\(529\) −17.2593 −0.750405
\(530\) −3.27957 −0.142455
\(531\) 0 0
\(532\) 0.634689 0.0275172
\(533\) −0.813168 −0.0352222
\(534\) 0 0
\(535\) 18.9247 0.818184
\(536\) 2.36745 0.102258
\(537\) 0 0
\(538\) 27.5732 1.18876
\(539\) −23.7907 −1.02474
\(540\) 0 0
\(541\) −4.75440 −0.204407 −0.102204 0.994763i \(-0.532589\pi\)
−0.102204 + 0.994763i \(0.532589\pi\)
\(542\) −34.9402 −1.50081
\(543\) 0 0
\(544\) 0 0
\(545\) 19.3552 0.829084
\(546\) 0 0
\(547\) 19.4361 0.831026 0.415513 0.909587i \(-0.363602\pi\)
0.415513 + 0.909587i \(0.363602\pi\)
\(548\) −3.58499 −0.153143
\(549\) 0 0
\(550\) −6.37829 −0.271971
\(551\) 33.7746 1.43885
\(552\) 0 0
\(553\) −2.56041 −0.108880
\(554\) 32.4074 1.37686
\(555\) 0 0
\(556\) −1.94471 −0.0824741
\(557\) 9.95386 0.421759 0.210879 0.977512i \(-0.432367\pi\)
0.210879 + 0.977512i \(0.432367\pi\)
\(558\) 0 0
\(559\) 46.2646 1.95679
\(560\) 1.34244 0.0567286
\(561\) 0 0
\(562\) 27.4521 1.15800
\(563\) 7.12091 0.300111 0.150055 0.988678i \(-0.452055\pi\)
0.150055 + 0.988678i \(0.452055\pi\)
\(564\) 0 0
\(565\) −27.4140 −1.15331
\(566\) 10.9998 0.462355
\(567\) 0 0
\(568\) −23.8597 −1.00113
\(569\) −24.5270 −1.02822 −0.514112 0.857723i \(-0.671879\pi\)
−0.514112 + 0.857723i \(0.671879\pi\)
\(570\) 0 0
\(571\) −35.2798 −1.47641 −0.738207 0.674575i \(-0.764327\pi\)
−0.738207 + 0.674575i \(0.764327\pi\)
\(572\) −6.75530 −0.282453
\(573\) 0 0
\(574\) 0.0464541 0.00193895
\(575\) −3.50921 −0.146344
\(576\) 0 0
\(577\) 3.41354 0.142108 0.0710538 0.997472i \(-0.477364\pi\)
0.0710538 + 0.997472i \(0.477364\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −3.39716 −0.141060
\(581\) 0.773597 0.0320942
\(582\) 0 0
\(583\) −4.69789 −0.194567
\(584\) −9.01072 −0.372866
\(585\) 0 0
\(586\) 19.6809 0.813010
\(587\) −16.5308 −0.682300 −0.341150 0.940009i \(-0.610816\pi\)
−0.341150 + 0.940009i \(0.610816\pi\)
\(588\) 0 0
\(589\) −33.2910 −1.37173
\(590\) 15.4704 0.636905
\(591\) 0 0
\(592\) 13.0384 0.535875
\(593\) −8.17470 −0.335695 −0.167847 0.985813i \(-0.553682\pi\)
−0.167847 + 0.985813i \(0.553682\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.35658 −0.0555676
\(597\) 0 0
\(598\) 15.6842 0.641376
\(599\) 31.5073 1.28735 0.643676 0.765298i \(-0.277408\pi\)
0.643676 + 0.765298i \(0.277408\pi\)
\(600\) 0 0
\(601\) 4.40664 0.179751 0.0898754 0.995953i \(-0.471353\pi\)
0.0898754 + 0.995953i \(0.471353\pi\)
\(602\) −2.64297 −0.107719
\(603\) 0 0
\(604\) 4.77241 0.194187
\(605\) 1.37171 0.0557679
\(606\) 0 0
\(607\) 37.1701 1.50869 0.754344 0.656480i \(-0.227955\pi\)
0.754344 + 0.656480i \(0.227955\pi\)
\(608\) 15.2943 0.620265
\(609\) 0 0
