Properties

Label 459.2.l.a.325.9
Level $459$
Weight $2$
Character 459.325
Analytic conductor $3.665$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(298,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.298"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.l (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,-48,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 325.9
Character \(\chi\) \(=\) 459.325
Dual form 459.2.l.a.298.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.899127 + 0.899127i) q^{2} -0.383141i q^{4} +(-0.719544 - 1.73713i) q^{5} +(0.0885100 - 0.213682i) q^{7} +(2.14275 - 2.14275i) q^{8} +(0.914941 - 2.20886i) q^{10} +(-3.16414 - 1.31063i) q^{11} -5.14809i q^{13} +(0.271709 - 0.112546i) q^{14} +3.08692 q^{16} +(-3.84181 - 1.49682i) q^{17} +(5.06448 + 5.06448i) q^{19} +(-0.665566 + 0.275686i) q^{20} +(-1.66654 - 4.02339i) q^{22} +(2.21359 + 0.916899i) q^{23} +(1.03565 - 1.03565i) q^{25} +(4.62878 - 4.62878i) q^{26} +(-0.0818703 - 0.0339118i) q^{28} +(1.80460 + 4.35669i) q^{29} +(4.29431 - 1.77876i) q^{31} +(-1.50996 - 1.50996i) q^{32} +(-2.10845 - 4.80011i) q^{34} -0.434881 q^{35} +(-3.90224 + 1.61636i) q^{37} +9.10722i q^{38} +(-5.26403 - 2.18043i) q^{40} +(0.0604469 - 0.145932i) q^{41} +(6.35460 - 6.35460i) q^{43} +(-0.502156 + 1.21231i) q^{44} +(1.16589 + 2.81471i) q^{46} +8.05136i q^{47} +(4.91192 + 4.91192i) q^{49} +1.86236 q^{50} -1.97244 q^{52} +(-0.969947 - 0.969947i) q^{53} +6.43958i q^{55} +(-0.268212 - 0.647521i) q^{56} +(-2.29465 + 5.53978i) q^{58} +(-4.57543 + 4.57543i) q^{59} +(-4.97123 + 12.0016i) q^{61} +(5.46046 + 2.26180i) q^{62} -8.88913i q^{64} +(-8.94290 + 3.70427i) q^{65} +0.781257 q^{67} +(-0.573493 + 1.47195i) q^{68} +(-0.391013 - 0.391013i) q^{70} +(7.27435 - 3.01313i) q^{71} +(-1.13792 - 2.74719i) q^{73} +(-4.96192 - 2.05530i) q^{74} +(1.94041 - 1.94041i) q^{76} +(-0.560116 + 0.560116i) q^{77} +(-10.2276 - 4.23640i) q^{79} +(-2.22117 - 5.36239i) q^{80} +(0.185561 - 0.0768618i) q^{82} +(2.36509 + 2.36509i) q^{83} +(0.164176 + 7.75076i) q^{85} +11.4272 q^{86} +(-9.58830 + 3.97160i) q^{88} -16.6262i q^{89} +(-1.10005 - 0.455657i) q^{91} +(0.351301 - 0.848116i) q^{92} +(-7.23920 + 7.23920i) q^{94} +(5.15355 - 12.4418i) q^{95} +(5.98350 + 14.4454i) q^{97} +8.83288i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 16 q^{10} - 48 q^{16} - 16 q^{19} - 24 q^{22} + 16 q^{25} + 24 q^{28} - 40 q^{31} + 64 q^{34} + 48 q^{37} - 48 q^{40} - 8 q^{43} + 24 q^{46} - 16 q^{49} + 32 q^{52} + 64 q^{58} - 24 q^{61} - 32 q^{67}+ \cdots - 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.899127 + 0.899127i 0.635779 + 0.635779i 0.949511 0.313733i \(-0.101580\pi\)
−0.313733 + 0.949511i \(0.601580\pi\)
\(3\) 0 0
\(4\) 0.383141i 0.191570i
\(5\) −0.719544 1.73713i −0.321790 0.776869i −0.999150 0.0412178i \(-0.986876\pi\)
0.677360 0.735651i \(-0.263124\pi\)
\(6\) 0 0
\(7\) 0.0885100 0.213682i 0.0334536 0.0807642i −0.906270 0.422700i \(-0.861082\pi\)
0.939723 + 0.341936i \(0.111082\pi\)
\(8\) 2.14275 2.14275i 0.757575 0.757575i
\(9\) 0 0
\(10\) 0.914941 2.20886i 0.289330 0.698504i
\(11\) −3.16414 1.31063i −0.954024 0.395170i −0.149282 0.988795i \(-0.547696\pi\)
−0.804742 + 0.593625i \(0.797696\pi\)
\(12\) 0 0
\(13\) 5.14809i 1.42782i −0.700236 0.713911i \(-0.746922\pi\)
0.700236 0.713911i \(-0.253078\pi\)
\(14\) 0.271709 0.112546i 0.0726173 0.0300791i
\(15\) 0 0
\(16\) 3.08692 0.771730
\(17\) −3.84181 1.49682i −0.931776 0.363032i
\(18\) 0 0
\(19\) 5.06448 + 5.06448i 1.16187 + 1.16187i 0.984066 + 0.177805i \(0.0568996\pi\)
0.177805 + 0.984066i \(0.443100\pi\)
\(20\) −0.665566 + 0.275686i −0.148825 + 0.0616454i
\(21\) 0 0
\(22\) −1.66654 4.02339i −0.355308 0.857789i
\(23\) 2.21359 + 0.916899i 0.461565 + 0.191187i 0.601334 0.798998i \(-0.294636\pi\)
−0.139769 + 0.990184i \(0.544636\pi\)
\(24\) 0 0
\(25\) 1.03565 1.03565i 0.207130 0.207130i
\(26\) 4.62878 4.62878i 0.907779 0.907779i
\(27\) 0 0
\(28\) −0.0818703 0.0339118i −0.0154720 0.00640873i
\(29\) 1.80460 + 4.35669i 0.335105 + 0.809016i 0.998171 + 0.0604547i \(0.0192551\pi\)
−0.663065 + 0.748561i \(0.730745\pi\)
\(30\) 0 0
\(31\) 4.29431 1.77876i 0.771281 0.319475i 0.0378896 0.999282i \(-0.487936\pi\)
0.733391 + 0.679807i \(0.237936\pi\)
\(32\) −1.50996 1.50996i −0.266925 0.266925i
\(33\) 0 0
\(34\) −2.10845 4.80011i −0.361595 0.823212i
\(35\) −0.434881 −0.0735083
\(36\) 0 0
\(37\) −3.90224 + 1.61636i −0.641524 + 0.265728i −0.679641 0.733545i \(-0.737864\pi\)
0.0381162 + 0.999273i \(0.487864\pi\)
\(38\) 9.10722i 1.47739i
\(39\) 0 0
\(40\) −5.26403 2.18043i −0.832317 0.344757i
\(41\) 0.0604469 0.145932i 0.00944023 0.0227907i −0.919089 0.394050i \(-0.871074\pi\)
0.928529 + 0.371259i \(0.121074\pi\)
\(42\) 0 0
\(43\) 6.35460 6.35460i 0.969068 0.969068i −0.0304678 0.999536i \(-0.509700\pi\)
0.999536 + 0.0304678i \(0.00969970\pi\)
\(44\) −0.502156 + 1.21231i −0.0757028 + 0.182763i
\(45\) 0 0
\(46\) 1.16589 + 2.81471i 0.171901 + 0.415006i
\(47\) 8.05136i 1.17441i 0.809437 + 0.587206i \(0.199772\pi\)
−0.809437 + 0.587206i \(0.800228\pi\)
\(48\) 0 0
\(49\) 4.91192 + 4.91192i 0.701703 + 0.701703i
\(50\) 1.86236 0.263378
\(51\) 0 0
\(52\) −1.97244 −0.273528
\(53\) −0.969947 0.969947i −0.133232 0.133232i 0.637346 0.770578i \(-0.280032\pi\)
−0.770578 + 0.637346i \(0.780032\pi\)
\(54\) 0 0
\(55\) 6.43958i 0.868313i
\(56\) −0.268212 0.647521i −0.0358413 0.0865287i
\(57\) 0 0
\(58\) −2.29465 + 5.53978i −0.301302 + 0.727408i
\(59\) −4.57543 + 4.57543i −0.595670 + 0.595670i −0.939157 0.343487i \(-0.888392\pi\)
0.343487 + 0.939157i \(0.388392\pi\)
\(60\) 0 0
\(61\) −4.97123 + 12.0016i −0.636501 + 1.53665i 0.194809 + 0.980841i \(0.437591\pi\)
−0.831310 + 0.555808i \(0.812409\pi\)
\(62\) 5.46046 + 2.26180i 0.693479 + 0.287249i
\(63\) 0 0
\(64\) 8.88913i 1.11114i
\(65\) −8.94290 + 3.70427i −1.10923 + 0.459458i
\(66\) 0 0
\(67\) 0.781257 0.0954458 0.0477229 0.998861i \(-0.484804\pi\)
0.0477229 + 0.998861i \(0.484804\pi\)
\(68\) −0.573493 + 1.47195i −0.0695463 + 0.178501i
\(69\) 0 0
\(70\) −0.391013 0.391013i −0.0467350 0.0467350i
