Properties

Label 7803.2.a.cg.1.12
Level $7803$
Weight $2$
Character 7803.1
Self dual yes
Analytic conductor $62.307$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7803,2,Mod(1,7803)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7803.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7803 = 3^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7803.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,24,20,0,0,0,0,0,8,0,4,16,0,24,0,0,4,48,0,0,36,0,28,0, 0,0,64,0,0,0,0,0,0,0,0,0,0,0,36,0,4,16,0,0,0,0,24,0,0,16,0,0,20,80,0,0, 0,0,0,-16,0,-24,72,0,16,0,0,-48,72,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.3072686972\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 459)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 7803.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.113371 q^{2} -1.98715 q^{4} +3.61829 q^{5} -4.87047 q^{7} +0.452028 q^{8} -0.410211 q^{10} +3.73056 q^{11} +2.58136 q^{13} +0.552172 q^{14} +3.92305 q^{16} -3.88598 q^{19} -7.19008 q^{20} -0.422939 q^{22} -1.43027 q^{23} +8.09204 q^{25} -0.292652 q^{26} +9.67835 q^{28} +7.92074 q^{29} -3.24883 q^{31} -1.34882 q^{32} -17.6228 q^{35} +6.58423 q^{37} +0.440560 q^{38} +1.63557 q^{40} -6.81800 q^{41} +1.38277 q^{43} -7.41318 q^{44} +0.162152 q^{46} -7.36992 q^{47} +16.7215 q^{49} -0.917406 q^{50} -5.12954 q^{52} +5.16969 q^{53} +13.4983 q^{55} -2.20159 q^{56} -0.897986 q^{58} -6.46653 q^{59} -4.65687 q^{61} +0.368324 q^{62} -7.69318 q^{64} +9.34010 q^{65} +7.37261 q^{67} +1.99792 q^{70} -1.35380 q^{71} +11.4130 q^{73} -0.746463 q^{74} +7.72202 q^{76} -18.1696 q^{77} -2.55583 q^{79} +14.1947 q^{80} +0.772966 q^{82} +8.86903 q^{83} -0.156766 q^{86} +1.68632 q^{88} +8.62930 q^{89} -12.5724 q^{91} +2.84217 q^{92} +0.835538 q^{94} -14.0606 q^{95} -3.63548 q^{97} -1.89574 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} + 20 q^{5} + 8 q^{11} + 4 q^{13} + 16 q^{14} + 24 q^{16} + 4 q^{19} + 48 q^{20} + 36 q^{23} + 28 q^{25} + 64 q^{29} + 36 q^{41} + 4 q^{43} + 16 q^{44} + 24 q^{49} + 16 q^{52} + 20 q^{55}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.113371 −0.0801657 −0.0400828 0.999196i \(-0.512762\pi\)
−0.0400828 + 0.999196i \(0.512762\pi\)
\(3\) 0 0
\(4\) −1.98715 −0.993573
\(5\) 3.61829 1.61815 0.809075 0.587706i \(-0.199969\pi\)
0.809075 + 0.587706i \(0.199969\pi\)
\(6\) 0 0
\(7\) −4.87047 −1.84087 −0.920433 0.390901i \(-0.872164\pi\)
−0.920433 + 0.390901i \(0.872164\pi\)
\(8\) 0.452028 0.159816
\(9\) 0 0
\(10\) −0.410211 −0.129720
\(11\) 3.73056 1.12481 0.562404 0.826863i \(-0.309877\pi\)
0.562404 + 0.826863i \(0.309877\pi\)
\(12\) 0 0
\(13\) 2.58136 0.715940 0.357970 0.933733i \(-0.383469\pi\)
0.357970 + 0.933733i \(0.383469\pi\)
\(14\) 0.552172 0.147574
\(15\) 0 0
\(16\) 3.92305 0.980762
\(17\) 0 0
\(18\) 0 0
\(19\) −3.88598 −0.891506 −0.445753 0.895156i \(-0.647064\pi\)
−0.445753 + 0.895156i \(0.647064\pi\)
\(20\) −7.19008 −1.60775
\(21\) 0 0
\(22\) −0.422939 −0.0901709
\(23\) −1.43027 −0.298233 −0.149116 0.988820i \(-0.547643\pi\)
−0.149116 + 0.988820i \(0.547643\pi\)
\(24\) 0 0
\(25\) 8.09204 1.61841
\(26\) −0.292652 −0.0573938
\(27\) 0 0
\(28\) 9.67835 1.82904
\(29\) 7.92074 1.47084 0.735422 0.677609i \(-0.236984\pi\)
0.735422 + 0.677609i \(0.236984\pi\)
\(30\) 0 0
\(31\) −3.24883 −0.583507 −0.291754 0.956494i \(-0.594239\pi\)
−0.291754 + 0.956494i \(0.594239\pi\)
\(32\) −1.34882 −0.238440
\(33\) 0 0
\(34\) 0 0
\(35\) −17.6228 −2.97880
\(36\) 0 0
\(37\) 6.58423 1.08244 0.541220 0.840881i \(-0.317963\pi\)
0.541220 + 0.840881i \(0.317963\pi\)
\(38\) 0.440560 0.0714682
\(39\) 0 0
\(40\) 1.63557 0.258606
\(41\) −6.81800 −1.06479 −0.532396 0.846495i \(-0.678708\pi\)
−0.532396 + 0.846495i \(0.678708\pi\)
\(42\) 0 0
\(43\) 1.38277 0.210870 0.105435 0.994426i \(-0.466376\pi\)
0.105435 + 0.994426i \(0.466376\pi\)
\(44\) −7.41318 −1.11758
\(45\) 0 0
\(46\) 0.162152 0.0239080
\(47\) −7.36992 −1.07501 −0.537506 0.843260i \(-0.680634\pi\)
−0.537506 + 0.843260i \(0.680634\pi\)
\(48\) 0 0
\(49\) 16.7215 2.38879
\(50\) −0.917406 −0.129741
\(51\) 0 0
\(52\) −5.12954 −0.711339
\(53\) 5.16969 0.710111 0.355056 0.934845i \(-0.384462\pi\)
0.355056 + 0.934845i \(0.384462\pi\)
\(54\) 0 0
\(55\) 13.4983 1.82011
\(56\) −2.20159 −0.294200
\(57\) 0 0
\(58\) −0.897986 −0.117911
\(59\) −6.46653 −0.841870 −0.420935 0.907091i \(-0.638298\pi\)
−0.420935 + 0.907091i \(0.638298\pi\)
\(60\) 0 0
\(61\) −4.65687 −0.596251 −0.298125 0.954527i \(-0.596361\pi\)
−0.298125 + 0.954527i \(0.596361\pi\)
\(62\) 0.368324 0.0467772
