Properties

Label 459.2.l.a.406.6
Level $459$
Weight $2$
Character 459.406
Analytic conductor $3.665$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(298,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.298"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.l (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,-48,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 406.6
Character \(\chi\) \(=\) 459.406
Dual form 459.2.l.a.433.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0801657 - 0.0801657i) q^{2} -1.98715i q^{4} +(3.34287 - 1.38466i) q^{5} +(4.49973 + 1.86385i) q^{7} +(-0.319632 + 0.319632i) q^{8} +(-0.378985 - 0.156981i) q^{10} +(-1.42762 + 3.44659i) q^{11} -2.58136i q^{13} +(-0.211307 - 0.510141i) q^{14} -3.92305 q^{16} +(-3.41014 + 2.31754i) q^{17} +(2.74781 + 2.74781i) q^{19} +(-2.75152 - 6.64277i) q^{20} +(0.390745 - 0.161852i) q^{22} +(-0.547342 + 1.32140i) q^{23} +(5.72194 - 5.72194i) q^{25} +(-0.206936 + 0.206936i) q^{26} +(3.70374 - 8.94163i) q^{28} +(-7.31781 + 3.03114i) q^{29} +(-1.24327 - 3.00153i) q^{31} +(0.953759 + 0.953759i) q^{32} +(0.459163 + 0.0875890i) q^{34} +17.6228 q^{35} +(-2.51967 - 6.08303i) q^{37} -0.440560i q^{38} +(-0.625906 + 1.51107i) q^{40} +(-6.29901 - 2.60913i) q^{41} +(-0.977765 + 0.977765i) q^{43} +(6.84888 + 2.83690i) q^{44} +(0.149809 - 0.0620530i) q^{46} -7.36992i q^{47} +(11.8239 + 11.8239i) q^{49} -0.917406 q^{50} -5.12954 q^{52} +(3.65552 + 3.65552i) q^{53} +13.4983i q^{55} +(-2.03401 + 0.842513i) q^{56} +(0.829630 + 0.343644i) q^{58} +(4.57252 - 4.57252i) q^{59} +(-4.30238 - 1.78211i) q^{61} +(-0.140952 + 0.340287i) q^{62} +7.69318i q^{64} +(-3.57430 - 8.62913i) q^{65} -7.37261 q^{67} +(4.60529 + 6.77644i) q^{68} +(-1.41274 - 1.41274i) q^{70} +(-0.518078 - 1.25075i) q^{71} +(-10.5442 + 4.36755i) q^{73} +(-0.285659 + 0.689642i) q^{74} +(5.46029 - 5.46029i) q^{76} +(-12.8479 + 12.8479i) q^{77} +(-0.978074 + 2.36128i) q^{79} +(-13.1142 + 5.43209i) q^{80} +(0.295801 + 0.714127i) q^{82} +(-6.27135 - 6.27135i) q^{83} +(-8.19063 + 12.4691i) q^{85} +0.156766 q^{86} +(-0.645327 - 1.55796i) q^{88} -8.62930i q^{89} +(4.81126 - 11.6154i) q^{91} +(2.62582 + 1.08765i) q^{92} +(-0.590814 + 0.590814i) q^{94} +(12.9903 + 5.38077i) q^{95} +(-3.35874 + 1.39124i) q^{97} -1.89574i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 16 q^{10} - 48 q^{16} - 16 q^{19} - 24 q^{22} + 16 q^{25} + 24 q^{28} - 40 q^{31} + 64 q^{34} + 48 q^{37} - 48 q^{40} - 8 q^{43} + 24 q^{46} - 16 q^{49} + 32 q^{52} + 64 q^{58} - 24 q^{61} - 32 q^{67}+ \cdots - 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0801657 0.0801657i −0.0566857 0.0566857i 0.678196 0.734881i \(-0.262762\pi\)