\(71\) 7.27435 3.01313i 0.863306 0.357593i 0.0933065 0.995637i \(-0.470256\pi\)
0.770000 + 0.638044i \(0.220256\pi\)
\(72\) 0 0
\(73\) −1.13792 2.74719i −0.133184 0.321535i 0.843192 0.537612i \(-0.180674\pi\)
−0.976376 + 0.216078i \(0.930674\pi\)
\(74\) −4.96192 2.05530i −0.576812 0.238923i
\(75\) 0 0
\(76\) 1.94041 1.94041i 0.222580 0.222580i
\(77\) −0.560116 + 0.560116i −0.0638312 + 0.0638312i
\(78\) 0 0
\(79\) −10.2276 4.23640i −1.15069 0.476632i −0.275926 0.961179i \(-0.588985\pi\)
−0.874765 + 0.484547i \(0.838985\pi\)
\(80\) −2.22117 5.36239i −0.248335 0.599534i
\(81\) 0 0
\(82\) 0.185561 0.0768618i 0.0204918 0.00848796i
\(83\) 2.36509 + 2.36509i 0.259602 + 0.259602i 0.824892 0.565290i \(-0.191236\pi\)
−0.565290 + 0.824892i \(0.691236\pi\)
\(84\) 0 0
\(85\) 0.164176 + 7.75076i 0.0178074 + 0.840688i
\(86\) 11.4272 1.23223
\(87\) 0 0
\(88\) −9.58830 + 3.97160i −1.02212 + 0.423374i
\(89\) 16.6262i 1.76237i −0.472767 0.881187i \(-0.656745\pi\)
0.472767 0.881187i \(-0.343255\pi\)
\(90\) 0 0
\(91\) −1.10005 0.455657i −0.115317 0.0477659i
\(92\) 0.351301 0.848116i 0.0366257 0.0884222i
\(93\) 0 0
\(94\) −7.23920 + 7.23920i −0.746666 + 0.746666i
\(95\) 5.15355 12.4418i 0.528743 1.27650i
\(96\) 0 0
\(97\) 5.98350 + 14.4454i 0.607532 + 1.46671i 0.865675 + 0.500606i \(0.166890\pi\)
−0.258143 + 0.966107i \(0.583110\pi\)
\(98\) 8.83288i 0.892256i
\(99\) 0 0
\(100\) −0.396799 0.396799i −0.0396799 0.0396799i
\(101\) −0.195673 −0.0194702 −0.00973509 0.999953i \(-0.503099\pi\)
−0.00973509 + 0.999953i \(0.503099\pi\)
\(102\) 0 0
\(103\) −0.355474 −0.0350259 −0.0175129 0.999847i \(-0.505575\pi\)
−0.0175129 + 0.999847i \(0.505575\pi\)
\(104\) −11.0310 11.0310i −1.08168 1.08168i
\(105\) 0 0
\(106\) 1.74421i 0.169413i
\(107\) −3.85168 9.29878i −0.372356 0.898947i −0.993350 0.115132i \(-0.963271\pi\)
0.620994 0.783815i \(-0.286729\pi\)
\(108\) 0 0
\(109\) −3.93930 + 9.51031i −0.377317 + 0.910923i 0.615150 + 0.788410i \(0.289095\pi\)
−0.992467 + 0.122513i \(0.960905\pi\)
\(110\) −5.79001 + 5.79001i −0.552055 + 0.552055i
\(111\) 0 0
\(112\) 0.273224 0.659620i 0.0258172 0.0623282i
\(113\) 13.4701 + 5.57948i 1.26716 + 0.524874i 0.912099 0.409971i \(-0.134461\pi\)
0.355058 + 0.934844i \(0.384461\pi\)
\(114\) 0 0
\(115\) 4.50505i 0.420098i
\(116\) 1.66922 0.691415i 0.154984 0.0641963i
\(117\) 0 0
\(118\) −8.22779 −0.757429
\(119\) −0.659883 + 0.688443i −0.0604914 + 0.0631095i
\(120\) 0 0
\(121\) 0.515857 + 0.515857i 0.0468961 + 0.0468961i
\(122\) −15.2607 + 6.32121i −1.38164 + 0.572295i
\(123\) 0 0
\(124\) −0.681516 1.64532i −0.0612019 0.147754i
\(125\) −11.2299 4.65158i −1.00443 0.416050i
\(126\) 0 0
\(127\) 2.16672 2.16672i 0.192265 0.192265i −0.604409 0.796674i \(-0.706591\pi\)
0.796674 + 0.604409i \(0.206591\pi\)
\(128\) 4.97254 4.97254i 0.439515 0.439515i
\(129\) 0 0
\(130\) −11.3714 4.71020i −0.997340 0.413112i
\(131\) 2.87069 + 6.93045i 0.250813 + 0.605516i 0.998270 0.0587940i \(-0.0187255\pi\)
−0.747457 + 0.664310i \(0.768726\pi\)
\(132\) 0 0
\(133\) 1.53044 0.633931i 0.132706 0.0549688i
\(134\) 0.702450 + 0.702450i 0.0606824 + 0.0606824i
\(135\) 0 0
\(136\) −11.4393 + 5.02472i −0.980915 + 0.430866i
\(137\) 9.35686 0.799411 0.399705 0.916644i \(-0.369112\pi\)
0.399705 + 0.916644i \(0.369112\pi\)
\(138\) 0 0
\(139\) 4.68934 1.94239i 0.397745 0.164751i −0.174840 0.984597i \(-0.555941\pi\)
0.572585 + 0.819846i \(0.305941\pi\)
\(140\) 0.166621i 0.0140820i
\(141\) 0 0
\(142\) 9.24975 + 3.83137i 0.776222 + 0.321522i
\(143\) −6.74723 + 16.2893i −0.564232 + 1.36218i
\(144\) 0 0
\(145\) 6.26965 6.26965i 0.520666 0.520666i
\(146\) 1.44694 3.49321i 0.119749 0.289100i
\(147\) 0 0
\(148\) 0.619294 + 1.49511i 0.0509056 + 0.122897i
\(149\) 3.54068i 0.290063i −0.989427 0.145032i \(-0.953672\pi\)
0.989427 0.145032i \(-0.0463284\pi\)
\(150\) 0 0
\(151\) 8.80774 + 8.80774i 0.716764 + 0.716764i 0.967941 0.251177i \(-0.0808176\pi\)
−0.251177 + 0.967941i \(0.580818\pi\)
\(152\) 21.7038 1.76041
\(153\) 0 0
\(154\) −1.00723 −0.0811650
\(155\) −6.17988 6.17988i −0.496380 0.496380i
\(156\) 0 0
\(157\) 11.6965i 0.933485i 0.884393 + 0.466742i \(0.154572\pi\)
−0.884393 + 0.466742i \(0.845428\pi\)
\(158\) −5.38682 13.0049i −0.428553 1.03462i
\(159\) 0 0
\(160\) −1.53652 + 3.70948i −0.121472 + 0.293260i
\(161\) 0.391850 0.391850i 0.0308821 0.0308821i
\(162\) 0 0
\(163\) 6.01281 14.5162i 0.470959 1.13700i −0.492781 0.870154i \(-0.664019\pi\)
0.963740 0.266843i \(-0.0859805\pi\)
\(164\) −0.0559124 0.0231597i −0.00436603 0.00180847i
\(165\) 0 0
\(166\) 4.25303i 0.330099i
\(167\) 4.78041 1.98011i 0.369919 0.153226i −0.189976 0.981789i \(-0.560841\pi\)
0.559896 + 0.828563i \(0.310841\pi\)
\(168\) 0 0
\(169\) −13.5028 −1.03868
\(170\) −6.82131 + 7.11654i −0.523170 + 0.545814i
\(171\) 0 0
\(172\) −2.43471 2.43471i −0.185645 0.185645i
\(173\) 16.7704 6.94651i 1.27503 0.528133i 0.360538 0.932745i \(-0.382593\pi\)
0.914489 + 0.404612i \(0.132593\pi\)
\(174\) 0 0
\(175\) −0.129634 0.312965i −0.00979944 0.0236579i
\(176\) −9.76745 4.04581i −0.736249 0.304965i
\(177\) 0 0
\(178\) 14.9491 14.9491i 1.12048 1.12048i
\(179\) 6.23840 6.23840i 0.466280 0.466280i −0.434427 0.900707i \(-0.643049\pi\)
0.900707 + 0.434427i \(0.143049\pi\)
\(180\) 0 0
\(181\) −21.4082 8.86758i −1.59126 0.659122i −0.601116 0.799162i \(-0.705277\pi\)
−0.990146 + 0.140040i \(0.955277\pi\)
\(182\) −0.579394 1.39878i −0.0429476 0.103685i
\(183\) 0 0
\(184\) 6.70784 2.77848i 0.494509 0.204832i
\(185\) 5.61567 + 5.61567i 0.412872 + 0.412872i
\(186\) 0 0
\(187\) 10.1943 + 9.77135i 0.745478 + 0.714552i
\(188\) 3.08481 0.224983
\(189\) 0 0
\(190\) 15.8204 6.55304i 1.14774 0.475407i
\(191\) 25.4613i 1.84231i 0.389191 + 0.921157i \(0.372755\pi\)
−0.389191 + 0.921157i \(0.627245\pi\)
\(192\) 0 0
\(193\) 7.53364 + 3.12053i 0.542283 + 0.224621i 0.636973 0.770886i \(-0.280186\pi\)
−0.0946904 + 0.995507i \(0.530186\pi\)
\(194\) −7.60837 + 18.3682i −0.546249 + 1.31876i
\(195\) 0 0
\(196\) 1.88196 1.88196i 0.134426 0.134426i