\(63\) 0 0
\(64\) −7.69318 −0.961647
\(65\) 9.34010 1.15850
\(66\) 0 0
\(67\) 7.37261 0.900708 0.450354 0.892850i \(-0.351298\pi\)
0.450354 + 0.892850i \(0.351298\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 1.99792 0.238797
\(71\) −1.35380 −0.160667 −0.0803334 0.996768i \(-0.525598\pi\)
−0.0803334 + 0.996768i \(0.525598\pi\)
\(72\) 0 0
\(73\) 11.4130 1.33579 0.667894 0.744257i \(-0.267196\pi\)
0.667894 + 0.744257i \(0.267196\pi\)
\(74\) −0.746463 −0.0867745
\(75\) 0 0
\(76\) 7.72202 0.885777
\(77\) −18.1696 −2.07062
\(78\) 0 0
\(79\) −2.55583 −0.287553 −0.143777 0.989610i \(-0.545925\pi\)
−0.143777 + 0.989610i \(0.545925\pi\)
\(80\) 14.1947 1.58702
\(81\) 0 0
\(82\) 0.772966 0.0853598
\(83\) 8.86903 0.973503 0.486752 0.873540i \(-0.338182\pi\)
0.486752 + 0.873540i \(0.338182\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.156766 −0.0169046
\(87\) 0 0
\(88\) 1.68632 0.179762
\(89\) 8.62930 0.914704 0.457352 0.889286i \(-0.348798\pi\)
0.457352 + 0.889286i \(0.348798\pi\)
\(90\) 0 0
\(91\) −12.5724 −1.31795
\(92\) 2.84217 0.296316
\(93\) 0 0
\(94\) 0.835538 0.0861791
\(95\) −14.0606 −1.44259
\(96\) 0 0
\(97\) −3.63548 −0.369127 −0.184563 0.982821i \(-0.559087\pi\)
−0.184563 + 0.982821i \(0.559087\pi\)
\(98\) −1.89574 −0.191499
\(99\) 0 0
\(100\) −16.0801 −1.60801
\(101\) 2.32609 0.231455 0.115728 0.993281i \(-0.463080\pi\)
0.115728 + 0.993281i \(0.463080\pi\)
\(102\) 0 0
\(103\) 4.01072 0.395188 0.197594 0.980284i \(-0.436687\pi\)
0.197594 + 0.980284i \(0.436687\pi\)
\(104\) 1.16685 0.114419
\(105\) 0 0
\(106\) −0.586095 −0.0569265
\(107\) −5.01007 −0.484342 −0.242171 0.970234i \(-0.577860\pi\)
−0.242171 + 0.970234i \(0.577860\pi\)
\(108\) 0 0
\(109\) −8.74247 −0.837376 −0.418688 0.908130i \(-0.637510\pi\)
−0.418688 + 0.908130i \(0.637510\pi\)
\(110\) −1.53032 −0.145910
\(111\) 0 0
\(112\) −19.1071 −1.80545
\(113\) −5.26185 −0.494993 −0.247497 0.968889i \(-0.579608\pi\)
−0.247497 + 0.968889i \(0.579608\pi\)
\(114\) 0 0
\(115\) −5.17515 −0.482585
\(116\) −15.7397 −1.46139
\(117\) 0 0
\(118\) 0.733119 0.0674891
\(119\) 0 0
\(120\) 0 0
\(121\) 2.91710 0.265191
\(122\) 0.527955 0.0477988
\(123\) 0 0
\(124\) 6.45590 0.579757
\(125\) 11.1879 1.00068
\(126\) 0 0
\(127\) −3.13324 −0.278030 −0.139015 0.990290i \(-0.544394\pi\)
−0.139015 + 0.990290i \(0.544394\pi\)
\(128\) 3.56982 0.315531
\(129\) 0 0
\(130\) −1.05890 −0.0928717
\(131\) −2.43544 −0.212785 −0.106393 0.994324i \(-0.533930\pi\)
−0.106393 + 0.994324i \(0.533930\pi\)
\(132\) 0 0
\(133\) 18.9266 1.64114
\(134\) −0.835844 −0.0722059
\(135\) 0 0
\(136\) 0 0
\(137\) −21.8938 −1.87051 −0.935256 0.353971i \(-0.884831\pi\)
−0.935256 + 0.353971i \(0.884831\pi\)
\(138\) 0 0
\(139\) 5.05490 0.428751 0.214375 0.976751i \(-0.431228\pi\)
0.214375 + 0.976751i \(0.431228\pi\)
\(140\) 35.0191 2.95965
\(141\) 0 0
\(142\) 0.153482 0.0128800
\(143\) 9.62991 0.805294
\(144\) 0 0
\(145\) 28.6596 2.38005
\(146\) −1.29390 −0.107084
\(147\) 0 0
\(148\) −13.0838 −1.07548
\(149\) 21.1635 1.73378 0.866891 0.498497i \(-0.166115\pi\)
0.866891 + 0.498497i \(0.166115\pi\)
\(150\) 0 0
\(151\) 6.22312 0.506430 0.253215 0.967410i \(-0.418512\pi\)
0.253215 + 0.967410i \(0.418512\pi\)
\(152\) −1.75658 −0.142477
\(153\) 0 0
\(154\) 2.05991 0.165993
\(155\) −11.7552 −0.944202
\(156\) 0 0
\(157\) −8.20400 −0.654751 −0.327375 0.944894i \(-0.606164\pi\)
−0.327375 + 0.944894i \(0.606164\pi\)
\(158\) 0.289758 0.0230519
\(159\) 0 0
\(160\) −4.88042 −0.385831
\(161\) 6.96611 0.549007
\(162\) 0 0
\(163\) 15.9525 1.24950 0.624750 0.780825i \(-0.285201\pi\)
0.624750 + 0.780825i \(0.285201\pi\)
\(164\) 13.5484 1.05795
\(165\) 0 0
\(166\) −1.00549 −0.0780415
\(167\) −15.8269 −1.22472 −0.612361 0.790579i \(-0.709780\pi\)
−0.612361 + 0.790579i \(0.709780\pi\)
\(168\) 0 0
\(169\) −6.33660 −0.487430
\(170\) 0 0
\(171\) 0 0
\(172\) −2.74776 −0.209515
\(173\) 20.0361 1.52332 0.761658 0.647980i \(-0.224386\pi\)
0.761658 + 0.647980i \(0.224386\pi\)
\(174\) 0 0
\(175\) −39.4121 −2.97927
\(176\) 14.6352 1.10317
\(177\) 0 0
\(178\) −0.978316 −0.0733279
\(179\) 18.4967 1.38251 0.691254 0.722612i \(-0.257058\pi\)
0.691254 + 0.722612i \(0.257058\pi\)
\(180\) 0 0
\(181\) 4.85122 0.360588 0.180294 0.983613i \(-0.442295\pi\)
0.180294 + 0.983613i \(0.442295\pi\)
\(182\) 1.42535 0.105654
\(183\) 0 0
\(184\) −0.646525 −0.0476624
\(185\) 23.8237 1.75155
\(186\) 0 0
\(187\) 0 0
\(188\) 14.6451 1.06810
\(189\) 0 0
\(190\) 1.59407 0.115646
\(191\) −4.66086 −0.337248 −0.168624 0.985680i \(-0.553932\pi\)