−0.734881 + 0.678196i \(0.762762\pi\)
\(3\) 0 0
\(4\) 1.98715i 0.993573i
\(5\) 3.34287 1.38466i 1.49498 0.619239i 0.522582 0.852589i \(-0.324969\pi\)
0.972393 + 0.233350i \(0.0749687\pi\)
\(6\) 0 0
\(7\) 4.49973 + 1.86385i 1.70074 + 0.704469i 0.999960 0.00891072i \(-0.00283641\pi\)
0.700778 + 0.713380i \(0.252836\pi\)
\(8\) −0.319632 + 0.319632i −0.113007 + 0.113007i
\(9\) 0 0
\(10\) −0.378985 0.156981i −0.119846 0.0496417i
\(11\) −1.42762 + 3.44659i −0.430445 + 1.03919i 0.548699 + 0.836020i \(0.315123\pi\)
−0.979144 + 0.203166i \(0.934877\pi\)
\(12\) 0 0
\(13\) 2.58136i 0.715940i −0.933733 0.357970i \(-0.883469\pi\)
0.933733 0.357970i \(-0.116531\pi\)
\(14\) −0.211307 0.510141i −0.0564742 0.136341i
\(15\) 0 0
\(16\) −3.92305 −0.980762
\(17\) −3.41014 + 2.31754i −0.827079 + 0.562085i
\(18\) 0 0
\(19\) 2.74781 + 2.74781i 0.630390 + 0.630390i 0.948166 0.317776i \(-0.102936\pi\)
−0.317776 + 0.948166i \(0.602936\pi\)
\(20\) −2.75152 6.64277i −0.615259 1.48537i
\(21\) 0 0
\(22\) 0.390745 0.161852i 0.0833071 0.0345069i
\(23\) −0.547342 + 1.32140i −0.114129 + 0.275531i −0.970615 0.240639i \(-0.922643\pi\)
0.856486 + 0.516170i \(0.172643\pi\)
\(24\) 0 0
\(25\) 5.72194 5.72194i 1.14439 1.14439i
\(26\) −0.206936 + 0.206936i −0.0405835 + 0.0405835i
\(27\) 0 0
\(28\) 3.70374 8.94163i 0.699942 1.68981i
\(29\) −7.31781 + 3.03114i −1.35888 + 0.562868i −0.938751 0.344595i \(-0.888016\pi\)
−0.420132 + 0.907463i \(0.638016\pi\)
\(30\) 0 0
\(31\) −1.24327 3.00153i −0.223298 0.539090i 0.772036 0.635579i \(-0.219239\pi\)
−0.995334 + 0.0964891i \(0.969239\pi\)
\(32\) 0.953759 + 0.953759i 0.168602 + 0.168602i
\(33\) 0 0
\(34\) 0.459163 + 0.0875890i 0.0787458 + 0.0150214i
\(35\) 17.6228 2.97880
\(36\) 0 0
\(37\) −2.51967 6.08303i −0.414232 1.00004i −0.983989 0.178231i \(-0.942963\pi\)
0.569757 0.821813i \(-0.307037\pi\)
\(38\) 0.440560i 0.0714682i
\(39\) 0 0
\(40\) −0.625906 + 1.51107i −0.0989644 + 0.238921i
\(41\) −6.29901 2.60913i −0.983740 0.407478i −0.167930 0.985799i \(-0.553708\pi\)
−0.815810 + 0.578321i \(0.803708\pi\)
\(42\) 0 0
\(43\) −0.977765 + 0.977765i −0.149108 + 0.149108i −0.777719 0.628612i \(-0.783624\pi\)
0.628612 + 0.777719i \(0.283624\pi\)
\(44\) 6.84888 + 2.83690i 1.03251 + 0.427679i
\(45\) 0 0
\(46\) 0.149809 0.0620530i 0.0220881 0.00914921i
\(47\) 7.36992i 1.07501i −0.843260 0.537506i \(-0.819366\pi\)
0.843260 0.537506i \(-0.180634\pi\)
\(48\) 0 0
\(49\) 11.8239 + 11.8239i 1.68913 + 1.68913i
\(50\) −0.917406 −0.129741
\(51\) 0 0
\(52\) −5.12954 −0.711339
\(53\) 3.65552 + 3.65552i 0.502124 + 0.502124i 0.912098 0.409973i \(-0.134462\pi\)
−0.409973 + 0.912098i \(0.634462\pi\)
\(54\) 0 0
\(55\) 13.4983i 1.82011i