\(197\) −5.46613 + 13.1964i −0.389446 + 0.940206i 0.600611 + 0.799541i \(0.294924\pi\)
−0.990057 + 0.140665i \(0.955076\pi\)
\(198\) 0 0
\(199\) 0.206050 + 0.497449i 0.0146065 + 0.0352632i 0.931015 0.364982i \(-0.118925\pi\)
−0.916408 + 0.400245i \(0.868925\pi\)
\(200\) 4.43827i 0.313833i
\(201\) 0 0
\(202\) −0.175935 0.175935i −0.0123787 0.0123787i
\(203\) 1.09067 0.0765501
\(204\) 0 0
\(205\) −0.296997 −0.0207432
\(206\) −0.319616 0.319616i −0.0222687 0.0222687i
\(207\) 0 0
\(208\) 15.8917i 1.10189i
\(209\) −9.38706 22.6624i −0.649316 1.56759i
\(210\) 0 0
\(211\) −1.30732 + 3.15616i −0.0899999 + 0.217279i −0.962470 0.271389i \(-0.912517\pi\)
0.872470 + 0.488668i \(0.162517\pi\)
\(212\) −0.371626 + 0.371626i −0.0255234 + 0.0255234i
\(213\) 0 0
\(214\) 4.89763 11.8239i 0.334795 0.808268i
\(215\) −15.6112 6.46637i −1.06468 0.441003i
\(216\) 0 0
\(217\) 1.07506i 0.0729795i
\(218\) −12.0929 + 5.00905i −0.819035 + 0.339256i
\(219\) 0 0
\(220\) 2.46727 0.166343
\(221\) −7.70576 + 19.7780i −0.518346 + 1.33041i
\(222\) 0 0
\(223\) −14.2750 14.2750i −0.955925 0.955925i 0.0431441 0.999069i \(-0.486263\pi\)
−0.999069 + 0.0431441i \(0.986263\pi\)
\(224\) −0.456297 + 0.189005i −0.0304877 + 0.0126284i
\(225\) 0 0
\(226\) 7.09464 + 17.1280i 0.471928 + 1.13934i
\(227\) −1.33180 0.551651i −0.0883949 0.0366144i 0.338048 0.941129i \(-0.390233\pi\)
−0.426443 + 0.904515i \(0.640233\pi\)
\(228\) 0 0
\(229\) 7.44196 7.44196i 0.491779 0.491779i −0.417088 0.908866i \(-0.636949\pi\)
0.908866 + 0.417088i \(0.136949\pi\)
\(230\) 4.05061 4.05061i 0.267089 0.267089i
\(231\) 0 0
\(232\) 13.2021 + 5.46848i 0.866758 + 0.359023i
\(233\) 5.14541 + 12.4221i 0.337087 + 0.813801i 0.997993 + 0.0633314i \(0.0201725\pi\)
−0.660905 + 0.750469i \(0.729828\pi\)
\(234\) 0 0
\(235\) 13.9863 5.79331i 0.912364 0.377914i
\(236\) 1.75303 + 1.75303i 0.114113 + 0.114113i
\(237\) 0 0
\(238\) −1.21232 + 0.0256792i −0.0785828 + 0.00166453i
\(239\) 17.3220 1.12047 0.560233 0.828335i \(-0.310712\pi\)
0.560233 + 0.828335i \(0.310712\pi\)
\(240\) 0 0
\(241\) −13.7074 + 5.67780i −0.882972 + 0.365739i −0.777649 0.628699i \(-0.783588\pi\)
−0.105324 + 0.994438i \(0.533588\pi\)
\(242\) 0.927643i 0.0596311i
\(243\) 0 0
\(244\) 4.59831 + 1.90468i 0.294377 + 0.121935i
\(245\) 4.99831 12.0670i 0.319331 0.770932i
\(246\) 0 0
\(247\) 26.0724 26.0724i 1.65894 1.65894i
\(248\) 5.39018 13.0130i 0.342277 0.826329i
\(249\) 0 0
\(250\) −5.91476 14.2795i −0.374082 0.903114i
\(251\) 28.1651i 1.77776i 0.458136 + 0.888882i \(0.348517\pi\)
−0.458136 + 0.888882i \(0.651483\pi\)
\(252\) 0 0
\(253\) −5.80239 5.80239i −0.364793 0.364793i
\(254\) 3.89631 0.244476
\(255\) 0 0
\(256\) −8.83636 −0.552273
\(257\) 3.14970 + 3.14970i 0.196473 + 0.196473i 0.798486 0.602013i \(-0.205635\pi\)
−0.602013 + 0.798486i \(0.705635\pi\)
\(258\) 0 0
\(259\) 0.976903i 0.0607018i
\(260\) 1.41926 + 3.42639i 0.0880186 + 0.212496i
\(261\) 0 0
\(262\) −3.65024 + 8.81246i −0.225513 + 0.544436i
\(263\) 12.3171 12.3171i 0.759503 0.759503i −0.216729 0.976232i \(-0.569539\pi\)
0.976232 + 0.216729i \(0.0695387\pi\)
\(264\) 0 0
\(265\) −0.987006 + 2.38284i −0.0606313 + 0.146377i
\(266\) 1.94605 + 0.806080i 0.119320 + 0.0494239i
\(267\) 0 0
\(268\) 0.299332i 0.0182846i
\(269\) −20.0339 + 8.29832i −1.22149 + 0.505958i −0.897883 0.440234i \(-0.854896\pi\)
−0.323607 + 0.946192i \(0.604896\pi\)
\(270\) 0 0
\(271\) 27.4783 1.66919 0.834593 0.550866i \(-0.185703\pi\)
0.834593 + 0.550866i \(0.185703\pi\)
\(272\) −11.8594 4.62057i −0.719080 0.280163i
\(273\) 0 0
\(274\) 8.41301 + 8.41301i 0.508248 + 0.508248i
\(275\) −4.63429 + 1.91959i −0.279458 + 0.115755i
\(276\) 0 0
\(277\) −9.75322 23.5463i −0.586014 1.41476i −0.887284 0.461224i \(-0.847410\pi\)
0.301270 0.953539i \(-0.402590\pi\)
\(278\) 5.96277 + 2.46986i 0.357623 + 0.148132i
\(279\) 0 0
\(280\) −0.931839 + 0.931839i −0.0556881 + 0.0556881i
\(281\) 15.2659 15.2659i 0.910690 0.910690i −0.0856363 0.996326i \(-0.527292\pi\)
0.996326 + 0.0856363i \(0.0272923\pi\)
\(282\) 0 0
\(283\) −7.99214 3.31045i −0.475084 0.196786i 0.132276 0.991213i \(-0.457771\pi\)
−0.607360 + 0.794427i \(0.707771\pi\)
\(284\) −1.15445 2.78710i −0.0685042 0.165384i
\(285\) 0 0
\(286\) −20.7127 + 8.57950i −1.22477 + 0.507316i
\(287\) −0.0258329 0.0258329i −0.00152487 0.00152487i
\(288\) 0 0
\(289\) 12.5191 + 11.5010i 0.736415 + 0.676530i
\(290\) 11.2744 0.662057
\(291\) 0 0
\(292\) −1.05256 + 0.435985i −0.0615965 + 0.0255141i
\(293\) 15.4778i 0.904222i 0.891962 + 0.452111i \(0.149329\pi\)
−0.891962 + 0.452111i \(0.850671\pi\)
\(294\) 0 0
\(295\) 11.2404 + 4.65591i 0.654439 + 0.271077i
\(296\) −4.89806 + 11.8250i −0.284694 + 0.687312i
\(297\) 0 0
\(298\) 3.18352 3.18352i 0.184416 0.184416i
\(299\) 4.72027 11.3957i 0.272980 0.659033i
\(300\) 0 0
\(301\) −0.795419 1.92031i −0.0458472 0.110685i
\(302\) 15.8386i 0.911407i
\(303\) 0 0
\(304\) 15.6336 + 15.6336i 0.896651 + 0.896651i
\(305\) 24.4254 1.39860
\(306\) 0 0
\(307\) −31.1421 −1.77737 −0.888687 0.458514i \(-0.848382\pi\)
−0.888687 + 0.458514i \(0.848382\pi\)
\(308\) 0.214603 + 0.214603i 0.0122282 + 0.0122282i
\(309\) 0 0
\(310\) 11.1130i 0.631176i
\(311\) −11.3142 27.3149i −0.641570 1.54889i −0.824561 0.565773i \(-0.808578\pi\)
0.182990 0.983115i \(-0.441422\pi\)
\(312\) 0 0
\(313\) 5.14187 12.4136i 0.290636 0.701657i −0.709359 0.704847i \(-0.751016\pi\)
0.999995 + 0.00319046i \(0.00101556\pi\)
\(314\) −10.5167 + 10.5167i −0.593490 + 0.593490i
\(315\) 0 0
\(316\) −1.62314 + 3.91860i −0.0913086 + 0.220438i
\(317\) −0.376787 0.156070i −0.0211625 0.00876578i 0.372077 0.928202i \(-0.378646\pi\)
−0.393240 + 0.919436i \(0.628646\pi\)
\(318\) 0 0
\(319\) 16.1503i 0.904244i
\(320\) −15.4416 + 6.39612i −0.863211 + 0.357554i
\(321\) 0 0
\(322\) 0.704645 0.0392684
\(323\) −11.8762 27.0374i −0.660807 1.50440i
\(324\) 0 0
\(325\) −5.33161 5.33161i −0.295745 0.295745i
\(326\) 18.4582 7.64563i 1.02230 0.423452i
\(327\) 0 0
\(328\) −0.183172 0.442217i −0.0101140 0.0244174i
\(329\) 1.72043 + 0.712626i 0.0948505 + 0.0392884i
\(330\) 0 0
\(331\) 5.83848 5.83848i 0.320912 0.320912i −0.528205 0.849117i \(-0.677135\pi\)