\(610\) −31.0583 −1.25751
\(611\) −41.4491 −1.67685
\(612\) 0 0
\(613\) 1.50892 0.0609449 0.0304724 0.999536i \(-0.490299\pi\)
0.0304724 + 0.999536i \(0.490299\pi\)
\(614\) −39.5990 −1.59809
\(615\) 0 0
\(616\) 2.40037 0.0967138
\(617\) 41.5179 1.67145 0.835724 0.549150i \(-0.185048\pi\)
0.835724 + 0.549150i \(0.185048\pi\)
\(618\) 0 0
\(619\) −32.4630 −1.30480 −0.652398 0.757876i \(-0.726237\pi\)
−0.652398 + 0.757876i \(0.726237\pi\)
\(620\) 3.34853 0.134480
\(621\) 0 0
\(622\) 37.5942 1.50739
\(623\) 3.84544 0.154064
\(624\) 0 0
\(625\) −15.5317 −0.621269
\(626\) −17.0851 −0.682858
\(627\) 0 0
\(628\) −4.48142 −0.178828
\(629\) 0 0
\(630\) 0 0
\(631\) −11.6257 −0.462814 −0.231407 0.972857i \(-0.574333\pi\)
−0.231407 + 0.972857i \(0.574333\pi\)
\(632\) −33.5462 −1.33439
\(633\) 0 0
\(634\) 0.518581 0.0205955
\(635\) −5.76149 −0.228638
\(636\) 0 0
\(637\) −35.7612 −1.41691
\(638\) 20.5361 0.813031
\(639\) 0 0
\(640\) 13.2224 0.522662
\(641\) −14.2439 −0.562600 −0.281300 0.959620i \(-0.590766\pi\)
−0.281300 + 0.959620i \(0.590766\pi\)
\(642\) 0 0
\(643\) −26.4280 −1.04222 −0.521110 0.853490i \(-0.674482\pi\)
−0.521110 + 0.853490i \(0.674482\pi\)
\(644\) 0.212321 0.00836662
\(645\) 0 0
\(646\) 0 0
\(647\) −9.88070 −0.388451 −0.194225 0.980957i \(-0.562219\pi\)
−0.194225 + 0.980957i \(0.562219\pi\)
\(648\) 0 0
\(649\) 22.1609 0.869892
\(650\) −9.58759 −0.376056
\(651\) 0 0
\(652\) −6.01999 −0.235761
\(653\) −2.06379 −0.0807625 −0.0403812 0.999184i \(-0.512857\pi\)
−0.0403812 + 0.999184i \(0.512857\pi\)
\(654\) 0 0
\(655\) 14.1047 0.551116
\(656\) 0.487596 0.0190374
\(657\) 0 0
\(658\) 2.36787 0.0923093
\(659\) −21.3928 −0.833343 −0.416672 0.909057i \(-0.636804\pi\)
−0.416672 + 0.909057i \(0.636804\pi\)
\(660\) 0 0
\(661\) 24.2883 0.944707 0.472354 0.881409i \(-0.343405\pi\)
0.472354 + 0.881409i \(0.343405\pi\)
\(662\) −10.4991 −0.408058
\(663\) 0 0
\(664\) 10.1356 0.393336
\(665\) −3.11473 −0.120784
\(666\) 0 0
\(667\) 11.2985 0.437481
\(668\) 1.98248 0.0767043
\(669\) 0 0
\(670\) −1.86787 −0.0721623
\(671\) −44.4902 −1.71753
\(672\) 0 0
\(673\) −35.2471 −1.35868 −0.679338 0.733825i \(-0.737733\pi\)
−0.679338 + 0.733825i \(0.737733\pi\)
\(674\) 30.1421 1.16103
\(675\) 0 0
\(676\) −5.17347 −0.198980
\(677\) −1.38936 −0.0533974 −0.0266987 0.999644i \(-0.508499\pi\)
−0.0266987 + 0.999644i \(0.508499\pi\)
\(678\) 0 0
\(679\) −3.61633 −0.138782
\(680\) 0 0
\(681\) 0 0
\(682\) −20.2420 −0.775108
\(683\) 31.8369 1.21821 0.609103 0.793091i \(-0.291530\pi\)
0.609103 + 0.793091i \(0.291530\pi\)
\(684\) 0 0
\(685\) 17.5933 0.672206
\(686\) 4.10161 0.156600
\(687\) 0 0