\(56\) −2.03401 + 0.842513i −0.271805 + 0.112586i
\(57\) 0 0
\(58\) 0.829630 + 0.343644i 0.108936 + 0.0451227i
\(59\) 4.57252 4.57252i 0.595292 0.595292i −0.343764 0.939056i \(-0.611702\pi\)
0.939056 + 0.343764i \(0.111702\pi\)
\(60\) 0 0
\(61\) −4.30238 1.78211i −0.550864 0.228175i 0.0898497 0.995955i \(-0.471361\pi\)
−0.640713 + 0.767780i \(0.721361\pi\)
\(62\) −0.140952 + 0.340287i −0.0179009 + 0.0432165i
\(63\) 0 0
\(64\) 7.69318i 0.961647i
\(65\) −3.57430 8.62913i −0.443338 1.07031i
\(66\) 0 0
\(67\) −7.37261 −0.900708 −0.450354 0.892850i \(-0.648702\pi\)
−0.450354 + 0.892850i \(0.648702\pi\)
\(68\) 4.60529 + 6.77644i 0.558473 + 0.821764i
\(69\) 0 0
\(70\) −1.41274 1.41274i −0.168855 0.168855i
\(71\) −0.518078 1.25075i −0.0614845 0.148437i 0.890151 0.455665i \(-0.150598\pi\)
−0.951636 + 0.307228i \(0.900598\pi\)
\(72\) 0 0
\(73\) −10.5442 + 4.36755i −1.23411 + 0.511184i −0.901868 0.432012i \(-0.857804\pi\)
−0.332238 + 0.943195i \(0.607804\pi\)
\(74\) −0.285659 + 0.689642i −0.0332072 + 0.0801692i
\(75\) 0 0
\(76\) 5.46029 5.46029i 0.626339 0.626339i
\(77\) −12.8479 + 12.8479i −1.46415 + 1.46415i
\(78\) 0 0
\(79\) −0.978074 + 2.36128i −0.110042 + 0.265665i −0.969302 0.245875i \(-0.920925\pi\)
0.859260 + 0.511540i \(0.170925\pi\)
\(80\) −13.1142 + 5.43209i −1.46621 + 0.607326i
\(81\) 0 0
\(82\) 0.295801 + 0.714127i 0.0326658 + 0.0788622i
\(83\) −6.27135 6.27135i −0.688371 0.688371i 0.273501 0.961872i \(-0.411818\pi\)
−0.961872 + 0.273501i \(0.911818\pi\)
\(84\) 0 0
\(85\) −8.19063 + 12.4691i −0.888398 + 1.35246i
\(86\) 0.156766 0.0169046
\(87\) 0 0
\(88\) −0.645327 1.55796i −0.0687921 0.166079i
\(89\) 8.62930i 0.914704i −0.889286 0.457352i \(-0.848798\pi\)
0.889286 0.457352i \(-0.151202\pi\)
\(90\) 0 0
\(91\) 4.81126 11.6154i 0.504357 1.21763i
\(92\) 2.62582 + 1.08765i 0.273760 + 0.113395i
\(93\) 0 0
\(94\) −0.590814 + 0.590814i −0.0609379 + 0.0609379i
\(95\) 12.9903 + 5.38077i 1.33278 + 0.552055i
\(96\) 0 0
\(97\) −3.35874 + 1.39124i −0.341029 + 0.141259i −0.546623 0.837379i \(-0.684087\pi\)
0.205595 + 0.978637i \(0.434087\pi\)
\(98\) 1.89574i 0.191499i
\(99\) 0 0
\(100\) −11.3703 11.3703i −1.13703 1.13703i
\(101\) 2.32609 0.231455 0.115728 0.993281i \(-0.463080\pi\)
0.115728 + 0.993281i \(0.463080\pi\)
\(102\) 0 0
\(103\) 4.01072 0.395188 0.197594 0.980284i \(-0.436687\pi\)
0.197594 + 0.980284i \(0.436687\pi\)
\(104\) 0.825085 + 0.825085i 0.0809063 + 0.0809063i
\(105\) 0 0
\(106\) 0.586095i 0.0569265i
\(107\) −4.62870 + 1.91727i −0.447474 + 0.185350i −0.595029 0.803704i \(-0.702860\pi\)
0.147555 + 0.989054i \(0.452860\pi\)
\(108\) 0 0
\(109\) 8.07699 + 3.34560i 0.773635 + 0.320450i 0.734344 0.678778i \(-0.237490\pi\)