0.849117 + 0.528205i \(0.177135\pi\)
\(332\) 0.906161 0.906161i 0.0497321 0.0497321i
\(333\) 0 0
\(334\) 6.07857 + 2.51783i 0.332605 + 0.137769i
\(335\) −0.562149 1.35715i −0.0307135 0.0741489i
\(336\) 0 0
\(337\) −21.9004 + 9.07145i −1.19299 + 0.494154i −0.888728 0.458434i \(-0.848410\pi\)
−0.304264 + 0.952588i \(0.598410\pi\)
\(338\) −12.1407 12.1407i −0.660368 0.660368i
\(339\) 0 0
\(340\) 2.96963 0.0629025i 0.161051 0.00341137i
\(341\) −15.9191 −0.862067
\(342\) 0 0
\(343\) 2.98012 1.23441i 0.160911 0.0666516i
\(344\) 27.2326i 1.46828i
\(345\) 0 0
\(346\) 21.3245 + 8.83289i 1.14641 + 0.474859i
\(347\) 11.3866 27.4896i 0.611262 1.47572i −0.250352 0.968155i \(-0.580547\pi\)
0.861615 0.507563i \(-0.169453\pi\)
\(348\) 0 0
\(349\) −13.1320 + 13.1320i −0.702939 + 0.702939i −0.965040 0.262102i \(-0.915584\pi\)
0.262102 + 0.965040i \(0.415584\pi\)
\(350\) 0.164838 0.397953i 0.00881094 0.0212715i
\(351\) 0 0
\(352\) 2.79872 + 6.75671i 0.149172 + 0.360134i
\(353\) 32.4661i 1.72800i 0.503494 + 0.863999i \(0.332047\pi\)
−0.503494 + 0.863999i \(0.667953\pi\)
\(354\) 0 0
\(355\) −10.4684 10.4684i −0.555606 0.555606i
\(356\) −6.37018 −0.337619
\(357\) 0 0
\(358\) 11.2182 0.592902
\(359\) −21.8909 21.8909i −1.15536 1.15536i −0.985462 0.169896i \(-0.945657\pi\)
−0.169896 0.985462i \(-0.554343\pi\)
\(360\) 0 0
\(361\) 32.2978i 1.69989i
\(362\) −11.2756 27.2218i −0.592635 1.43075i
\(363\) 0 0
\(364\) −0.174581 + 0.421475i −0.00915052 + 0.0220913i
\(365\) −3.95345 + 3.95345i −0.206933 + 0.206933i
\(366\) 0 0
\(367\) −1.43044 + 3.45339i −0.0746684 + 0.180265i −0.956807 0.290725i \(-0.906103\pi\)
0.882138 + 0.470991i \(0.156103\pi\)
\(368\) 6.83318 + 2.83039i 0.356204 + 0.147545i
\(369\) 0 0
\(370\) 10.0984i 0.524991i
\(371\) −0.293110 + 0.121410i −0.0152175 + 0.00630331i
\(372\) 0 0
\(373\) −14.3295 −0.741954 −0.370977 0.928642i \(-0.620977\pi\)
−0.370977 + 0.928642i \(0.620977\pi\)
\(374\) 0.380249 + 17.9516i 0.0196622 + 0.928256i
\(375\) 0 0
\(376\) 17.2520 + 17.2520i 0.889706 + 0.889706i
\(377\) 22.4286 9.29023i 1.15513 0.478471i
\(378\) 0 0
\(379\) 6.25632 + 15.1041i 0.321366 + 0.775845i 0.999175 + 0.0406077i \(0.0129294\pi\)
−0.677810 + 0.735238i \(0.737071\pi\)
\(380\) −4.76695 1.97454i −0.244539 0.101292i
\(381\) 0 0
\(382\) −22.8929 + 22.8929i −1.17130 + 1.17130i
\(383\) 8.08546 8.08546i 0.413148 0.413148i −0.469686 0.882834i \(-0.655633\pi\)
0.882834 + 0.469686i \(0.155633\pi\)
\(384\) 0 0
\(385\) 1.37602 + 0.569968i 0.0701287 + 0.0290482i
\(386\) 3.96794 + 9.57945i 0.201963 + 0.487581i
\(387\) 0 0
\(388\) 5.53464 2.29252i 0.280979 0.116385i
\(389\) −25.6389 25.6389i −1.29994 1.29994i −0.928426 0.371517i \(-0.878838\pi\)
−0.371517 0.928426i \(-0.621162\pi\)
\(390\) 0 0
\(391\) −7.13176 6.83590i −0.360669 0.345706i
\(392\) 21.0500 1.06319
\(393\) 0 0
\(394\) −16.7800 + 6.95051i −0.845364 + 0.350161i
\(395\) 20.8149i 1.04731i
\(396\) 0 0
\(397\) −19.5851 8.11239i −0.982946 0.407149i −0.167430 0.985884i \(-0.553547\pi\)
−0.815516 + 0.578735i \(0.803547\pi\)
\(398\) −0.262005 + 0.632535i −0.0131331 + 0.0317061i
\(399\) 0 0
\(400\) 3.19697 3.19697i 0.159848 0.159848i
\(401\) −2.96415 + 7.15609i −0.148023 + 0.357358i −0.980448 0.196779i \(-0.936952\pi\)
0.832425 + 0.554137i \(0.186952\pi\)
\(402\) 0 0
\(403\) −9.15721 22.1075i −0.456153 1.10125i
\(404\) 0.0749703i 0.00372991i
\(405\) 0 0
\(406\) 0.980652 + 0.980652i 0.0486689 + 0.0486689i
\(407\) 14.4657 0.717037
\(408\) 0 0
\(409\) −18.6180 −0.920599 −0.460300 0.887764i \(-0.652258\pi\)
−0.460300 + 0.887764i \(0.652258\pi\)
\(410\) −0.267038 0.267038i −0.0131881 0.0131881i
\(411\) 0 0
\(412\) 0.136197i 0.00670992i
\(413\) 0.572716 + 1.38266i 0.0281815 + 0.0680362i
\(414\) 0 0
\(415\) 2.40669 5.81025i 0.118140 0.285214i
\(416\) −7.77339 + 7.77339i −0.381122 + 0.381122i
\(417\) 0 0
\(418\) 11.9362 28.8165i 0.583818 1.40946i
\(419\) 28.5967 + 11.8452i 1.39704 + 0.578673i 0.948982 0.315330i \(-0.102115\pi\)
0.448059 + 0.894004i \(0.352115\pi\)
\(420\) 0 0
\(421\) 12.6804i 0.618004i 0.951061 + 0.309002i \(0.0999950\pi\)
−0.951061 + 0.309002i \(0.900005\pi\)
\(422\) −4.01324 + 1.66234i −0.195361 + 0.0809213i
\(423\) 0 0
\(424\) −4.15670 −0.201867
\(425\) −5.52895 + 2.42859i −0.268194 + 0.117804i
\(426\) 0 0
\(427\) 2.12453 + 2.12453i 0.102813 + 0.102813i
\(428\) −3.56274 + 1.47574i −0.172212 + 0.0713324i
\(429\) 0 0
\(430\) −8.22236 19.8505i −0.396518 0.957278i
\(431\) −4.05249 1.67860i −0.195202 0.0808552i 0.282941 0.959137i \(-0.408690\pi\)
−0.478143 + 0.878282i \(0.658690\pi\)
\(432\) 0 0
\(433\) −16.7791 + 16.7791i −0.806350 + 0.806350i −0.984079 0.177730i \(-0.943125\pi\)
0.177730 + 0.984079i \(0.443125\pi\)
\(434\) 0.966611 0.966611i 0.0463988 0.0463988i
\(435\) 0 0
\(436\) 3.64379 + 1.50931i 0.174506 + 0.0722827i
\(437\) 6.56706 + 15.8543i 0.314145 + 0.758413i
\(438\) 0 0
\(439\) −14.8642 + 6.15697i −0.709432 + 0.293856i −0.708069 0.706143i \(-0.750434\pi\)
−0.00136242 + 0.999999i \(0.500434\pi\)
\(440\) 13.7984 + 13.7984i 0.657813 + 0.657813i
\(441\) 0 0
\(442\) −24.7114 + 10.8545i −1.17540 + 0.516294i
\(443\) −1.22288 −0.0581009 −0.0290505 0.999578i \(-0.509248\pi\)
−0.0290505 + 0.999578i \(0.509248\pi\)
\(444\) 0 0
\(445\) −28.8819 + 11.9633i −1.36913 + 0.567114i
\(446\) 25.6701i 1.21551i
\(447\) 0 0
\(448\) −1.89945 0.786777i −0.0897405 0.0371717i
\(449\) −8.98146 + 21.6832i −0.423862 + 1.02329i 0.557336 + 0.830287i \(0.311823\pi\)
−0.981198 + 0.193005i \(0.938177\pi\)
\(450\) 0 0
\(451\) −0.382525 + 0.382525i −0.0180124 + 0.0180124i
\(452\) 2.13773 5.16093i 0.100550 0.242750i
\(453\) 0 0
\(454\) −0.701456 1.69346i −0.0329210 0.0794782i
\(455\) 2.23880i 0.104957i
\(456\) 0 0
\(457\) 27.3129 + 27.3129i 1.27764 + 1.27764i 0.941983 + 0.335661i \(0.108960\pi\)
0.335661 + 0.941983i \(0.391040\pi\)
\(458\) 13.3825 0.625325
\(459\) 0 0
\(460\) −1.72607 −0.0804783
\(461\) 12.6806 + 12.6806i 0.590595 + 0.590595i 0.937792 0.347197i \(-0.112867\pi\)
−0.347197 + 0.937792i \(0.612867\pi\)
\(462\) 0 0