−0.168624 + 0.985680i \(0.553932\pi\)
\(192\) 0 0
\(193\) 9.90846 0.713227 0.356613 0.934252i \(-0.383931\pi\)
0.356613 + 0.934252i \(0.383931\pi\)
\(194\) 0.412159 0.0295913
\(195\) 0 0
\(196\) −33.2281 −2.37344
\(197\) 12.9539 0.922928 0.461464 0.887159i \(-0.347324\pi\)
0.461464 + 0.887159i \(0.347324\pi\)
\(198\) 0 0
\(199\) 27.7148 1.96465 0.982325 0.187181i \(-0.0599352\pi\)
0.982325 + 0.187181i \(0.0599352\pi\)
\(200\) 3.65783 0.258648
\(201\) 0 0
\(202\) −0.263713 −0.0185548
\(203\) −38.5778 −2.70763
\(204\) 0 0
\(205\) −24.6695 −1.72299
\(206\) −0.454701 −0.0316805
\(207\) 0 0
\(208\) 10.1268 0.702166
\(209\) −14.4969 −1.00277
\(210\) 0 0
\(211\) 22.7296 1.56477 0.782385 0.622795i \(-0.214003\pi\)
0.782385 + 0.622795i \(0.214003\pi\)
\(212\) −10.2729 −0.705548
\(213\) 0 0
\(214\) 0.567999 0.0388276
\(215\) 5.00326 0.341220
\(216\) 0 0
\(217\) 15.8233 1.07416
\(218\) 0.991146 0.0671289
\(219\) 0 0
\(220\) −26.8230 −1.80841
\(221\) 0 0
\(222\) 0 0
\(223\) −12.0261 −0.805328 −0.402664 0.915348i \(-0.631916\pi\)
−0.402664 + 0.915348i \(0.631916\pi\)
\(224\) 6.56938 0.438935
\(225\) 0 0
\(226\) 0.596543 0.0396815
\(227\) 14.7781 0.980856 0.490428 0.871482i \(-0.336841\pi\)
0.490428 + 0.871482i \(0.336841\pi\)
\(228\) 0 0
\(229\) −14.2110 −0.939093 −0.469546 0.882908i \(-0.655583\pi\)
−0.469546 + 0.882908i \(0.655583\pi\)
\(230\) 0.586714 0.0386868
\(231\) 0 0
\(232\) 3.58040 0.235065
\(233\) −8.62121 −0.564794 −0.282397 0.959298i \(-0.591130\pi\)
−0.282397 + 0.959298i \(0.591130\pi\)
\(234\) 0 0
\(235\) −26.6665 −1.73953
\(236\) 12.8499 0.836460
\(237\) 0 0
\(238\) 0 0
\(239\) −16.0848 −1.04044 −0.520221 0.854032i \(-0.674150\pi\)
−0.520221 + 0.854032i \(0.674150\pi\)
\(240\) 0 0
\(241\) −3.26675 −0.210430 −0.105215 0.994450i \(-0.533553\pi\)
−0.105215 + 0.994450i \(0.533553\pi\)
\(242\) −0.330716 −0.0212592
\(243\) 0 0
\(244\) 9.25388 0.592419
\(245\) 60.5033 3.86541
\(246\) 0 0
\(247\) −10.0311 −0.638265
\(248\) −1.46856 −0.0932539
\(249\) 0 0
\(250\) −1.26839 −0.0802199
\(251\) −0.393311 −0.0248256 −0.0124128 0.999923i \(-0.503951\pi\)
−0.0124128 + 0.999923i \(0.503951\pi\)
\(252\) 0 0
\(253\) −5.33573 −0.335454
\(254\) 0.355220 0.0222885
\(255\) 0 0
\(256\) 14.9816 0.936352
\(257\) −1.52997 −0.0954370 −0.0477185 0.998861i \(-0.515195\pi\)
−0.0477185 + 0.998861i \(0.515195\pi\)
\(258\) 0 0
\(259\) −32.0683 −1.99263
\(260\) −18.5602 −1.15105
\(261\) 0 0
\(262\) 0.276109 0.0170581
\(263\) 10.3747 0.639729 0.319865 0.947463i \(-0.396363\pi\)
0.319865 + 0.947463i \(0.396363\pi\)
\(264\) 0 0
\(265\) 18.7054 1.14907
\(266\) −2.14573 −0.131563
\(267\) 0 0
\(268\) −14.6505 −0.894920
\(269\) 28.6320 1.74572 0.872861 0.487969i \(-0.162262\pi\)
0.872861 + 0.487969i \(0.162262\pi\)
\(270\) 0 0
\(271\) 3.90958 0.237490 0.118745 0.992925i \(-0.462113\pi\)
0.118745 + 0.992925i \(0.462113\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 2.48213 0.149951
\(275\) 30.1879 1.82040
\(276\) 0 0
\(277\) 17.8515 1.07259 0.536295 0.844031i \(-0.319823\pi\)
0.536295 + 0.844031i \(0.319823\pi\)
\(278\) −0.573081 −0.0343711
\(279\) 0 0
\(280\) −7.96600 −0.476060
\(281\) 26.6936 1.59241 0.796204 0.605028i \(-0.206838\pi\)
0.796204 + 0.605028i \(0.206838\pi\)
\(282\) 0 0
\(283\) −18.3255 −1.08934 −0.544670 0.838651i \(-0.683345\pi\)
−0.544670 + 0.838651i \(0.683345\pi\)
\(284\) 2.69020 0.159634
\(285\) 0 0
\(286\) −1.09176 −0.0645569
\(287\) 33.2069 1.96014
\(288\) 0 0
\(289\) 0 0
\(290\) −3.24917 −0.190798
\(291\) 0 0
\(292\) −22.6792 −1.32720
\(293\) 16.6305 0.971564 0.485782 0.874080i \(-0.338535\pi\)
0.485782 + 0.874080i \(0.338535\pi\)
\(294\) 0 0
\(295\) −23.3978 −1.36227
\(296\) 2.97626 0.172991
\(297\) 0 0
\(298\) −2.39934 −0.138990
\(299\) −3.69205 −0.213517
\(300\) 0 0
\(301\) −6.73474 −0.388184
\(302\) −0.705524 −0.0405983
\(303\) 0 0
\(304\) −15.2449 −0.874355
\(305\) −16.8499 −0.964823
\(306\) 0 0
\(307\) 27.9347 1.59432 0.797158 0.603771i \(-0.206336\pi\)
0.797158 + 0.603771i \(0.206336\pi\)
\(308\) 36.1057 2.05731
\(309\) 0 0
\(310\) 1.33271 0.0756926
\(311\) −12.8189 −0.726893 −0.363446 0.931615i \(-0.618400\pi\)
−0.363446 + 0.931615i \(0.618400\pi\)
\(312\) 0 0
\(313\) −0.228726 −0.0129284 −0.00646419 0.999979i \(-0.502058\pi\)
−0.00646419 + 0.999979i \(0.502058\pi\)
\(314\) 0.930099 0.0524885
\(315\) 0 0
\(316\) 5.07881 0.285705
\(317\) 12.7565 0.716478 0.358239 0.933630i \(-0.383377\pi\)
0.358239 + 0.933630i \(0.383377\pi\)
\(318\) 0 0
\(319\) 29.5488 1.65442
\(320\) −27.8362 −1.55609
\(321\) 0 0