\(688\) −27.7414 −1.05763
\(689\) −7.06169 −0.269029
\(690\) 0 0
\(691\) −17.5280 −0.666797 −0.333399 0.942786i \(-0.608196\pi\)
−0.333399 + 0.942786i \(0.608196\pi\)
\(692\) −6.95481 −0.264382
\(693\) 0 0
\(694\) −37.8346 −1.43618
\(695\) 9.54364 0.362011
\(696\) 0 0
\(697\) 0 0
\(698\) −23.6146 −0.893827
\(699\) 0 0
\(700\) −0.129789 −0.00490557
\(701\) −26.4148 −0.997674 −0.498837 0.866696i \(-0.666239\pi\)
−0.498837 + 0.866696i \(0.666239\pi\)
\(702\) 0 0
\(703\) −30.2516 −1.14096
\(704\) 30.4439 1.14740
\(705\) 0 0
\(706\) −41.2825 −1.55369
\(707\) −0.0452568 −0.00170206
\(708\) 0 0
\(709\) 11.3649 0.426816 0.213408 0.976963i \(-0.431544\pi\)
0.213408 + 0.976963i \(0.431544\pi\)
\(710\) 18.8249 0.706485
\(711\) 0 0
\(712\) 50.3824 1.88816
\(713\) −11.1368 −0.417076
\(714\) 0 0
\(715\) 33.1515 1.23980
\(716\) −3.38023 −0.126325
\(717\) 0 0
\(718\) −39.3654 −1.46910
\(719\) −15.3875 −0.573856 −0.286928 0.957952i \(-0.592634\pi\)
−0.286928 + 0.957952i \(0.592634\pi\)
\(720\) 0 0
\(721\) 0.0822168 0.00306191
\(722\) 41.0686 1.52841
\(723\) 0 0
\(724\) −8.87818 −0.329955
\(725\) −6.90667 −0.256507
\(726\) 0 0
\(727\) −43.0876 −1.59803 −0.799015 0.601311i \(-0.794645\pi\)
−0.799015 + 0.601311i \(0.794645\pi\)
\(728\) 3.60815 0.133727
\(729\) 0 0
\(730\) 7.10931 0.263127
\(731\) 0 0
\(732\) 0 0
\(733\) −24.1471 −0.891892 −0.445946 0.895060i \(-0.647133\pi\)
−0.445946 + 0.895060i \(0.647133\pi\)
\(734\) −4.75298 −0.175436
\(735\) 0 0
\(736\) 5.11637 0.188592
\(737\) −2.67568 −0.0985600
\(738\) 0 0
\(739\) 0.996882 0.0366709 0.0183354 0.999832i \(-0.494163\pi\)
0.0183354 + 0.999832i \(0.494163\pi\)
\(740\) 3.04281 0.111856
\(741\) 0 0
\(742\) 0.403415 0.0148098
\(743\) −32.5845 −1.19541 −0.597705 0.801716i \(-0.703921\pi\)
−0.597705 + 0.801716i \(0.703921\pi\)
\(744\) 0 0
\(745\) 6.65739 0.243908
\(746\) 18.2208 0.667111
\(747\) 0 0
\(748\) 0 0
\(749\) −2.32790 −0.0850594
\(750\) 0 0
\(751\) 35.0544 1.27915 0.639576 0.768728i \(-0.279110\pi\)
0.639576 + 0.768728i \(0.279110\pi\)
\(752\) 24.8539 0.906330
\(753\) 0 0
\(754\) 30.8690 1.12418
\(755\) −23.4206 −0.852361
\(756\) 0 0
\(757\) −7.14147 −0.259561 −0.129781 0.991543i \(-0.541427\pi\)
−0.129781 + 0.991543i \(0.541427\pi\)
\(758\) −20.7881 −0.755059
\(759\) 0 0
\(760\) −40.8087 −1.48029
\(761\) −13.7182 −0.497283 −0.248641 0.968596i \(-0.579984\pi\)
−0.248641 + 0.968596i \(0.579984\pi\)
\(762\) 0 0
\(763\) −2.38085 −0.0861926
\(764\) −9.75526 −0.352933
\(765\) 0 0
\(766\) 14.5397 0.525341
\(767\) 33.3114 1.20280
\(768\) 0 0
\(769\) 15.2265 0.549081 0.274540 0.961576i \(-0.411474\pi\)
0.274540 + 0.961576i \(0.411474\pi\)