\(463\) 9.71279i 0.451392i −0.974198 0.225696i \(-0.927534\pi\)
0.974198 0.225696i \(-0.0724656\pi\)
\(464\) 5.57065 + 13.4487i 0.258611 + 0.624342i
\(465\) 0 0
\(466\) −6.54269 + 15.7955i −0.303084 + 0.731710i
\(467\) −23.7764 + 23.7764i −1.10024 + 1.10024i −0.105858 + 0.994381i \(0.533759\pi\)
−0.994381 + 0.105858i \(0.966241\pi\)
\(468\) 0 0
\(469\) 0.0691491 0.166941i 0.00319301 0.00770861i
\(470\) 17.7844 + 7.36653i 0.820332 + 0.339792i
\(471\) 0 0
\(472\) 19.6080i 0.902530i
\(473\) −28.4354 + 11.7783i −1.30746 + 0.541568i
\(474\) 0 0
\(475\) 10.4900 0.481316
\(476\) 0.263771 + 0.252828i 0.0120899 + 0.0115884i
\(477\) 0 0
\(478\) 15.5747 + 15.5747i 0.712368 + 0.712368i
\(479\) −27.0470 + 11.2032i −1.23581 + 0.511889i −0.902402 0.430894i \(-0.858198\pi\)
−0.333406 + 0.942783i \(0.608198\pi\)
\(480\) 0 0
\(481\) 8.32117 + 20.0891i 0.379412 + 0.915983i
\(482\) −17.4298 7.21965i −0.793905 0.328846i
\(483\) 0 0
\(484\) 0.197646 0.197646i 0.00898391 0.00898391i
\(485\) 20.7883 20.7883i 0.943946 0.943946i
\(486\) 0 0
\(487\) 25.2643 + 10.4648i 1.14483 + 0.474206i 0.872798 0.488081i \(-0.162303\pi\)
0.272036 + 0.962287i \(0.412303\pi\)
\(488\) 15.0643 + 36.3685i 0.681930 + 1.64633i
\(489\) 0 0
\(490\) 15.3439 6.35565i 0.693166 0.287119i
\(491\) 0.573616 + 0.573616i 0.0258869 + 0.0258869i 0.719932 0.694045i \(-0.244173\pi\)
−0.694045 + 0.719932i \(0.744173\pi\)
\(492\) 0 0
\(493\) −0.411749 19.4387i −0.0185443 0.875476i
\(494\) 46.8847 2.10944
\(495\) 0 0
\(496\) 13.2562 5.49090i 0.595221 0.246548i
\(497\) 1.82109i 0.0816871i
\(498\) 0 0
\(499\) −26.3669 10.9215i −1.18034 0.488914i −0.295745 0.955267i \(-0.595568\pi\)
−0.884599 + 0.466353i \(0.845568\pi\)
\(500\) −1.78221 + 4.30264i −0.0797029 + 0.192420i
\(501\) 0 0
\(502\) −25.3240 + 25.3240i −1.13027 + 1.13027i
\(503\) −2.96369 + 7.15498i −0.132144 + 0.319025i −0.976077 0.217424i \(-0.930235\pi\)
0.843933 + 0.536449i \(0.180235\pi\)
\(504\) 0 0
\(505\) 0.140795 + 0.339910i 0.00626530 + 0.0151258i
\(506\) 10.4342i 0.463856i
\(507\) 0 0
\(508\) −0.830157 0.830157i −0.0368323 0.0368323i
\(509\) −24.2954 −1.07687 −0.538437 0.842666i \(-0.680985\pi\)
−0.538437 + 0.842666i \(0.680985\pi\)
\(510\) 0 0
\(511\) −0.687744 −0.0304240
\(512\) −17.8901 17.8901i −0.790638 0.790638i
\(513\) 0 0
\(514\) 5.66396i 0.249827i
\(515\) 0.255779 + 0.617505i 0.0112710 + 0.0272105i
\(516\) 0 0
\(517\) 10.5524 25.4756i 0.464092 1.12042i
\(518\) −0.878360 + 0.878360i −0.0385929 + 0.0385929i
\(519\) 0 0
\(520\) −11.2251 + 27.0997i −0.492251 + 1.18840i
\(521\) −35.3917 14.6597i −1.55054 0.642254i −0.567126 0.823631i \(-0.691945\pi\)
−0.983414 + 0.181377i \(0.941945\pi\)
\(522\) 0 0
\(523\) 34.6641i 1.51576i −0.652397 0.757878i \(-0.726236\pi\)
0.652397 0.757878i \(-0.273764\pi\)
\(524\) 2.65534 1.09988i 0.115999 0.0480483i
\(525\) 0 0
\(526\) 22.1492 0.965752
\(527\) −19.1604 + 0.405854i −0.834641 + 0.0176793i
\(528\) 0 0
\(529\) −12.2042 12.2042i −0.530617 0.530617i
\(530\) −3.02992 + 1.25504i −0.131611 + 0.0545153i
\(531\) 0 0
\(532\) −0.242885 0.586376i −0.0105304 0.0254226i
\(533\) −0.751270 0.311186i −0.0325411 0.0134790i
\(534\) 0 0
\(535\) −13.3818 + 13.3818i −0.578544 + 0.578544i
\(536\) 1.67404 1.67404i 0.0723074 0.0723074i
\(537\) 0 0
\(538\) −25.4743 10.5518i −1.09827 0.454920i
\(539\) −9.10430 21.9797i −0.392150 0.946733i
\(540\) 0 0
\(541\) 4.39249 1.81943i 0.188848 0.0782234i −0.286256 0.958153i \(-0.592411\pi\)
0.475103 + 0.879930i \(0.342411\pi\)
\(542\) 24.7065 + 24.7065i 1.06123 + 1.06123i
\(543\) 0 0
\(544\) 3.54084 + 8.06111i 0.151812 + 0.345617i
\(545\) 19.3552 0.829084
\(546\) 0 0
\(547\) 17.9566 7.43786i 0.767768 0.318020i 0.0357998 0.999359i \(-0.488602\pi\)
0.731968 + 0.681339i \(0.238602\pi\)
\(548\) 3.58499i 0.153143i
\(549\) 0 0
\(550\) −5.89277 2.44087i −0.251269 0.104079i
\(551\) −12.9250 + 31.2037i −0.550623 + 1.32932i
\(552\) 0 0
\(553\) −1.81048 + 1.81048i −0.0769896 + 0.0769896i
\(554\) 12.4018 29.9405i 0.526901 1.27205i
\(555\) 0 0
\(556\) −0.744208 1.79668i −0.0315615 0.0761961i
\(557\) 9.95386i 0.421759i −0.977512 0.210879i \(-0.932367\pi\)
0.977512 0.210879i \(-0.0676327\pi\)
\(558\) 0 0
\(559\) −32.7140 32.7140i −1.38366 1.38366i
\(560\) −1.34244 −0.0567286
\(561\) 0 0
\(562\) 27.4521 1.15800
\(563\) 5.03524 + 5.03524i 0.212210 + 0.212210i 0.805206 0.592996i \(-0.202055\pi\)
−0.592996 + 0.805206i \(0.702055\pi\)
\(564\) 0 0
\(565\) 27.4140i 1.15331i
\(566\) −4.20943 10.1625i −0.176936 0.427161i
\(567\) 0 0
\(568\) 9.13070 22.0435i 0.383116 0.924923i
\(569\) 17.3432 17.3432i 0.727065 0.727065i −0.242969 0.970034i \(-0.578121\pi\)
0.970034 + 0.242969i \(0.0781215\pi\)
\(570\) 0 0
\(571\) −13.5010 + 32.5943i −0.564999 + 1.36403i 0.340726 + 0.940163i \(0.389327\pi\)
−0.905725 + 0.423866i \(0.860673\pi\)
\(572\) 6.24108 + 2.58514i 0.260953 + 0.108090i
\(573\) 0 0
\(574\) 0.0464541i 0.00193895i
\(575\) 3.24209 1.34292i 0.135204 0.0560035i
\(576\) 0 0
\(577\) −3.41354 −0.142108 −0.0710538 0.997472i \(-0.522636\pi\)
−0.0710538 + 0.997472i \(0.522636\pi\)
\(578\) 0.915346 + 21.5971i 0.0380734 + 0.898321i
\(579\) 0 0
\(580\) −2.40216 2.40216i −0.0997442 0.0997442i
\(581\) 0.714711 0.296043i 0.0296512 0.0122819i
\(582\) 0 0
\(583\) 1.79781 + 4.34029i 0.0744575 + 0.179756i
\(584\) −8.32482 3.44825i −0.344484 0.142690i
\(585\) 0 0
\(586\) −13.9165 + 13.9165i −0.574885 + 0.574885i
\(587\) −11.6891 + 11.6891i −0.482459 + 0.482459i −0.905916 0.423457i \(-0.860816\pi\)
0.423457 + 0.905916i \(0.360816\pi\)
\(588\) 0 0
\(589\) 30.7569 + 12.7399i 1.26732 + 0.524940i
\(590\) 5.92025 + 14.2928i 0.243733 + 0.588424i
\(591\) 0 0
\(592\) −12.0459 + 4.98958i −0.495084 + 0.205070i
\(593\) 5.78039 + 5.78039i 0.237372 + 0.237372i 0.815761 0.578389i \(-0.196318\pi\)
−0.578389 + 0.815761i \(0.696318\pi\)
\(594\) 0 0
\(595\) 1.67073 + 0.650939i 0.0684933 + 0.0266859i
\(596\) −1.35658 −0.0555676
\(597\) 0 0
\(598\) 14.4904 6.00210i 0.592555 0.245444i
\(599\) 31.5073i 1.28735i 0.765298 + 0.643676i \(0.222592\pi\)
−0.765298 + 0.643676i \(0.777408\pi\)
\(600\) 0 0