\(322\) −0.789758 −0.0440115
\(323\) 0 0
\(324\) 0 0
\(325\) 20.8884 1.15868
\(326\) −1.80856 −0.100167
\(327\) 0 0
\(328\) −3.08193 −0.170171
\(329\) 35.8950 1.97895
\(330\) 0 0
\(331\) −4.03099 −0.221563 −0.110782 0.993845i \(-0.535335\pi\)
−0.110782 + 0.993845i \(0.535335\pi\)
\(332\) −17.6241 −0.967247
\(333\) 0 0
\(334\) 1.79432 0.0981806
\(335\) 26.6763 1.45748
\(336\) 0 0
\(337\) 3.29186 0.179319 0.0896594 0.995972i \(-0.471422\pi\)
0.0896594 + 0.995972i \(0.471422\pi\)
\(338\) 0.718389 0.0390752
\(339\) 0 0
\(340\) 0 0
\(341\) −12.1200 −0.656333
\(342\) 0 0
\(343\) −47.3483 −2.55657
\(344\) 0.625051 0.0337005
\(345\) 0 0
\(346\) −2.27152 −0.122118
\(347\) 10.4519 0.561089 0.280545 0.959841i \(-0.409485\pi\)
0.280545 + 0.959841i \(0.409485\pi\)
\(348\) 0 0
\(349\) −0.501788 −0.0268601 −0.0134300 0.999910i \(-0.504275\pi\)
−0.0134300 + 0.999910i \(0.504275\pi\)
\(350\) 4.46820 0.238835
\(351\) 0 0
\(352\) −5.03185 −0.268199
\(353\) −29.9020 −1.59152 −0.795761 0.605611i \(-0.792929\pi\)
−0.795761 + 0.605611i \(0.792929\pi\)
\(354\) 0 0
\(355\) −4.89845 −0.259983
\(356\) −17.1477 −0.908826
\(357\) 0 0
\(358\) −2.09700 −0.110830
\(359\) −13.6313 −0.719431 −0.359715 0.933062i \(-0.617126\pi\)
−0.359715 + 0.933062i \(0.617126\pi\)
\(360\) 0 0
\(361\) −3.89912 −0.205217
\(362\) −0.549989 −0.0289068
\(363\) 0 0
\(364\) 24.9833 1.30948
\(365\) 41.2955 2.16150
\(366\) 0 0
\(367\) 13.3648 0.697634 0.348817 0.937191i \(-0.386583\pi\)
0.348817 + 0.937191i \(0.386583\pi\)
\(368\) −5.61103 −0.292495
\(369\) 0 0
\(370\) −2.70092 −0.140414
\(371\) −25.1788 −1.30722
\(372\) 0 0
\(373\) 16.3768 0.847961 0.423980 0.905671i \(-0.360633\pi\)
0.423980 + 0.905671i \(0.360633\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −3.33141 −0.171804
\(377\) 20.4463 1.05304
\(378\) 0 0
\(379\) 21.2846 1.09332 0.546659 0.837355i \(-0.315899\pi\)
0.546659 + 0.837355i \(0.315899\pi\)
\(380\) 27.9405 1.43332
\(381\) 0 0
\(382\) 0.528408 0.0270357
\(383\) −9.76478 −0.498957 −0.249478 0.968380i \(-0.580259\pi\)
−0.249478 + 0.968380i \(0.580259\pi\)
\(384\) 0 0
\(385\) −65.7429 −3.35057
\(386\) −1.12334 −0.0571763
\(387\) 0 0
\(388\) 7.22422 0.366754
\(389\) −0.183217 −0.00928949 −0.00464475 0.999989i \(-0.501478\pi\)
−0.00464475 + 0.999989i \(0.501478\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 7.55860 0.381767
\(393\) 0 0
\(394\) −1.46860 −0.0739872
\(395\) −9.24774 −0.465304
\(396\) 0 0
\(397\) 27.1242 1.36133 0.680663 0.732596i \(-0.261692\pi\)
0.680663 + 0.732596i \(0.261692\pi\)
\(398\) −3.14207 −0.157498
\(399\) 0 0
\(400\) 31.7454 1.58727
\(401\) 25.0268 1.24978 0.624890 0.780713i \(-0.285144\pi\)
0.624890 + 0.780713i \(0.285144\pi\)
\(402\) 0 0
\(403\) −8.38639 −0.417756
\(404\) −4.62229 −0.229968
\(405\) 0 0
\(406\) 4.37361 0.217059
\(407\) 24.5629 1.21754
\(408\) 0 0
\(409\) 2.02920 0.100337 0.0501687 0.998741i \(-0.484024\pi\)
0.0501687 + 0.998741i \(0.484024\pi\)
\(410\) 2.79682 0.138125
\(411\) 0 0
\(412\) −7.96990 −0.392649
\(413\) 31.4950 1.54977
\(414\) 0 0
\(415\) 32.0908 1.57527
\(416\) −3.48178 −0.170708
\(417\) 0 0
\(418\) 1.64354 0.0803879
\(419\) −8.58390 −0.419351 −0.209675 0.977771i \(-0.567241\pi\)
−0.209675 + 0.977771i \(0.567241\pi\)
\(420\) 0 0
\(421\) 15.1592 0.738815 0.369408 0.929267i \(-0.379561\pi\)
0.369408 + 0.929267i \(0.379561\pi\)
\(422\) −2.57689 −0.125441
\(423\) 0 0
\(424\) 2.33685 0.113487
\(425\) 0 0
\(426\) 0 0
\(427\) 22.6811 1.09762
\(428\) 9.95575 0.481229
\(429\) 0 0
\(430\) −0.567227 −0.0273541
\(431\) 29.6934 1.43028 0.715140 0.698981i \(-0.246363\pi\)
0.715140 + 0.698981i \(0.246363\pi\)
\(432\) 0 0
\(433\) −15.8921 −0.763728 −0.381864 0.924219i \(-0.624718\pi\)
−0.381864 + 0.924219i \(0.624718\pi\)
\(434\) −1.79391 −0.0861106
\(435\) 0 0
\(436\) 17.3726 0.831995
\(437\) 5.55802 0.265876
\(438\) 0 0
\(439\) −10.2755 −0.490422 −0.245211 0.969470i \(-0.578857\pi\)
−0.245211 + 0.969470i \(0.578857\pi\)
\(440\) 6.10160 0.290882
\(441\) 0 0
\(442\) 0 0
\(443\) 4.79437 0.227787 0.113894 0.993493i \(-0.463668\pi\)
0.113894 + 0.993493i \(0.463668\pi\)
\(444\) 0 0
\(445\) 31.2233 1.48013
\(446\) 1.36342 0.0645597
\(447\) 0 0
\(448\) 37.4694 1.77026
\(449\) 19.1500 0.903742 0.451871 0.892083i \(-0.350757\pi\)
0.451871 + 0.892083i \(0.350757\pi\)
\(450\) 0 0
\(451\) −25.4350 −1.19769
\(452\) 10.4561 0.491812
\(453\) 0 0
\(454\) −1.67541 −0.0786310
\(455\) −45.4907 −2.13264
\(456\) 0 0
\(457\) −5.21495 −0.243945 −0.121973 0.992533i \(-0.538922\pi\)
−0.121973 + 0.992533i \(0.538922\pi\)