\(770\) −1.89386 −0.0682498
\(771\) 0 0
\(772\) −3.12426 −0.112445
\(773\) −22.8305 −0.821156 −0.410578 0.911825i \(-0.634673\pi\)
−0.410578 + 0.911825i \(0.634673\pi\)
\(774\) 0 0
\(775\) 6.80778 0.244543
\(776\) −47.3807 −1.70087
\(777\) 0 0
\(778\) 46.1052 1.65295
\(779\) −1.13132 −0.0405336
\(780\) 0 0
\(781\) 26.9662 0.964925
\(782\) 0 0
\(783\) 0 0
\(784\) 21.4433 0.765833
\(785\) 21.9925 0.784946
\(786\) 0 0
\(787\) −2.73917 −0.0976410 −0.0488205 0.998808i \(-0.515546\pi\)
−0.0488205 + 0.998808i \(0.515546\pi\)
\(788\) 5.47267 0.194956
\(789\) 0 0
\(790\) 26.4674 0.941667
\(791\) 3.37215 0.119900
\(792\) 0 0
\(793\) −66.8760 −2.37484
\(794\) −26.9554 −0.956611
\(795\) 0 0
\(796\) −0.206296 −0.00731198
\(797\) 5.79845 0.205392 0.102696 0.994713i \(-0.467253\pi\)
0.102696 + 0.994713i \(0.467253\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −3.12757 −0.110576
\(801\) 0 0
\(802\) −9.84910 −0.347784
\(803\) 10.1839 0.359382
\(804\) 0 0
\(805\) −1.04196 −0.0367243
\(806\) −30.4270 −1.07175
\(807\) 0 0
\(808\) −0.592948 −0.0208598
\(809\) 19.3287 0.679561 0.339781 0.940505i \(-0.389647\pi\)
0.339781 + 0.940505i \(0.389647\pi\)
\(810\) 0 0
\(811\) 7.32574 0.257242 0.128621 0.991694i \(-0.458945\pi\)
0.128621 + 0.991694i \(0.458945\pi\)
\(812\) 0.417880 0.0146647
\(813\) 0 0
\(814\) −18.3940 −0.644708
\(815\) 29.5430 1.03485
\(816\) 0 0
\(817\) 64.3655 2.25186
\(818\) −23.6738 −0.827736
\(819\) 0 0
\(820\) 0.113792 0.00397378
\(821\) 5.19508 0.181310 0.0906548 0.995882i \(-0.471104\pi\)
0.0906548 + 0.995882i \(0.471104\pi\)
\(822\) 0 0
\(823\) 23.0057 0.801928 0.400964 0.916094i \(-0.368675\pi\)
0.400964 + 0.916094i \(0.368675\pi\)
\(824\) 1.07719 0.0375258
\(825\) 0 0
\(826\) −1.90299 −0.0662134
\(827\) −17.9679 −0.624806 −0.312403 0.949950i \(-0.601134\pi\)
−0.312403 + 0.949950i \(0.601134\pi\)
\(828\) 0 0
\(829\) −9.11808 −0.316684 −0.158342 0.987384i \(-0.550615\pi\)
−0.158342 + 0.987384i \(0.550615\pi\)
\(830\) −7.99679 −0.277573
\(831\) 0 0
\(832\) 45.7620 1.58651
\(833\) 0 0
\(834\) 0 0
\(835\) −9.72898 −0.336685
\(836\) −9.39828 −0.325046
\(837\) 0 0
\(838\) −39.3584 −1.35961
\(839\) 24.8846 0.859113 0.429556 0.903040i \(-0.358670\pi\)
0.429556 + 0.903040i \(0.358670\pi\)
\(840\) 0 0
\(841\) −6.76272 −0.233197
\(842\) −16.1238 −0.555665
\(843\) 0 0
\(844\) −1.30889 −0.0450537
\(845\) 25.3887 0.873399
\(846\) 0 0
\(847\) −0.168732 −0.00579770
\(848\) 4.23437 0.145409
\(849\) 0 0
\(850\) 0 0
\(851\) −10.1200 −0.346909
\(852\) 0 0
\(853\) −57.7204 −1.97631 −0.988154 0.153468i \(-0.950956\pi\)
−0.988154 + 0.153468i \(0.950956\pi\)
\(854\) 3.82044 0.130733