\(601\) 4.07121 + 1.68635i 0.166068 + 0.0687876i 0.464169 0.885747i \(-0.346353\pi\)
−0.298101 + 0.954534i \(0.596353\pi\)
\(602\) 1.01142 2.44179i 0.0412224 0.0995198i
\(603\) 0 0
\(604\) 3.37461 3.37461i 0.137311 0.137311i
\(605\) 0.524931 1.26729i 0.0213415 0.0515228i
\(606\) 0 0
\(607\) 14.2244 + 34.3407i 0.577350 + 1.39385i 0.895183 + 0.445699i \(0.147045\pi\)
−0.317834 + 0.948147i \(0.602955\pi\)
\(608\) 15.2943i 0.620265i
\(609\) 0 0
\(610\) 21.9616 + 21.9616i 0.889197 + 0.889197i
\(611\) 41.4491 1.67685
\(612\) 0 0
\(613\) 1.50892 0.0609449 0.0304724 0.999536i \(-0.490299\pi\)
0.0304724 + 0.999536i \(0.490299\pi\)
\(614\) −28.0007 28.0007i −1.13002 1.13002i
\(615\) 0 0
\(616\) 2.40037i 0.0967138i
\(617\) −15.8882 38.3575i −0.639636 1.54422i −0.827166 0.561958i \(-0.810048\pi\)
0.187530 0.982259i \(-0.439952\pi\)
\(618\) 0 0
\(619\) 12.4230 29.9919i 0.499324 1.20547i −0.450525 0.892764i \(-0.648763\pi\)
0.949848 0.312710i \(-0.101237\pi\)
\(620\) −2.36777 + 2.36777i −0.0950917 + 0.0950917i
\(621\) 0 0
\(622\) 14.3867 34.7325i 0.576853 1.39265i
\(623\) −3.55272 1.47159i −0.142337 0.0589579i
\(624\) 0 0
\(625\) 15.5317i 0.621269i
\(626\) 15.7846 6.53819i 0.630879 0.261318i
\(627\) 0 0
\(628\) 4.48142 0.178828
\(629\) 17.4111 0.368800i 0.694225 0.0147050i
\(630\) 0 0
\(631\) −8.22064 8.22064i −0.327259 0.327259i 0.524284 0.851543i \(-0.324333\pi\)
−0.851543 + 0.524284i \(0.824333\pi\)
\(632\) −30.9926 + 12.8376i −1.23282 + 0.510651i
\(633\) 0 0
\(634\) −0.198452 0.479106i −0.00788155 0.0190277i
\(635\) −5.32292 2.20483i −0.211234 0.0874959i
\(636\) 0 0
\(637\) 25.2870 25.2870i 1.00191 1.00191i
\(638\) 14.5212 14.5212i 0.574900 0.574900i
\(639\) 0 0
\(640\) −12.2159 5.06000i −0.482877 0.200014i
\(641\) −5.45090 13.1596i −0.215298 0.519775i 0.778924 0.627118i \(-0.215766\pi\)
−0.994222 + 0.107343i \(0.965766\pi\)
\(642\) 0 0
\(643\) 24.4163 10.1136i 0.962886 0.398840i 0.154827 0.987942i \(-0.450518\pi\)
0.808059 + 0.589101i \(0.200518\pi\)
\(644\) −0.150134 0.150134i −0.00591609 0.00591609i
\(645\) 0 0
\(646\) 13.6319 34.9882i 0.536339 1.37659i
\(647\) −9.88070 −0.388451 −0.194225 0.980957i \(-0.562219\pi\)
−0.194225 + 0.980957i \(0.562219\pi\)
\(648\) 0 0
\(649\) 20.4740 8.48061i 0.803675 0.332893i
\(650\) 9.58759i 0.376056i
\(651\) 0 0
\(652\) −5.56175 2.30375i −0.217815 0.0902219i
\(653\) 0.789779 1.90670i 0.0309065 0.0746148i −0.907673 0.419679i \(-0.862143\pi\)
0.938579 + 0.345064i \(0.112143\pi\)
\(654\) 0 0
\(655\) 9.97352 9.97352i 0.389698 0.389698i
\(656\) 0.186595 0.450480i 0.00728531 0.0175883i
\(657\) 0 0
\(658\) 0.906146 + 2.18763i 0.0353252 + 0.0852827i
\(659\) 21.3928i 0.833343i 0.909057 + 0.416672i \(0.136804\pi\)
−0.909057 + 0.416672i \(0.863196\pi\)
\(660\) 0 0
\(661\) −17.1745 17.1745i −0.668009 0.668009i 0.289246 0.957255i \(-0.406595\pi\)
−0.957255 + 0.289246i \(0.906595\pi\)
\(662\) 10.4991 0.408058
\(663\) 0 0
\(664\) 10.1356 0.393336
\(665\) −2.20244 2.20244i −0.0854071 0.0854071i
\(666\) 0 0
\(667\) 11.2985i 0.437481i
\(668\) −0.758661 1.83157i −0.0293535 0.0708656i
\(669\) 0 0
\(670\) 0.714805 1.72569i 0.0276153 0.0666693i
\(671\) 31.4594 31.4594i 1.21447 1.21447i
\(672\) 0 0
\(673\) −13.4885 + 32.5641i −0.519943 + 1.25525i 0.417995 + 0.908449i \(0.362733\pi\)
−0.937938 + 0.346804i \(0.887267\pi\)
\(674\) −27.8477 11.5349i −1.07265 0.444307i
\(675\) 0 0
\(676\) 5.17347i 0.198980i
\(677\) 1.28360 0.531685i 0.0493328 0.0204343i −0.357881 0.933767i \(-0.616501\pi\)
0.407213 + 0.913333i \(0.366501\pi\)
\(678\) 0 0
\(679\) 3.61633 0.138782
\(680\) 16.9597 + 16.2561i 0.650375 + 0.623394i
\(681\) 0 0
\(682\) −14.3133 14.3133i −0.548084 0.548084i
\(683\) 29.4135 12.1835i 1.12548 0.466187i 0.259235 0.965814i \(-0.416530\pi\)
0.866241 + 0.499627i \(0.166530\pi\)
\(684\) 0 0
\(685\) −6.73267 16.2541i −0.257242 0.621037i
\(686\) 3.78939 + 1.56962i 0.144680 + 0.0599283i
\(687\) 0 0
\(688\) 19.6162 19.6162i 0.747859 0.747859i
\(689\) −4.99337 + 4.99337i −0.190232 + 0.190232i
\(690\) 0 0
\(691\) 16.1938 + 6.70768i 0.616041 + 0.255172i 0.668809 0.743434i \(-0.266804\pi\)
−0.0527683 + 0.998607i \(0.516804\pi\)
\(692\) −2.66149 6.42540i −0.101175 0.244257i
\(693\) 0 0
\(694\) 34.9546 14.4787i 1.32686 0.549602i
\(695\) −6.74837 6.74837i −0.255980 0.255980i
\(696\) 0 0
\(697\) −0.450660 + 0.470165i −0.0170700 + 0.0178088i
\(698\) −23.6146 −0.893827
\(699\) 0 0
\(700\) −0.119910 + 0.0496682i −0.00453216 + 0.00187728i
\(701\) 26.4148i 0.997674i −0.866696 0.498837i \(-0.833761\pi\)
0.866696 0.498837i \(-0.166239\pi\)
\(702\) 0 0
\(703\) −27.9488 11.5768i −1.05411 0.436627i
\(704\) −11.6504 + 28.1265i −0.439089 + 1.06006i
\(705\) 0 0
\(706\) −29.1912 + 29.1912i −1.09862 + 1.09862i
\(707\) −0.0173190 + 0.0418118i −0.000651348 + 0.00157249i
\(708\) 0 0
\(709\) 4.34914 + 10.4998i 0.163335 + 0.394327i 0.984264 0.176704i \(-0.0565436\pi\)
−0.820929 + 0.571031i \(0.806544\pi\)
\(710\) 18.8249i 0.706485i
\(711\) 0 0
\(712\) −35.6258 35.6258i −1.33513 1.33513i
\(713\) 11.1368 0.417076
\(714\) 0 0
\(715\) 33.1515 1.23980
\(716\) −2.39018 2.39018i −0.0893254 0.0893254i
\(717\) 0 0
\(718\) 39.3654i 1.46910i
\(719\) 5.88854 + 14.2162i 0.219605 + 0.530174i 0.994835 0.101505i \(-0.0323659\pi\)
−0.775230 + 0.631679i \(0.782366\pi\)
\(720\) 0 0
\(721\) −0.0314630 + 0.0759584i −0.00117174 + 0.00282884i
\(722\) −29.0399 + 29.0399i −1.08075 + 1.08075i
\(723\) 0 0
\(724\) −3.39753 + 8.20237i −0.126268 + 0.304839i
\(725\) 6.38093 + 2.64307i 0.236982 + 0.0981611i
\(726\) 0 0
\(727\) 43.0876i 1.59803i 0.601311 + 0.799015i \(0.294645\pi\)
−0.601311 + 0.799015i \(0.705355\pi\)
\(728\) −3.33349 + 1.38078i −0.123548 + 0.0511751i
\(729\) 0 0
\(730\) −7.10931 −0.263127
\(731\) −33.9249 + 14.9015i −1.25476 + 0.551152i
\(732\) 0 0
\(733\) −17.0745 17.0745i −0.630663 0.630663i 0.317572 0.948234i \(-0.397133\pi\)
−0.948234 + 0.317572i \(0.897133\pi\)
\(734\) −4.39118 + 1.81889i −0.162082 + 0.0671364i
\(735\) 0 0
\(736\) −1.95795 4.72691i −0.0721709 0.174236i
\(737\) −2.47201 1.02394i −0.0910576 0.0377173i