\(458\) 1.61113 0.0752830
\(459\) 0 0
\(460\) 10.2838 0.479484
\(461\) −18.5337 −0.863199 −0.431600 0.902065i \(-0.642051\pi\)
−0.431600 + 0.902065i \(0.642051\pi\)
\(462\) 0 0
\(463\) 36.3578 1.68969 0.844846 0.535009i \(-0.179692\pi\)
0.844846 + 0.535009i \(0.179692\pi\)
\(464\) 31.0734 1.44255
\(465\) 0 0
\(466\) 0.977399 0.0452771
\(467\) −15.3960 −0.712442 −0.356221 0.934402i \(-0.615935\pi\)
−0.356221 + 0.934402i \(0.615935\pi\)
\(468\) 0 0
\(469\) −35.9081 −1.65808
\(470\) 3.02322 0.139451
\(471\) 0 0
\(472\) −2.92305 −0.134544
\(473\) 5.15851 0.237188
\(474\) 0 0
\(475\) −31.4455 −1.44282
\(476\) 0 0
\(477\) 0 0
\(478\) 1.82356 0.0834077
\(479\) 13.8811 0.634243 0.317121 0.948385i \(-0.397284\pi\)
0.317121 + 0.948385i \(0.397284\pi\)
\(480\) 0 0
\(481\) 16.9962 0.774962
\(482\) 0.370356 0.0168693
\(483\) 0 0
\(484\) −5.79670 −0.263487
\(485\) −13.1542 −0.597302
\(486\) 0 0
\(487\) 23.7739 1.07730 0.538650 0.842530i \(-0.318935\pi\)
0.538650 + 0.842530i \(0.318935\pi\)
\(488\) −2.10504 −0.0952905
\(489\) 0 0
\(490\) −6.85934 −0.309874
\(491\) −11.6093 −0.523921 −0.261961 0.965079i \(-0.584369\pi\)
−0.261961 + 0.965079i \(0.584369\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 1.13724 0.0511669
\(495\) 0 0
\(496\) −12.7453 −0.572281
\(497\) 6.59366 0.295766
\(498\) 0 0
\(499\) −0.392624 −0.0175762 −0.00878812 0.999961i \(-0.502797\pi\)
−0.00878812 + 0.999961i \(0.502797\pi\)
\(500\) −22.2320 −0.994245
\(501\) 0 0
\(502\) 0.0445902 0.00199016
\(503\) −24.7781 −1.10480 −0.552401 0.833579i \(-0.686288\pi\)
−0.552401 + 0.833579i \(0.686288\pi\)
\(504\) 0 0
\(505\) 8.41649 0.374529
\(506\) 0.604919 0.0268919
\(507\) 0 0
\(508\) 6.22621 0.276244
\(509\) 17.1712 0.761100 0.380550 0.924760i \(-0.375735\pi\)
0.380550 + 0.924760i \(0.375735\pi\)
\(510\) 0 0
\(511\) −55.5866 −2.45900
\(512\) −8.83813 −0.390594
\(513\) 0 0
\(514\) 0.173455 0.00765077
\(515\) 14.5120 0.639474
\(516\) 0 0
\(517\) −27.4939 −1.20918
\(518\) 3.63563 0.159740
\(519\) 0 0
\(520\) 4.22199 0.185147
\(521\) 30.2285 1.32433 0.662167 0.749356i \(-0.269637\pi\)
0.662167 + 0.749356i \(0.269637\pi\)
\(522\) 0 0
\(523\) −32.1131 −1.40421 −0.702104 0.712074i \(-0.747756\pi\)
−0.702104 + 0.712074i \(0.747756\pi\)
\(524\) 4.83958 0.211418
\(525\) 0 0
\(526\) −1.17619 −0.0512843
\(527\) 0 0
\(528\) 0 0
\(529\) −20.9543 −0.911057
\(530\) −2.12066 −0.0921157
\(531\) 0 0
\(532\) −37.6099 −1.63060
\(533\) −17.5997 −0.762327
\(534\) 0 0
\(535\) −18.1279 −0.783738
\(536\) 3.33263 0.143948
\(537\) 0 0
\(538\) −3.24605 −0.139947
\(539\) 62.3806 2.68692
\(540\) 0 0
\(541\) −11.7509 −0.505209 −0.252604 0.967570i \(-0.581287\pi\)
−0.252604 + 0.967570i \(0.581287\pi\)
\(542\) −0.443235 −0.0190386
\(543\) 0 0
\(544\) 0 0
\(545\) −31.6328 −1.35500
\(546\) 0 0
\(547\) 24.4542 1.04559 0.522793 0.852460i \(-0.324890\pi\)
0.522793 + 0.852460i \(0.324890\pi\)
\(548\) 43.5062 1.85849
\(549\) 0 0
\(550\) −3.42244 −0.145933
\(551\) −30.7799 −1.31127
\(552\) 0 0
\(553\) 12.4481 0.529347
\(554\) −2.02384 −0.0859849
\(555\) 0 0
\(556\) −10.0448 −0.425996
\(557\) −31.7081 −1.34351 −0.671757 0.740772i \(-0.734460\pi\)
−0.671757 + 0.740772i \(0.734460\pi\)
\(558\) 0 0
\(559\) 3.56942 0.150970
\(560\) −69.1350 −2.92149
\(561\) 0 0
\(562\) −3.02629 −0.127657
\(563\) 35.8638 1.51148 0.755740 0.654872i \(-0.227277\pi\)
0.755740 + 0.654872i \(0.227277\pi\)
\(564\) 0 0
\(565\) −19.0389 −0.800973
\(566\) 2.07759 0.0873277
\(567\) 0 0
\(568\) −0.611957 −0.0256771
\(569\) 29.4017 1.23258 0.616291 0.787518i \(-0.288634\pi\)
0.616291 + 0.787518i \(0.288634\pi\)
\(570\) 0 0
\(571\) 40.7825 1.70670 0.853348 0.521342i \(-0.174568\pi\)
0.853348 + 0.521342i \(0.174568\pi\)
\(572\) −19.1361 −0.800119
\(573\) 0 0
\(574\) −3.76471 −0.157136
\(575\) −11.5738 −0.482662
\(576\) 0 0
\(577\) 8.38687 0.349150 0.174575 0.984644i \(-0.444145\pi\)
0.174575 + 0.984644i \(0.444145\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −56.9507 −2.36475
\(581\) −43.1964 −1.79209
\(582\) 0 0
\(583\) 19.2858 0.798738
\(584\) 5.15899 0.213480
\(585\) 0 0
\(586\) −1.88542 −0.0778861
\(587\) −24.7388 −1.02108 −0.510539 0.859855i \(-0.670554\pi\)
−0.510539 + 0.859855i \(0.670554\pi\)
\(588\) 0 0
\(589\) 12.6249 0.520200
\(590\) 2.65264 0.109207
\(591\) 0 0
\(592\) 25.8302 1.06162
\(593\) 0.713305 0.0292919 0.0146460 0.999893i \(-0.495338\pi\)
0.0146460 + 0.999893i \(0.495338\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −42.0550 −1.72264
\(597\) 0 0
\(598\) 0.418573 0.0171167