0.0392911 + 0.999228i \(0.487490\pi\)
\(110\) 1.08210 1.08210i 0.103174 0.103174i
\(111\) 0 0
\(112\) −17.6527 7.31197i −1.66802 0.690916i
\(113\) 2.01362 4.86132i 0.189426 0.457314i −0.800424 0.599435i \(-0.795392\pi\)
0.989849 + 0.142121i \(0.0453921\pi\)
\(114\) 0 0
\(115\) 5.17515i 0.482585i
\(116\) 6.02331 + 14.5416i 0.559251 + 1.35015i
\(117\) 0 0
\(118\) −0.733119 −0.0674891
\(119\) −19.6642 + 4.07231i −1.80262 + 0.373308i
\(120\) 0 0
\(121\) −2.06270 2.06270i −0.187518 0.187518i
\(122\) 0.202040 + 0.487767i 0.0182918 + 0.0441604i
\(123\) 0 0
\(124\) −5.96448 + 2.47057i −0.535626 + 0.221863i
\(125\) 4.28142 10.3363i 0.382942 0.924504i
\(126\) 0 0
\(127\) −2.21554 + 2.21554i −0.196597 + 0.196597i −0.798540 0.601942i \(-0.794394\pi\)
0.601942 + 0.798540i \(0.294394\pi\)
\(128\) 2.52425 2.52425i 0.223114 0.223114i
\(129\) 0 0
\(130\) −0.405224 + 0.978297i −0.0355405 + 0.0858023i
\(131\) 2.25005 0.932002i 0.196588 0.0814294i −0.282217 0.959350i \(-0.591070\pi\)
0.478805 + 0.877921i \(0.341070\pi\)
\(132\) 0 0
\(133\) 7.24289 + 17.4859i 0.628038 + 1.51622i
\(134\) 0.591031 + 0.591031i 0.0510573 + 0.0510573i
\(135\) 0 0
\(136\) 0.349230 1.83075i 0.0299462 0.156985i
\(137\) 21.8938 1.87051 0.935256 0.353971i \(-0.115169\pi\)
0.935256 + 0.353971i \(0.115169\pi\)
\(138\) 0 0
\(139\) −1.93443 4.67012i −0.164076 0.396114i 0.820363 0.571844i \(-0.193772\pi\)
−0.984439 + 0.175729i \(0.943772\pi\)
\(140\) 35.0191i 2.95965i
\(141\) 0 0
\(142\) −0.0587352 + 0.141799i −0.00492895 + 0.0118995i
\(143\) 8.89688 + 3.68521i 0.743995 + 0.308173i
\(144\) 0 0
\(145\) −20.2654 + 20.2654i −1.68295 + 1.68295i
\(146\) 1.19541 + 0.495156i 0.0989330 + 0.0409794i
\(147\) 0 0
\(148\) −12.0879 + 5.00696i −0.993617 + 0.411570i
\(149\) 21.1635i 1.73378i 0.498497 + 0.866891i \(0.333885\pi\)
−0.498497 + 0.866891i \(0.666115\pi\)
\(150\) 0 0
\(151\) 4.40041 + 4.40041i 0.358100 + 0.358100i 0.863112 0.505012i \(-0.168512\pi\)
−0.505012 + 0.863112i \(0.668512\pi\)
\(152\) −1.75658 −0.142477
\(153\) 0 0
\(154\) 2.05991 0.165993
\(155\) −8.31219 8.31219i −0.667651 0.667651i
\(156\) 0 0
\(157\) 8.20400i 0.654751i −0.944894 0.327375i \(-0.893836\pi\)
0.944894 0.327375i \(-0.106164\pi\)
\(158\) 0.267702 0.110886i 0.0212972 0.00882159i
\(159\) 0 0
\(160\) 4.50892 + 1.86766i 0.356461 + 0.147651i
\(161\) −4.92579 + 4.92579i −0.388206 + 0.388206i
\(162\) 0 0
\(163\) 14.7382 + 6.10477i 1.15439 + 0.478163i 0.876002 0.482307i \(-0.160201\pi\)
0.278385 + 0.960470i \(0.410201\pi\)
\(164\) −5.18473 + 12.5171i −0.404860 + 0.977418i
\(165\) 0 0
\(166\) 1.00549i 0.0780415i
\(167\) 6.05669 + 14.6221i 0.468681 + 1.13150i 0.964740 + 0.263206i \(0.0847800\pi\)