\(738\) 0 0
\(739\) −0.704902 + 0.704902i −0.0259302 + 0.0259302i −0.719953 0.694023i \(-0.755837\pi\)
0.694023 + 0.719953i \(0.255837\pi\)
\(740\) 2.15159 2.15159i 0.0790940 0.0790940i
\(741\) 0 0
\(742\) −0.372707 0.154380i −0.0136825 0.00566747i
\(743\) −12.4696 30.1042i −0.457463 1.10441i −0.969421 0.245404i \(-0.921079\pi\)
0.511957 0.859011i \(-0.328921\pi\)
\(744\) 0 0
\(745\) −6.15062 + 2.54767i −0.225341 + 0.0933394i
\(746\) −12.8841 12.8841i −0.471719 0.471719i
\(747\) 0 0
\(748\) 3.74380 3.90583i 0.136887 0.142811i
\(749\) −2.32790 −0.0850594
\(750\) 0 0
\(751\) 32.3860 13.4147i 1.18178 0.489510i 0.296711 0.954967i \(-0.404110\pi\)
0.885070 + 0.465457i \(0.154110\pi\)
\(752\) 24.8539i 0.906330i
\(753\) 0 0
\(754\) 28.5192 + 11.8131i 1.03861 + 0.430206i
\(755\) 8.96266 21.6378i 0.326185 0.787479i
\(756\) 0 0
\(757\) −5.04978 + 5.04978i −0.183538 + 0.183538i −0.792895 0.609358i \(-0.791427\pi\)
0.609358 + 0.792895i \(0.291427\pi\)
\(758\) −7.95527 + 19.2057i −0.288949 + 0.697584i
\(759\) 0 0
\(760\) −15.6168 37.7023i −0.566481 1.36761i
\(761\) 13.7182i 0.497283i 0.968596 + 0.248641i \(0.0799840\pi\)
−0.968596 + 0.248641i \(0.920016\pi\)
\(762\) 0 0
\(763\) 1.68352 + 1.68352i 0.0609474 + 0.0609474i
\(764\) 9.75526 0.352933
\(765\) 0 0
\(766\) 14.5397 0.525341
\(767\) 23.5547 + 23.5547i 0.850511 + 0.850511i
\(768\) 0 0
\(769\) 15.2265i 0.549081i 0.961576 + 0.274540i \(0.0885257\pi\)
−0.961576 + 0.274540i \(0.911474\pi\)
\(770\) 0.724747 + 1.74969i 0.0261181 + 0.0630546i
\(771\) 0 0
\(772\) 1.19560 2.88644i 0.0430307 0.103885i
\(773\) 16.1436 16.1436i 0.580645 0.580645i −0.354435 0.935080i \(-0.615327\pi\)
0.935080 + 0.354435i \(0.115327\pi\)
\(774\) 0 0
\(775\) 2.60523 6.28957i 0.0935824 0.225928i
\(776\) 43.7741 + 18.1318i 1.57140 + 0.650894i
\(777\) 0 0
\(778\) 46.1052i 1.65295i
\(779\) 1.04520 0.432936i 0.0374482 0.0155115i
\(780\) 0 0
\(781\) −26.9662 −0.964925
\(782\) −0.266017 12.5587i −0.00951276 0.449098i
\(783\) 0 0
\(784\) 15.1627 + 15.1627i 0.541526 + 0.541526i
\(785\) 20.3184 8.41616i 0.725195 0.300386i
\(786\) 0 0
\(787\) 1.04824 + 2.53067i 0.0373656 + 0.0902085i 0.941461 0.337123i \(-0.109454\pi\)
−0.904095 + 0.427331i \(0.859454\pi\)
\(788\) 5.05608 + 2.09430i 0.180116 + 0.0746063i
\(789\) 0 0
\(790\) −18.7153 + 18.7153i −0.665859 + 0.665859i
\(791\) 2.38447 2.38447i 0.0847820 0.0847820i
\(792\) 0 0
\(793\) 61.7854 + 25.5923i 2.19406 + 0.908810i
\(794\) −10.3154 24.9035i −0.366079 0.883793i
\(795\) 0 0
\(796\) 0.190593 0.0789462i 0.00675539 0.00279817i
\(797\) −4.10012 4.10012i −0.145234 0.145234i 0.630751 0.775985i \(-0.282747\pi\)
−0.775985 + 0.630751i \(0.782747\pi\)
\(798\) 0 0
\(799\) 12.0515 30.9318i 0.426350 1.09429i
\(800\) −3.12757 −0.110576
\(801\) 0 0
\(802\) −9.09939 + 3.76909i −0.321310 + 0.133091i
\(803\) 10.1839i 0.359382i
\(804\) 0 0
\(805\) −0.962648 0.398742i −0.0339289 0.0140538i
\(806\) 11.6439 28.1109i 0.410140 0.990165i
\(807\) 0 0
\(808\) −0.419277 + 0.419277i −0.0147501 + 0.0147501i
\(809\) 7.39678 17.8574i 0.260057 0.627833i −0.738885 0.673832i \(-0.764647\pi\)
0.998941 + 0.0459992i \(0.0146472\pi\)
\(810\) 0 0
\(811\) 2.80344 + 6.76811i 0.0984421 + 0.237660i 0.965427 0.260675i \(-0.0839450\pi\)
−0.866985 + 0.498335i \(0.833945\pi\)
\(812\) 0.417880i 0.0146647i
\(813\) 0 0
\(814\) 13.0065 + 13.0065i 0.455877 + 0.455877i
\(815\) −29.5430 −1.03485
\(816\) 0 0
\(817\) 64.3655 2.25186
\(818\) −16.7399 16.7399i −0.585298 0.585298i
\(819\) 0 0
\(820\) 0.113792i 0.00397378i
\(821\) −1.98807 4.79963i −0.0693842 0.167508i 0.885383 0.464862i \(-0.153896\pi\)
−0.954767 + 0.297354i \(0.903896\pi\)
\(822\) 0 0
\(823\) −8.80390 + 21.2545i −0.306885 + 0.740885i 0.692918 + 0.721016i \(0.256325\pi\)
−0.999803 + 0.0198685i \(0.993675\pi\)
\(824\) −0.761690 + 0.761690i −0.0265347 + 0.0265347i
\(825\) 0 0
\(826\) −0.728242 + 1.75813i −0.0253388 + 0.0611732i
\(827\) 16.6002 + 6.87603i 0.577245 + 0.239103i 0.652153 0.758088i \(-0.273866\pi\)
−0.0749073 + 0.997191i \(0.523866\pi\)
\(828\) 0 0
\(829\) 9.11808i 0.316684i 0.987384 + 0.158342i \(0.0506148\pi\)
−0.987384 + 0.158342i \(0.949385\pi\)
\(830\) 7.38807 3.06024i 0.256444 0.106222i
\(831\) 0 0
\(832\) −45.7620 −1.58651
\(833\) −11.5184 26.2230i −0.399089 0.908571i
\(834\) 0 0
\(835\) −6.87943 6.87943i −0.238072 0.238072i
\(836\) −8.68288 + 3.59656i −0.300304 + 0.124390i
\(837\) 0 0
\(838\) 15.0618 + 36.3624i 0.520301 + 1.25612i
\(839\) 22.9904 + 9.52294i 0.793717 + 0.328768i 0.742437 0.669916i \(-0.233670\pi\)
0.0512799 + 0.998684i \(0.483670\pi\)
\(840\) 0 0
\(841\) 4.78196 4.78196i 0.164895 0.164895i
\(842\) −11.4013 + 11.4013i −0.392914 + 0.392914i
\(843\) 0 0
\(844\) 1.20925 + 0.500889i 0.0416242 + 0.0172413i
\(845\) 9.71584 + 23.4561i 0.334235 + 0.806915i
\(846\) 0 0
\(847\) 0.155888 0.0645709i 0.00535638 0.00221868i
\(848\) −2.99415 2.99415i −0.102820 0.102820i
\(849\) 0 0
\(850\) −7.15484 2.78762i −0.245409 0.0956146i
\(851\) −10.1200 −0.346909
\(852\) 0 0
\(853\) −53.3267 + 22.0886i −1.82587 + 0.756300i −0.854205 + 0.519936i \(0.825956\pi\)
−0.971664 + 0.236364i \(0.924044\pi\)
\(854\) 3.82044i 0.130733i
\(855\) 0 0
\(856\) −28.1781 11.6718i −0.963108 0.398932i
\(857\) 4.66282 11.2570i 0.159279 0.384533i −0.824013 0.566572i \(-0.808269\pi\)
0.983291 + 0.182038i \(0.0582695\pi\)
\(858\) 0 0
\(859\) −23.1913 + 23.1913i −0.791276 + 0.791276i −0.981702 0.190426i \(-0.939013\pi\)
0.190426 + 0.981702i \(0.439013\pi\)
\(860\) −2.47753 + 5.98129i −0.0844831 + 0.203960i
\(861\) 0 0
\(862\) −2.13443 5.15298i −0.0726991 0.175511i
\(863\) 34.6709i 1.18021i 0.807326 + 0.590106i \(0.200914\pi\)
−0.807326 + 0.590106i \(0.799086\pi\)
\(864\) 0 0
\(865\) −24.1340 24.1340i −0.820581 0.820581i
\(866\) −30.1730 −1.02532
\(867\) 0 0
\(868\) −0.411897 −0.0139807
\(869\) 26.8091 + 26.8091i 0.909437 + 0.909437i
\(870\) 0 0
\(871\) 4.02198i 0.136280i
\(872\) 11.9373 + 28.8191i 0.404247 + 0.975938i
\(873\) 0 0
\(874\) −8.35040 + 20.1596i −0.282456 + 0.681910i
\(875\) −1.98792 + 1.98792i −0.0672040 + 0.0672040i
\(876\) 0 0