\(855\) 0 0
\(856\) −30.4998 −1.04246
\(857\) −12.1845 −0.416216 −0.208108 0.978106i \(-0.566731\pi\)
−0.208108 + 0.978106i \(0.566731\pi\)
\(858\) 0 0
\(859\) −32.7974 −1.11903 −0.559517 0.828819i \(-0.689013\pi\)
−0.559517 + 0.828819i \(0.689013\pi\)
\(860\) −6.47410 −0.220765
\(861\) 0 0
\(862\) −5.57755 −0.189972
\(863\) −34.6709 −1.18021 −0.590106 0.807326i \(-0.700914\pi\)
−0.590106 + 0.807326i \(0.700914\pi\)
\(864\) 0 0
\(865\) 34.1306 1.16048
\(866\) 30.1730 1.02532
\(867\) 0 0
\(868\) −0.411897 −0.0139807
\(869\) 37.9138 1.28614
\(870\) 0 0
\(871\) −4.02198 −0.136280
\(872\) −31.1936 −1.05635
\(873\) 0 0
\(874\) 21.8206 0.738094
\(875\) 2.81134 0.0950408
\(876\) 0 0
\(877\) 30.9770 1.04602 0.523009 0.852327i \(-0.324809\pi\)
0.523009 + 0.852327i \(0.324809\pi\)
\(878\) 20.4580 0.690425
\(879\) 0 0
\(880\) −19.8785 −0.670104
\(881\) 33.4295 1.12627 0.563135 0.826365i \(-0.309595\pi\)
0.563135 + 0.826365i \(0.309595\pi\)
\(882\) 0 0
\(883\) −18.2136 −0.612938 −0.306469 0.951881i \(-0.599148\pi\)
−0.306469 + 0.951881i \(0.599148\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.55497 −0.0522401
\(887\) 56.2425 1.88844 0.944220 0.329316i \(-0.106818\pi\)
0.944220 + 0.329316i \(0.106818\pi\)
\(888\) 0 0
\(889\) 0.708712 0.0237694
\(890\) −39.7509 −1.33245
\(891\) 0 0
\(892\) 7.73481 0.258980
\(893\) −57.6659 −1.92972
\(894\) 0 0
\(895\) 16.5884 0.554490
\(896\) −1.62647 −0.0543366
\(897\) 0 0
\(898\) 29.8431 0.995876
\(899\) −21.9189 −0.731036
\(900\) 0 0
\(901\) 0 0
\(902\) −0.687878 −0.0229038
\(903\) 0 0
\(904\) 44.1815 1.46945
\(905\) 43.5695 1.44830
\(906\) 0 0
\(907\) 9.52095 0.316138 0.158069 0.987428i \(-0.449473\pi\)
0.158069 + 0.987428i \(0.449473\pi\)
\(908\) 0.552310 0.0183291
\(909\) 0 0
\(910\) −2.84677 −0.0943695
\(911\) −14.9716 −0.496030 −0.248015 0.968756i \(-0.579778\pi\)
−0.248015 + 0.968756i \(0.579778\pi\)
\(912\) 0 0
\(913\) −11.4552 −0.379112
\(914\) −49.1155 −1.62460
\(915\) 0 0
\(916\) 4.03237 0.133233
\(917\) −1.73500 −0.0572946
\(918\) 0 0
\(919\) −12.5474 −0.413900 −0.206950 0.978352i \(-0.566354\pi\)
−0.206950 + 0.978352i \(0.566354\pi\)
\(920\) −13.6516 −0.450081
\(921\) 0 0
\(922\) 22.8030 0.750975
\(923\) 40.5345 1.33421
\(924\) 0 0
\(925\) 6.18623 0.203402
\(926\) −12.3504 −0.405859
\(927\) 0 0
\(928\) 10.0698 0.330557
\(929\) 1.77458 0.0582220 0.0291110 0.999576i \(-0.490732\pi\)
0.0291110 + 0.999576i \(0.490732\pi\)
\(930\) 0 0
\(931\) −49.7526 −1.63058
\(932\) −5.15156 −0.168745
\(933\) 0 0
\(934\) 42.7560 1.39902
\(935\) 0 0
\(936\) 0 0
\(937\) 26.5081 0.865982 0.432991 0.901398i \(-0.357458\pi\)