−0.496059 + 0.868289i \(0.665220\pi\)
\(168\) 0 0
\(169\) 6.33660 0.487430
\(170\) 1.65620 0.342986i 0.127025 0.0263058i
\(171\) 0 0
\(172\) 1.94296 + 1.94296i 0.148150 + 0.148150i
\(173\) 7.66748 + 18.5109i 0.582948 + 1.40736i 0.890129 + 0.455709i \(0.150614\pi\)
−0.307181 + 0.951651i \(0.599386\pi\)
\(174\) 0 0
\(175\) 36.4120 15.0823i 2.75249 1.14012i
\(176\) 5.60064 13.5211i 0.422164 1.01919i
\(177\) 0 0
\(178\) −0.691774 + 0.691774i −0.0518507 + 0.0518507i
\(179\) 13.0791 13.0791i 0.977581 0.977581i −0.0221730 0.999754i \(-0.507058\pi\)
0.999754 + 0.0221730i \(0.00705846\pi\)
\(180\) 0 0
\(181\) 1.85648 4.48194i 0.137991 0.333140i −0.839744 0.542982i \(-0.817295\pi\)
0.977735 + 0.209842i \(0.0672951\pi\)
\(182\) −1.31686 + 0.545459i −0.0976118 + 0.0404321i
\(183\) 0 0
\(184\) −0.247414 0.597311i −0.0182396 0.0440343i
\(185\) −16.8459 16.8459i −1.23853 1.23853i
\(186\) 0 0
\(187\) −3.11921 15.0619i −0.228099 1.10144i
\(188\) −14.6451 −1.06810
\(189\) 0 0
\(190\) −0.610025 1.47273i −0.0442559 0.106843i
\(191\) 4.66086i 0.337248i 0.985680 + 0.168624i \(0.0539323\pi\)
−0.985680 + 0.168624i \(0.946068\pi\)
\(192\) 0 0
\(193\) −3.79180 + 9.15422i −0.272940 + 0.658935i −0.999606 0.0280551i \(-0.991069\pi\)
0.726666 + 0.686990i \(0.241069\pi\)
\(194\) 0.380785 + 0.157726i 0.0273388 + 0.0113241i
\(195\) 0 0
\(196\) 23.4958 23.4958i 1.67827 1.67827i
\(197\) −11.9679 4.95725i −0.852674 0.353189i −0.0868362 0.996223i \(-0.527676\pi\)
−0.765838 + 0.643033i \(0.777676\pi\)
\(198\) 0 0
\(199\) 25.6051 10.6060i 1.81510 0.751839i 0.835919 0.548853i \(-0.184935\pi\)
0.979182 0.202987i \(-0.0650648\pi\)
\(200\) 3.65783i 0.258648i
\(201\) 0 0
\(202\) −0.186473 0.186473i −0.0131202 0.0131202i
\(203\) −38.5778 −2.70763
\(204\) 0 0
\(205\) −24.6695 −1.72299
\(206\) −0.321522 0.321522i −0.0224015 0.0224015i
\(207\) 0 0
\(208\) 10.1268i 0.702166i
\(209\) −13.3934 + 5.54773i −0.926441 + 0.383744i
\(210\) 0 0
\(211\) −20.9994 8.69824i −1.44566 0.598812i −0.484496 0.874793i \(-0.660997\pi\)
−0.961163 + 0.275982i \(0.910997\pi\)
\(212\) 7.26406 7.26406i 0.498897 0.498897i
\(213\) 0 0
\(214\) 0.524763 + 0.217364i 0.0358720 + 0.0148587i
\(215\) −1.91467 + 4.62241i −0.130579 + 0.315246i
\(216\) 0 0
\(217\) 15.8233i 1.07416i
\(218\) −0.379295 0.915699i −0.0256891 0.0620190i
\(219\) 0 0
\(220\) 26.8230 1.80841
\(221\) 5.98239 + 8.80278i 0.402419 + 0.592139i
\(222\) 0 0
\(223\) 8.50375 + 8.50375i 0.569453 + 0.569453i 0.931975 0.362522i \(-0.118084\pi\)
−0.362522 + 0.931975i \(0.618084\pi\)
\(224\) 2.51399 + 6.06932i 0.167973 + 0.405523i
\(225\) 0 0
\(226\) −0.551134 + 0.228287i −0.0366609 + 0.0151854i