\(877\) 11.8544 28.6190i 0.400294 0.966395i −0.587300 0.809369i \(-0.699809\pi\)
0.987594 0.157026i \(-0.0501907\pi\)
\(878\) −18.9008 7.82895i −0.637869 0.264214i
\(879\) 0 0
\(880\) 19.8785i 0.670104i
\(881\) −30.8849 + 12.7929i −1.04054 + 0.431005i −0.836505 0.547960i \(-0.815405\pi\)
−0.204032 + 0.978964i \(0.565405\pi\)
\(882\) 0 0
\(883\) 18.2136 0.612938 0.306469 0.951881i \(-0.400852\pi\)
0.306469 + 0.951881i \(0.400852\pi\)
\(884\) 7.57775 + 2.95239i 0.254867 + 0.0992997i
\(885\) 0 0
\(886\) −1.09953 1.09953i −0.0369393 0.0369393i
\(887\) 51.9613 21.5231i 1.74469 0.722675i 0.746322 0.665585i \(-0.231818\pi\)
0.998369 0.0570891i \(-0.0181819\pi\)
\(888\) 0 0
\(889\) −0.271212 0.654765i −0.00909617 0.0219601i
\(890\) −36.7250 15.2120i −1.23103 0.509908i
\(891\) 0 0
\(892\) −5.46933 + 5.46933i −0.183127 + 0.183127i
\(893\) −40.7759 + 40.7759i −1.36451 + 1.36451i
\(894\) 0 0
\(895\) −15.3257 6.34812i −0.512282 0.212194i
\(896\) −0.622424 1.50266i −0.0207937 0.0502005i
\(897\) 0 0
\(898\) −27.5714 + 11.4205i −0.920070 + 0.381105i
\(899\) 15.4990 + 15.4990i 0.516921 + 0.516921i
\(900\) 0 0
\(901\) 2.27452 + 5.17819i 0.0757751 + 0.172511i
\(902\) −0.687878 −0.0229038
\(903\) 0 0
\(904\) 40.8184 16.9075i 1.35760 0.562336i
\(905\) 43.5695i 1.44830i
\(906\) 0 0
\(907\) 8.79621 + 3.64351i 0.292073 + 0.120981i 0.523909 0.851774i \(-0.324473\pi\)
−0.231836 + 0.972755i \(0.574473\pi\)
\(908\) −0.211360 + 0.510268i −0.00701422 + 0.0169338i
\(909\) 0 0
\(910\) −2.01297 + 2.01297i −0.0667293 + 0.0667293i
\(911\) −5.72937 + 13.8319i −0.189822 + 0.458272i −0.989925 0.141591i \(-0.954778\pi\)
0.800103 + 0.599863i \(0.204778\pi\)
\(912\) 0 0
\(913\) −4.38371 10.5832i −0.145080 0.350253i
\(914\) 49.1155i 1.62460i
\(915\) 0 0
\(916\) −2.85132 2.85132i −0.0942102 0.0942102i
\(917\) 1.73500 0.0572946
\(918\) 0 0
\(919\) −12.5474 −0.413900 −0.206950 0.978352i \(-0.566354\pi\)
−0.206950 + 0.978352i \(0.566354\pi\)
\(920\) −9.65317 9.65317i −0.318256 0.318256i
\(921\) 0 0
\(922\) 22.8030i 0.750975i
\(923\) −15.5119 37.4490i −0.510579 1.23265i
\(924\) 0 0
\(925\) −2.36737 + 5.71534i −0.0778386 + 0.187919i
\(926\) 8.73304 8.73304i 0.286985 0.286985i
\(927\) 0 0
\(928\) 3.85354 9.30328i 0.126499 0.305395i
\(929\) −1.63949 0.679101i −0.0537901 0.0222806i 0.355626 0.934628i \(-0.384268\pi\)
−0.409416 + 0.912348i \(0.634268\pi\)
\(930\) 0 0
\(931\) 49.7526i 1.63058i
\(932\) 4.75942 1.97142i 0.155900 0.0645759i
\(933\) 0 0
\(934\) −42.7560 −1.39902
\(935\) 9.63891 24.7397i 0.315226 0.809074i
\(936\) 0 0
\(937\) 18.7440 + 18.7440i 0.612341 + 0.612341i 0.943556 0.331214i \(-0.107458\pi\)
−0.331214 + 0.943556i \(0.607458\pi\)
\(938\) 0.212275 0.0879271i 0.00693102 0.00287092i
\(939\) 0 0
\(940\) −2.21965 5.35871i −0.0723971 0.174782i
\(941\) 30.4275 + 12.6035i 0.991910 + 0.410862i 0.818824 0.574044i \(-0.194626\pi\)
0.173085 + 0.984907i \(0.444626\pi\)
\(942\) 0 0
\(943\) 0.267609 0.267609i 0.00871456 0.00871456i
\(944\) −14.1240 + 14.1240i −0.459697 + 0.459697i
\(945\) 0 0
\(946\) −36.1572 14.9768i −1.17557 0.486938i
\(947\) 3.13524 + 7.56914i 0.101882 + 0.245964i 0.966598 0.256296i \(-0.0825021\pi\)
−0.864717 + 0.502260i \(0.832502\pi\)
\(948\) 0 0
\(949\) −14.1428 + 5.85813i −0.459094 + 0.190163i
\(950\) 9.43188 + 9.43188i 0.306011 + 0.306011i
\(951\) 0 0
\(952\) 0.0611971 + 2.88912i 0.00198341 + 0.0936369i
\(953\) −17.5763 −0.569353 −0.284676 0.958624i \(-0.591886\pi\)
−0.284676 + 0.958624i \(0.591886\pi\)
\(954\) 0 0
\(955\) 44.2296 18.3205i 1.43124 0.592838i
\(956\) 6.63675i 0.214648i
\(957\) 0 0
\(958\) −34.3918 14.2456i −1.11115 0.460253i
\(959\) 0.828176 1.99939i 0.0267432 0.0645638i
\(960\) 0 0
\(961\) −6.64322 + 6.64322i −0.214297 + 0.214297i
\(962\) −10.5808 + 25.5444i −0.341140 + 0.823585i
\(963\) 0 0
\(964\) 2.17540 + 5.25187i 0.0700648 + 0.169151i
\(965\) 15.3323i 0.493564i
\(966\) 0 0
\(967\) −29.1425 29.1425i −0.937159 0.937159i 0.0609800 0.998139i \(-0.480577\pi\)
−0.998139 + 0.0609800i \(0.980577\pi\)
\(968\) 2.21070 0.0710547
\(969\) 0 0
\(970\) 37.3826 1.20028
\(971\) 41.3050 + 41.3050i 1.32554 + 1.32554i 0.909217 + 0.416323i \(0.136681\pi\)
0.416323 + 0.909217i \(0.363319\pi\)
\(972\) 0 0
\(973\) 1.17395i 0.0376351i
\(974\) 13.3066 + 32.1250i 0.426371 + 1.02935i
\(975\) 0 0
\(976\) −15.3458 + 37.0481i −0.491207 + 1.18588i
\(977\) −33.8659 + 33.8659i −1.08347 + 1.08347i −0.0872814 + 0.996184i \(0.527818\pi\)
−0.996184 + 0.0872814i \(0.972182\pi\)
\(978\) 0 0
\(979\) −21.7908 + 52.6077i −0.696437 + 1.68135i
\(980\) −4.62336 1.91506i −0.147688 0.0611743i
\(981\) 0 0
\(982\) 1.03151i 0.0329167i
\(983\) 5.15743 2.13628i 0.164496 0.0681366i −0.298916 0.954279i \(-0.596625\pi\)
0.463412 + 0.886143i \(0.346625\pi\)
\(984\) 0 0
\(985\) 26.8570 0.855736
\(986\) 17.1077 17.8481i 0.544819 0.568399i
\(987\) 0 0
\(988\) −9.98938 9.98938i −0.317805 0.317805i
\(989\) 19.8930 8.23996i 0.632561 0.262015i
\(990\) 0 0
\(991\) 23.0317 + 55.6036i 0.731628 + 1.76631i 0.637097 + 0.770783i \(0.280135\pi\)
0.0945302 + 0.995522i \(0.469865\pi\)
\(992\) −9.17008 3.79837i −0.291150 0.120598i
\(993\) 0 0
\(994\) 1.63739 1.63739i 0.0519349 0.0519349i
\(995\) 0.715873 0.715873i 0.0226947 0.0226947i
\(996\) 0 0
\(997\) 35.0330 + 14.5112i 1.10951 + 0.459573i 0.860768 0.508998i \(-0.169984\pi\)
0.248739 + 0.968571i \(0.419984\pi\)
\(998\) −13.8873 33.5270i −0.439596 1.06128i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.l.a.325.9 yes 48
3.2 odd 2 inner 459.2.l.a.325.4 yes 48
17.3 odd 16 7803.2.a.cg.1.17 24
17.9 even 8 inner 459.2.l.a.298.9 yes 48
17.14 odd 16 7803.2.a.cd.1.17 24
51.14 even 16 7803.2.a.cg.1.8 24
51.20 even 16 7803.2.a.cd.1.8 24
51.26 odd 8 inner 459.2.l.a.298.4 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.l.a.298.4 48 51.26 odd 8 inner
459.2.l.a.298.9 yes 48 17.9 even 8 inner
459.2.l.a.325.4 yes 48 3.2 odd 2 inner
459.2.l.a.325.9 yes 48 1.1 even 1 trivial
7803.2.a.cd.1.8 24 51.20 even 16
7803.2.a.cd.1.17 24 17.14 odd 16
7803.2.a.cg.1.8 24 51.14 even 16
7803.2.a.cg.1.17 24 17.3 odd 16