0.432991 + 0.901398i \(0.357458\pi\)
\(938\) 0.229765 0.00750208
\(939\) 0 0
\(940\) 5.80023 0.189183
\(941\) 32.9345 1.07364 0.536818 0.843698i \(-0.319626\pi\)
0.536818 + 0.843698i \(0.319626\pi\)
\(942\) 0 0
\(943\) −0.378457 −0.0123243
\(944\) −19.9744 −0.650110
\(945\) 0 0
\(946\) 39.1363 1.27243
\(947\) 8.19278 0.266230 0.133115 0.991101i \(-0.457502\pi\)
0.133115 + 0.991101i \(0.457502\pi\)
\(948\) 0 0
\(949\) 15.3080 0.496920
\(950\) −13.3387 −0.432764
\(951\) 0 0
\(952\) 0 0
\(953\) −17.5763 −0.569353 −0.284676 0.958624i \(-0.591886\pi\)
−0.284676 + 0.958624i \(0.591886\pi\)
\(954\) 0 0
\(955\) 47.8738 1.54916
\(956\) −6.63675 −0.214648
\(957\) 0 0
\(958\) −37.2254 −1.20270
\(959\) −2.16413 −0.0698833
\(960\) 0 0
\(961\) −9.39493 −0.303062
\(962\) −27.6491 −0.891442
\(963\) 0 0
\(964\) 5.68458 0.183088
\(965\) 15.3323 0.493564
\(966\) 0 0
\(967\) 41.2137 1.32534 0.662671 0.748910i \(-0.269423\pi\)
0.662671 + 0.748910i \(0.269423\pi\)
\(968\) −2.21070 −0.0710547
\(969\) 0 0
\(970\) 37.3826 1.20028
\(971\) 58.4141 1.87460 0.937298 0.348529i \(-0.113319\pi\)
0.937298 + 0.348529i \(0.113319\pi\)
\(972\) 0 0
\(973\) −1.17395 −0.0376351
\(974\) −34.7719 −1.11416
\(975\) 0 0
\(976\) 40.1005 1.28359
\(977\) 47.8936 1.53225 0.766126 0.642691i \(-0.222182\pi\)
0.766126 + 0.642691i \(0.222182\pi\)
\(978\) 0 0
\(979\) −56.9421 −1.81988
\(980\) 5.00429 0.159856
\(981\) 0 0
\(982\) −1.03151 −0.0329167
\(983\) −5.58236 −0.178050 −0.0890248 0.996029i \(-0.528375\pi\)
−0.0890248 + 0.996029i \(0.528375\pi\)
\(984\) 0 0
\(985\) −26.8570 −0.855736
\(986\) 0 0
\(987\) 0 0
\(988\) −14.1271 −0.449444
\(989\) 21.5320 0.684679
\(990\) 0 0
\(991\) −60.1849 −1.91184 −0.955918 0.293635i \(-0.905135\pi\)
−0.955918 + 0.293635i \(0.905135\pi\)
\(992\) −9.92562 −0.315139
\(993\) 0 0
\(994\) −2.31562 −0.0734471
\(995\) 1.01240 0.0320951
\(996\) 0 0
\(997\) −37.9195 −1.20092 −0.600461 0.799654i \(-0.705016\pi\)
−0.600461 + 0.799654i \(0.705016\pi\)
\(998\) −36.2894 −1.14872
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7803.2.a.cg.1.17 24
3.2 odd 2 7803.2.a.cd.1.8 24
17.3 odd 16 459.2.l.a.298.9 yes 48
17.6 odd 16 459.2.l.a.325.9 yes 48
17.16 even 2 7803.2.a.cd.1.17 24
51.20 even 16 459.2.l.a.298.4 48
51.23 even 16 459.2.l.a.325.4 yes 48
51.50 odd 2 inner 7803.2.a.cg.1.8 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.l.a.298.4 48 51.20 even 16
459.2.l.a.298.9 yes 48 17.3 odd 16
459.2.l.a.325.4 yes 48 51.23 even 16
459.2.l.a.325.9 yes 48 17.6 odd 16
7803.2.a.cd.1.8 24 3.2 odd 2
7803.2.a.cd.1.17 24 17.16 even 2
7803.2.a.cg.1.8 24 51.50 odd 2 inner
7803.2.a.cg.1.17 24 1.1 even 1 trivial