\(227\) 5.65533 13.6532i 0.375357 0.906192i −0.617466 0.786598i \(-0.711841\pi\)
0.992823 0.119595i \(-0.0381595\pi\)
\(228\) 0 0
\(229\) −10.0487 + 10.0487i −0.664039 + 0.664039i −0.956330 0.292291i \(-0.905583\pi\)
0.292291 + 0.956330i \(0.405583\pi\)
\(230\) 0.414870 0.414870i 0.0273557 0.0273557i
\(231\) 0 0
\(232\) 1.37016 3.30786i 0.0899554 0.217172i
\(233\) 7.96496 3.29919i 0.521802 0.216137i −0.106206 0.994344i \(-0.533870\pi\)
0.628008 + 0.778207i \(0.283870\pi\)
\(234\) 0 0
\(235\) −10.2048 24.6366i −0.665690 1.60712i
\(236\) −9.08628 9.08628i −0.591466 0.591466i
\(237\) 0 0
\(238\) 1.90286 + 1.24994i 0.123344 + 0.0810214i
\(239\) 16.0848 1.04044 0.520221 0.854032i \(-0.325850\pi\)
0.520221 + 0.854032i \(0.325850\pi\)
\(240\) 0 0
\(241\) 1.25013 + 3.01808i 0.0805280 + 0.194412i 0.959016 0.283353i \(-0.0914469\pi\)
−0.878488 + 0.477765i \(0.841447\pi\)
\(242\) 0.330716i 0.0212592i
\(243\) 0 0
\(244\) −3.54131 + 8.54947i −0.226709 + 0.547324i
\(245\) 55.8978 + 23.1536i 3.57118 + 1.47923i
\(246\) 0 0
\(247\) 7.09307 7.09307i 0.451321 0.451321i
\(248\) 1.35678 + 0.561995i 0.0861553 + 0.0356867i
\(249\) 0 0
\(250\) −1.17184 + 0.485391i −0.0741135 + 0.0306988i
\(251\) 0.393311i 0.0248256i −0.999923 0.0124128i \(-0.996049\pi\)
0.999923 0.0124128i \(-0.00395121\pi\)
\(252\) 0 0
\(253\) −3.77293 3.77293i −0.237202 0.237202i
\(254\) 0.355220 0.0222885
\(255\) 0 0
\(256\) 14.9816 0.936352
\(257\) −1.08185 1.08185i −0.0674841 0.0674841i 0.672559 0.740043i \(-0.265195\pi\)
−0.740043 + 0.672559i \(0.765195\pi\)
\(258\) 0 0
\(259\) 32.0683i 1.99263i
\(260\) −17.1474 + 7.10267i −1.06343 + 0.440489i
\(261\) 0 0
\(262\) −0.255092 0.105662i −0.0157596 0.00652785i
\(263\) −7.33600 + 7.33600i −0.452357 + 0.452357i −0.896136 0.443779i \(-0.853637\pi\)
0.443779 + 0.896136i \(0.353637\pi\)
\(264\) 0 0
\(265\) 17.2816 + 7.15826i 1.06160 + 0.439728i
\(266\) 0.821137 1.98240i 0.0503471 0.121549i
\(267\) 0 0
\(268\) 14.6505i 0.894920i
\(269\) −10.9570 26.4525i −0.668059 1.61284i −0.784854 0.619681i \(-0.787262\pi\)
0.116795 0.993156i \(-0.462738\pi\)
\(270\) 0 0
\(271\) −3.90958 −0.237490 −0.118745 0.992925i \(-0.537887\pi\)
−0.118745 + 0.992925i \(0.537887\pi\)
\(272\) 13.3781 9.09180i 0.811168 0.551272i
\(273\) 0 0
\(274\) −1.75513 1.75513i −0.106031 0.106031i
\(275\) 11.5524 + 27.8899i 0.696635 + 1.68183i
\(276\) 0 0
\(277\) −16.4926 + 6.83146i −0.990944 + 0.410462i −0.818469 0.574551i \(-0.805177\pi\)
−0.172475 + 0.985014i \(0.555177\pi\)
\(278\) −0.219309 + 0.529458i −0.0131533 + 0.0317548i
\(279\) 0 0
\(280\) −5.63282 + 5.63282i −0.336625 + 0.336625i
\(281\) 18.8752 18.8752i 1.12600 1.12600i 0.135182 0.990821i \(-0.456838\pi\)