\(599\) −26.1042 −1.06659 −0.533294 0.845930i \(-0.679046\pi\)
−0.533294 + 0.845930i \(0.679046\pi\)
\(600\) 0 0
\(601\) −36.0612 −1.47097 −0.735484 0.677542i \(-0.763045\pi\)
−0.735484 + 0.677542i \(0.763045\pi\)
\(602\) 0.763527 0.0311190
\(603\) 0 0
\(604\) −12.3663 −0.503176
\(605\) 10.5549 0.429118
\(606\) 0 0
\(607\) 32.9308 1.33662 0.668310 0.743883i \(-0.267018\pi\)
0.668310 + 0.743883i \(0.267018\pi\)
\(608\) 5.24149 0.212570
\(609\) 0 0
\(610\) 1.91030 0.0773457
\(611\) −19.0244 −0.769644
\(612\) 0 0
\(613\) 16.1615 0.652756 0.326378 0.945239i \(-0.394172\pi\)
0.326378 + 0.945239i \(0.394172\pi\)
\(614\) −3.16699 −0.127809
\(615\) 0 0
\(616\) −8.21318 −0.330918
\(617\) −29.8804 −1.20294 −0.601470 0.798895i \(-0.705418\pi\)
−0.601470 + 0.798895i \(0.705418\pi\)
\(618\) 0 0
\(619\) −37.6734 −1.51422 −0.757110 0.653287i \(-0.773389\pi\)
−0.757110 + 0.653287i \(0.773389\pi\)
\(620\) 23.3593 0.938134
\(621\) 0 0
\(622\) 1.45330 0.0582719
\(623\) −42.0288 −1.68385
\(624\) 0 0
\(625\) 0.0208904 0.000835616 0
\(626\) 0.0259310 0.00103641
\(627\) 0 0
\(628\) 16.3026 0.650543
\(629\) 0 0
\(630\) 0 0
\(631\) 20.2110 0.804589 0.402294 0.915510i \(-0.368213\pi\)
0.402294 + 0.915510i \(0.368213\pi\)
\(632\) −1.15531 −0.0459557
\(633\) 0 0
\(634\) −1.44623 −0.0574370
\(635\) −11.3370 −0.449895
\(636\) 0 0
\(637\) 43.1642 1.71023
\(638\) −3.34999 −0.132627
\(639\) 0 0
\(640\) 12.9167 0.510576
\(641\) −10.9697 −0.433279 −0.216639 0.976252i \(-0.569510\pi\)
−0.216639 + 0.976252i \(0.569510\pi\)
\(642\) 0 0
\(643\) 4.07380 0.160655 0.0803274 0.996769i \(-0.474403\pi\)
0.0803274 + 0.996769i \(0.474403\pi\)
\(644\) −13.8427 −0.545478
\(645\) 0 0
\(646\) 0 0
\(647\) −17.4383 −0.685570 −0.342785 0.939414i \(-0.611370\pi\)
−0.342785 + 0.939414i \(0.611370\pi\)
\(648\) 0 0
\(649\) −24.1238 −0.946941
\(650\) −2.36815 −0.0928866
\(651\) 0 0
\(652\) −31.7001 −1.24147
\(653\) 21.3395 0.835081 0.417540 0.908658i \(-0.362892\pi\)
0.417540 + 0.908658i \(0.362892\pi\)
\(654\) 0 0
\(655\) −8.81213 −0.344319
\(656\) −26.7473 −1.04431
\(657\) 0 0
\(658\) −4.06946 −0.158644
\(659\) −31.9158 −1.24326 −0.621631 0.783310i \(-0.713530\pi\)
−0.621631 + 0.783310i \(0.713530\pi\)
\(660\) 0 0
\(661\) −39.5393 −1.53790 −0.768949 0.639310i \(-0.779220\pi\)
−0.768949 + 0.639310i \(0.779220\pi\)
\(662\) 0.456999 0.0177618
\(663\) 0 0
\(664\) 4.00906 0.155582
\(665\) 68.4819 2.65561
\(666\) 0 0
\(667\) −11.3288 −0.438654
\(668\) 31.4504 1.21685
\(669\) 0 0
\(670\) −3.02433 −0.116840
\(671\) −17.3727 −0.670667
\(672\) 0 0
\(673\) −27.2101 −1.04887 −0.524435 0.851450i \(-0.675724\pi\)
−0.524435 + 0.851450i \(0.675724\pi\)
\(674\) −0.373202 −0.0143752
\(675\) 0 0
\(676\) 12.5917 0.484298
\(677\) 24.0531 0.924436 0.462218 0.886766i \(-0.347054\pi\)
0.462218 + 0.886766i \(0.347054\pi\)
\(678\) 0 0
\(679\) 17.7065 0.679513
\(680\) 0 0
\(681\) 0 0
\(682\) 1.37406 0.0526154
\(683\) −12.8949 −0.493410 −0.246705 0.969091i \(-0.579348\pi\)
−0.246705 + 0.969091i \(0.579348\pi\)
\(684\) 0 0
\(685\) −79.2181 −3.02677
\(686\) 5.36795 0.204949
\(687\) 0 0
\(688\) 5.42467 0.206813
\(689\) 13.3448 0.508397
\(690\) 0 0
\(691\) 48.7884 1.85600 0.927999 0.372582i \(-0.121528\pi\)
0.927999 + 0.372582i \(0.121528\pi\)
\(692\) −39.8146 −1.51353
\(693\) 0 0
\(694\) −1.18495 −0.0449801
\(695\) 18.2901 0.693783
\(696\) 0 0
\(697\) 0 0
\(698\) 0.0568884 0.00215326
\(699\) 0 0
\(700\) 78.3175 2.96012
\(701\) −13.4261 −0.507097 −0.253548 0.967323i \(-0.581598\pi\)
−0.253548 + 0.967323i \(0.581598\pi\)
\(702\) 0 0
\(703\) −25.5862 −0.965002
\(704\) −28.6999 −1.08167
\(705\) 0 0
\(706\) 3.39003 0.127585
\(707\) −11.3292 −0.426078
\(708\) 0 0
\(709\) −28.7368 −1.07923 −0.539617 0.841910i \(-0.681431\pi\)
−0.539617 + 0.841910i \(0.681431\pi\)
\(710\) 0.555344 0.0208417
\(711\) 0 0
\(712\) 3.90069 0.146185
\(713\) 4.64672 0.174021
\(714\) 0 0
\(715\) 34.8438 1.30309
\(716\) −36.7557 −1.37362
\(717\) 0 0
\(718\) 1.54540 0.0576737
\(719\) 11.0096 0.410589 0.205295 0.978700i \(-0.434185\pi\)
0.205295 + 0.978700i \(0.434185\pi\)
\(720\) 0 0
\(721\) −19.5341 −0.727489
\(722\) 0.442049 0.0164514
\(723\) 0 0
\(724\) −9.64008 −0.358271
\(725\) 64.0949 2.38043
\(726\) 0 0
\(727\) −5.45319 −0.202248 −0.101124 0.994874i \(-0.532244\pi\)
−0.101124 + 0.994874i \(0.532244\pi\)
\(728\) −5.68310 −0.210630
\(729\) 0 0
\(730\) −4.68172 −0.173278
\(731\) 0 0
\(732\) 0 0
\(733\) 15.8460 0.585284 0.292642 0.956222i \(-0.405466\pi\)
0.292642 + 0.956222i \(0.405466\pi\)
\(734\) −1.51518 −0.0559263
\(735\) 0 0