0.990821 0.135182i \(-0.0431619\pi\)
\(282\) 0 0
\(283\) −7.01288 + 16.9306i −0.416872 + 1.00642i 0.566376 + 0.824147i \(0.308345\pi\)
−0.983248 + 0.182272i \(0.941655\pi\)
\(284\) −2.48542 + 1.02950i −0.147483 + 0.0610894i
\(285\) 0 0
\(286\) −0.417797 1.00865i −0.0247049 0.0596428i
\(287\) −23.4808 23.4808i −1.38603 1.38603i
\(288\) 0 0
\(289\) 6.25805 15.8062i 0.368121 0.929778i
\(290\) 3.24917 0.190798
\(291\) 0 0
\(292\) 8.67897 + 20.9529i 0.507898 + 1.22618i
\(293\) 16.6305i 0.971564i −0.874080 0.485782i \(-0.838535\pi\)
0.874080 0.485782i \(-0.161465\pi\)
\(294\) 0 0
\(295\) 8.95394 21.6167i 0.521319 1.25857i
\(296\) 2.74970 + 1.13896i 0.159823 + 0.0662010i
\(297\) 0 0
\(298\) 1.69659 1.69659i 0.0982807 0.0982807i
\(299\) 3.41101 + 1.41289i 0.197264 + 0.0817093i
\(300\) 0 0
\(301\) −6.22209 + 2.57727i −0.358635 + 0.148552i
\(302\) 0.705524i 0.0405983i
\(303\) 0 0
\(304\) −10.7798 10.7798i −0.618262 0.618262i
\(305\) −16.8499 −0.964823
\(306\) 0 0
\(307\) 27.9347 1.59432 0.797158 0.603771i \(-0.206336\pi\)
0.797158 + 0.603771i \(0.206336\pi\)
\(308\) 25.5306 + 25.5306i 1.45474 + 1.45474i
\(309\) 0 0
\(310\) 1.33271i 0.0756926i
\(311\) −11.8431 + 4.90558i −0.671561 + 0.278170i −0.692294 0.721615i \(-0.743400\pi\)
0.0207330 + 0.999785i \(0.493400\pi\)
\(312\) 0 0
\(313\) 0.211315 + 0.0875297i 0.0119443 + 0.00494747i 0.388648 0.921386i \(-0.372942\pi\)
−0.376703 + 0.926334i \(0.622942\pi\)
\(314\) −0.657680 + 0.657680i −0.0371150 + 0.0371150i
\(315\) 0 0
\(316\) 4.69221 + 1.94358i 0.263957 + 0.109335i
\(317\) −4.88171 + 11.7855i −0.274184 + 0.661939i −0.999654 0.0263150i \(-0.991623\pi\)
0.725469 + 0.688254i \(0.241623\pi\)
\(318\) 0 0
\(319\) 29.5488i 1.65442i
\(320\) 10.6524 + 25.7173i 0.595489 + 1.43764i
\(321\) 0 0
\(322\) 0.789758 0.0440115
\(323\) −15.7385 3.00225i −0.875715 0.167050i
\(324\) 0 0
\(325\) −14.7704 14.7704i −0.819312 0.819312i
\(326\) −0.692107 1.67089i −0.0383323 0.0925423i
\(327\) 0 0
\(328\) 2.84733 1.17940i 0.157218 0.0651216i
\(329\) 13.7364 33.1626i 0.757313 1.82832i
\(330\) 0 0
\(331\) −2.85034 + 2.85034i −0.156669 + 0.156669i −0.781089 0.624420i \(-0.785335\pi\)
0.624420 + 0.781089i \(0.285335\pi\)
\(332\) −12.4621 + 12.4621i −0.683947 + 0.683947i
\(333\) 0 0
\(334\) 0.686655 1.65773i 0.0375721 0.0907071i
\(335\) −24.6457 + 10.2086i −1.34654 + 0.557754i
\(336\) 0 0
\(337\) 1.25974 + 3.04128i 0.0686223 + 0.165669i 0.954470 0.298308i \(-0.0964222\pi\)
−0.885847 + 0.463977i \(0.846422\pi\)
\(338\) −0.507978 0.507978i −0.0276303 0.0276303i
\(339\) 0 0
\(340\) 24.7779 + 16.2760i 1.34377 + 0.882689i
\(341\) 12.1200 0.656333
\(342\) 0 0
\(343\) 18.1194 + 43.7442i 0.978357 + 2.36196i