\(736\) 1.92918 0.0711105
\(737\) 27.5040 1.01312
\(738\) 0 0
\(739\) 32.9777 1.21311 0.606553 0.795043i \(-0.292552\pi\)
0.606553 + 0.795043i \(0.292552\pi\)
\(740\) −47.3411 −1.74029
\(741\) 0 0
\(742\) 2.85456 0.104794
\(743\) 41.9905 1.54048 0.770241 0.637752i \(-0.220136\pi\)
0.770241 + 0.637752i \(0.220136\pi\)
\(744\) 0 0
\(745\) 76.5758 2.80552
\(746\) −1.85667 −0.0679774
\(747\) 0 0
\(748\) 0 0
\(749\) 24.4014 0.891609
\(750\) 0 0
\(751\) 14.6066 0.533002 0.266501 0.963835i \(-0.414132\pi\)
0.266501 + 0.963835i \(0.414132\pi\)
\(752\) −28.9125 −1.05433
\(753\) 0 0
\(754\) −2.31802 −0.0844174
\(755\) 22.5171 0.819480
\(756\) 0 0
\(757\) 34.0891 1.23899 0.619495 0.785001i \(-0.287338\pi\)
0.619495 + 0.785001i \(0.287338\pi\)
\(758\) −2.41307 −0.0876466
\(759\) 0 0
\(760\) −6.35580 −0.230549
\(761\) −0.721195 −0.0261433 −0.0130716 0.999915i \(-0.504161\pi\)
−0.0130716 + 0.999915i \(0.504161\pi\)
\(762\) 0 0
\(763\) 42.5799 1.54150
\(764\) 9.26180 0.335080
\(765\) 0 0
\(766\) 1.10705 0.0399992
\(767\) −16.6924 −0.602728
\(768\) 0 0
\(769\) 34.6936 1.25108 0.625542 0.780191i \(-0.284878\pi\)
0.625542 + 0.780191i \(0.284878\pi\)
\(770\) 7.45337 0.268601
\(771\) 0 0
\(772\) −19.6896 −0.708643
\(773\) −10.4552 −0.376047 −0.188024 0.982164i \(-0.560208\pi\)
−0.188024 + 0.982164i \(0.560208\pi\)
\(774\) 0 0
\(775\) −26.2897 −0.944352
\(776\) −1.64334 −0.0589924
\(777\) 0 0
\(778\) 0.0207716 0.000744698 0
\(779\) 26.4946 0.949269
\(780\) 0 0
\(781\) −5.05044 −0.180719
\(782\) 0 0
\(783\) 0 0
\(784\) 65.5993 2.34283
\(785\) −29.6845 −1.05948
\(786\) 0 0
\(787\) 52.5295 1.87248 0.936238 0.351368i \(-0.114283\pi\)
0.936238 + 0.351368i \(0.114283\pi\)
\(788\) −25.7413 −0.916997
\(789\) 0 0
\(790\) 1.04843 0.0373014
\(791\) 25.6277 0.911216
\(792\) 0 0
\(793\) −12.0210 −0.426879
\(794\) −3.07511 −0.109132
\(795\) 0 0
\(796\) −55.0734 −1.95202
\(797\) 19.1586 0.678632 0.339316 0.940672i \(-0.389804\pi\)
0.339316 + 0.940672i \(0.389804\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −10.9147 −0.385893
\(801\) 0 0
\(802\) −2.83733 −0.100189
\(803\) 42.5768 1.50250
\(804\) 0 0
\(805\) 25.2054 0.888375
\(806\) 0.950777 0.0334897
\(807\) 0 0
\(808\) 1.05146 0.0369903
\(809\) 40.4768 1.42309 0.711544 0.702641i \(-0.247996\pi\)
0.711544 + 0.702641i \(0.247996\pi\)
\(810\) 0 0
\(811\) 52.2706 1.83547 0.917734 0.397195i \(-0.130016\pi\)
0.917734 + 0.397195i \(0.130016\pi\)
\(812\) 76.6597 2.69023
\(813\) 0 0
\(814\) −2.78473 −0.0976046
\(815\) 57.7210 2.02188
\(816\) 0 0
\(817\) −5.37342 −0.187992
\(818\) −0.230053 −0.00804362
\(819\) 0 0
\(820\) 49.0219 1.71192
\(821\) −45.2023 −1.57757 −0.788785 0.614670i \(-0.789289\pi\)
−0.788785 + 0.614670i \(0.789289\pi\)
\(822\) 0 0
\(823\) −19.6813 −0.686047 −0.343023 0.939327i \(-0.611451\pi\)
−0.343023 + 0.939327i \(0.611451\pi\)
\(824\) 1.81296 0.0631575
\(825\) 0 0
\(826\) −3.57064 −0.124238
\(827\) 34.1215 1.18652 0.593260 0.805011i \(-0.297841\pi\)
0.593260 + 0.805011i \(0.297841\pi\)
\(828\) 0 0
\(829\) −43.1191 −1.49759 −0.748794 0.662802i \(-0.769367\pi\)
−0.748794 + 0.662802i \(0.769367\pi\)
\(830\) −3.63817 −0.126283
\(831\) 0 0
\(832\) −19.8588 −0.688481
\(833\) 0 0
\(834\) 0 0
\(835\) −57.2663 −1.98178
\(836\) 28.8075 0.996328
\(837\) 0 0
\(838\) 0.973168 0.0336175
\(839\) 10.7739 0.371957 0.185978 0.982554i \(-0.440455\pi\)
0.185978 + 0.982554i \(0.440455\pi\)
\(840\) 0 0
\(841\) 33.7381 1.16338
\(842\) −1.71862 −0.0592276
\(843\) 0 0
\(844\) −45.1671 −1.55471
\(845\) −22.9277 −0.788735
\(846\) 0 0
\(847\) −14.2077 −0.488181
\(848\) 20.2809 0.696450
\(849\) 0 0
\(850\) 0 0
\(851\) −9.41725 −0.322819
\(852\) 0 0
\(853\) 34.0697 1.16652 0.583262 0.812284i \(-0.301776\pi\)
0.583262 + 0.812284i \(0.301776\pi\)
\(854\) −2.57139 −0.0879912
\(855\) 0 0
\(856\) −2.26470 −0.0774057
\(857\) −24.7691 −0.846097 −0.423049 0.906107i \(-0.639040\pi\)
−0.423049 + 0.906107i \(0.639040\pi\)
\(858\) 0 0
\(859\) −0.964082 −0.0328941 −0.0164470 0.999865i \(-0.505235\pi\)
−0.0164470 + 0.999865i \(0.505235\pi\)
\(860\) −9.94222 −0.339027
\(861\) 0 0
\(862\) −3.36638 −0.114659
\(863\) 42.1294 1.43410 0.717050 0.697022i \(-0.245492\pi\)
0.717050 + 0.697022i \(0.245492\pi\)
\(864\) 0 0
\(865\) 72.4964 2.46495
\(866\) 1.80172 0.0612248
\(867\) 0 0
\(868\) −31.4433 −1.06725
\(869\) −9.53468 −0.323442
\(870\) 0 0
\(871\) 19.0313 0.644853
\(872\) −3.95184 −0.133826
\(873\) 0 0
\(874\) −0.630121 −0.0213142
\(875\) −54.4904 −1.84211
\(876\) 0 0
\(877\) −52.1405 −1.76066 −0.880330 0.474362i \(-0.842679\pi\)
−0.880330 + 0.474362i \(0.842679\pi\)
\(878\) 1.16494 0.0393150
\(879\) 0 0
\(880\) 52.9543 1.78509
\(881\) −17.2430 −0.580933 −0.290466 0.956885i \(-0.593810\pi\)
−0.290466 + 0.956885i \(0.593810\pi\)
\(882\) 0 0
\(883\) 19.4857 0.655747 0.327873 0.944722i \(-0.393668\pi\)
0.327873 + 0.944722i \(0.393668\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.543544 −0.0182607
\(887\) 5.55458 0.186505 0.0932523 0.995643i \(-0.470274\pi\)
0.0932523 + 0.995643i \(0.470274\pi\)
\(888\) 0 0
\(889\) 15.2604 0.511817
\(890\) −3.53983 −0.118656
\(891\) 0 0
\(892\) 23.8977 0.800153
\(893\) 28.6394 0.958380
\(894\) 0 0
\(895\) 66.9265 2.23711
\(896\) −17.3867 −0.580850
\(897\) 0 0
\(898\) −2.17106 −0.0724491
\(899\) −25.7331 −0.858248
\(900\) 0 0
\(901\) 0 0
\(902\) 2.88360 0.0960133
\(903\) 0 0
\(904\) −2.37851 −0.0791079
\(905\) 17.5531 0.583485
\(906\) 0 0
\(907\) 11.1136 0.369020 0.184510 0.982831i \(-0.440930\pi\)
0.184510 + 0.982831i \(0.440930\pi\)
\(908\) −29.3662 −0.974552
\(909\) 0 0
\(910\) 5.15735 0.170964
\(911\) −30.8962 −1.02364 −0.511818 0.859094i \(-0.671028\pi\)
−0.511818 + 0.859094i \(0.671028\pi\)
\(912\) 0 0
\(913\) 33.0865 1.09500
\(914\) 0.591227 0.0195560
\(915\) 0 0
\(916\) 28.2394 0.933057
\(917\) 11.8617 0.391709
\(918\) 0 0
\(919\) −26.7590 −0.882699 −0.441349 0.897335i \(-0.645500\pi\)
−0.441349 + 0.897335i \(0.645500\pi\)
\(920\) −2.33932 −0.0771249
\(921\) 0 0
\(922\) 2.10119 0.0691989
\(923\) −3.49465 −0.115028
\(924\) 0 0
\(925\) 53.2798 1.75183
\(926\) −4.12194 −0.135455
\(927\) 0 0
\(928\) −10.6836 −0.350708
\(929\) 11.8167 0.387694 0.193847 0.981032i \(-0.437903\pi\)
0.193847 + 0.981032i \(0.437903\pi\)
\(930\) 0 0
\(931\) −64.9795 −2.12962
\(932\) 17.1316 0.561165
\(933\) 0 0
\(934\) 1.74547 0.0571134
\(935\) 0 0
\(936\) 0 0
\(937\) 14.2979 0.467092 0.233546 0.972346i \(-0.424967\pi\)
0.233546 + 0.972346i \(0.424967\pi\)
\(938\) 4.07095 0.132921
\(939\) 0 0
\(940\) 52.9903 1.72835
\(941\) −17.2993 −0.563942 −0.281971 0.959423i \(-0.590988\pi\)
−0.281971 + 0.959423i \(0.590988\pi\)
\(942\) 0 0
\(943\) 9.75161 0.317556
\(944\) −25.3685 −0.825674
\(945\) 0 0
\(946\) −0.584827 −0.0190144
\(947\) 41.1695 1.33783 0.668914 0.743340i \(-0.266760\pi\)
0.668914 + 0.743340i \(0.266760\pi\)
\(948\) 0 0
\(949\) 29.4610 0.956343
\(950\) 3.56502 0.115665
\(951\) 0 0
\(952\) 0 0
\(953\) 11.2870 0.365623 0.182812 0.983148i \(-0.441480\pi\)
0.182812 + 0.983148i \(0.441480\pi\)
\(954\) 0 0
\(955\) −16.8643 −0.545717
\(956\) 31.9629 1.03375
\(957\) 0 0
\(958\) −1.57372 −0.0508445
\(959\) 106.633 3.44336
\(960\) 0 0
\(961\) −20.4451 −0.659520
\(962\) −1.92689 −0.0621253
\(963\) 0 0
\(964\) 6.49151 0.209078
\(965\) 35.8517 1.15411
\(966\) 0 0
\(967\) −14.9595 −0.481065 −0.240532 0.970641i \(-0.577322\pi\)
−0.240532 + 0.970641i \(0.577322\pi\)
\(968\) 1.31861 0.0423818
\(969\) 0 0
\(970\) 1.49131 0.0478831
\(971\) −51.2684 −1.64528 −0.822641 0.568561i \(-0.807500\pi\)
−0.822641 + 0.568561i \(0.807500\pi\)
\(972\) 0 0
\(973\) −24.6198 −0.789273
\(974\) −2.69528 −0.0863625
\(975\) 0 0
\(976\) −18.2691 −0.584780
\(977\) −35.5301 −1.13671 −0.568355 0.822784i \(-0.692420\pi\)
−0.568355 + 0.822784i \(0.692420\pi\)
\(978\) 0 0
\(979\) 32.1922 1.02887
\(980\) −120.229 −3.84057
\(981\) 0 0
\(982\) 1.31617 0.0420005
\(983\) −58.2701 −1.85853 −0.929263 0.369419i \(-0.879557\pi\)
−0.929263 + 0.369419i \(0.879557\pi\)
\(984\) 0 0
\(985\) 46.8710 1.49344
\(986\) 0 0
\(987\) 0 0
\(988\) 19.9333 0.634163
\(989\) −1.97774 −0.0628884
\(990\) 0 0
\(991\) −2.86644 −0.0910556 −0.0455278 0.998963i \(-0.514497\pi\)
−0.0455278 + 0.998963i \(0.514497\pi\)
\(992\) 4.38208 0.139131
\(993\) 0 0
\(994\) −0.747532 −0.0237103
\(995\) 100.280 3.17910
\(996\) 0 0
\(997\) −38.1559 −1.20841 −0.604205 0.796829i \(-0.706509\pi\)
−0.604205 + 0.796829i \(0.706509\pi\)
\(998\) 0.0445123 0.00140901
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7803.2.a.cg.1.12 24
3.2 odd 2 7803.2.a.cd.1.13 24
17.5 odd 16 459.2.l.a.433.7 yes 48
17.7 odd 16 459.2.l.a.406.7 yes 48
17.16 even 2 7803.2.a.cd.1.12 24
51.5 even 16 459.2.l.a.433.6 yes 48
51.41 even 16 459.2.l.a.406.6 48
51.50 odd 2 inner 7803.2.a.cg.1.13 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.l.a.406.6 48 51.41 even 16
459.2.l.a.406.7 yes 48 17.7 odd 16
459.2.l.a.433.6 yes 48 51.5 even 16
459.2.l.a.433.7 yes 48 17.5 odd 16
7803.2.a.cd.1.12 24 17.16 even 2
7803.2.a.cd.1.13 24 3.2 odd 2
7803.2.a.cg.1.12 24 1.1 even 1 trivial
7803.2.a.cg.1.13 24 51.50 odd 2 inner