\(344\) 0.625051i 0.0337005i
\(345\) 0 0
\(346\) 0.869273 2.09861i 0.0467324 0.112822i
\(347\) 9.65633 + 3.99978i 0.518379 + 0.214719i 0.626505 0.779418i \(-0.284485\pi\)
−0.108126 + 0.994137i \(0.534485\pi\)
\(348\) 0 0
\(349\) 0.354817 0.354817i 0.0189929 0.0189929i −0.697547 0.716539i \(-0.745725\pi\)
0.716539 + 0.697547i \(0.245725\pi\)
\(350\) −4.12808 1.70991i −0.220655 0.0913983i
\(351\) 0 0
\(352\) −4.64882 + 1.92561i −0.247783 + 0.102635i
\(353\) 29.9020i 1.59152i −0.605611 0.795761i \(-0.707071\pi\)
0.605611 0.795761i \(-0.292929\pi\)
\(354\) 0 0
\(355\) −3.46373 3.46373i −0.183836 0.183836i
\(356\) −17.1477 −0.908826
\(357\) 0 0
\(358\) −2.09700 −0.110830
\(359\) −9.63876 9.63876i −0.508714 0.508714i 0.405417 0.914132i \(-0.367126\pi\)
−0.914132 + 0.405417i \(0.867126\pi\)
\(360\) 0 0
\(361\) 3.89912i 0.205217i
\(362\) −0.508124 + 0.210472i −0.0267064 + 0.0110621i
\(363\) 0 0
\(364\) −23.0815 9.56068i −1.20980 0.501116i
\(365\) −29.2003 + 29.2003i −1.52841 + 1.52841i
\(366\) 0 0
\(367\) 12.3474 + 5.11447i 0.644530 + 0.266973i 0.680912 0.732365i \(-0.261583\pi\)
−0.0363823 + 0.999338i \(0.511583\pi\)
\(368\) 2.14725 5.18392i 0.111933 0.270230i
\(369\) 0 0
\(370\) 2.70092i 0.140414i
\(371\) 9.63552 + 23.2622i 0.500251 + 1.20771i
\(372\) 0 0
\(373\) −16.3768 −0.847961 −0.423980 0.905671i \(-0.639367\pi\)
−0.423980 + 0.905671i \(0.639367\pi\)
\(374\) −0.957395 + 1.45750i −0.0495057 + 0.0753656i
\(375\) 0 0
\(376\) 2.35566 + 2.35566i 0.121484 + 0.121484i
\(377\) 7.82445 + 18.8899i 0.402979 + 0.972878i
\(378\) 0 0
\(379\) −19.6644 + 8.14528i −1.01009 + 0.418395i −0.825489 0.564418i \(-0.809101\pi\)
−0.184605 + 0.982813i \(0.559101\pi\)
\(380\) 10.6924 25.8137i 0.548508 1.32421i
\(381\) 0 0
\(382\) 0.373641 0.373641i 0.0191171 0.0191171i
\(383\) −6.90474 + 6.90474i −0.352816 + 0.352816i −0.861156 0.508340i \(-0.830259\pi\)
0.508340 + 0.861156i \(0.330259\pi\)
\(384\) 0 0
\(385\) −25.1587 + 60.7386i −1.28221 + 3.09552i
\(386\) 1.03783 0.429882i 0.0528240 0.0218804i
\(387\) 0 0
\(388\) 2.76459 + 6.67431i 0.140351 + 0.338837i
\(389\) 0.129554 + 0.129554i 0.00656866 + 0.00656866i 0.710383 0.703815i \(-0.248522\pi\)
−0.703815 + 0.710383i \(0.748522\pi\)
\(390\) 0 0
\(391\) −1.19588 5.77464i −0.0604784 0.292036i
\(392\) −7.55860 −0.381767
\(393\) 0 0
\(394\) 0.562010 + 1.35681i 0.0283137 + 0.0683552i
\(395\) 9.24774i 0.465304i
\(396\) 0 0
\(397\) −10.3800 + 25.0595i −0.520957 + 1.25770i 0.416352 + 0.909203i \(0.363308\pi\)
−0.937309 + 0.348499i \(0.886692\pi\)
\(398\) −2.90289 1.20242i −0.145509 0.0602717i
\(399\) 0 0
\(400\) −22.4474 + 22.4474i −1.12237 + 1.12237i
\(401\) −23.1218 9.57735i −1.15465 0.478270i −0.278557 0.960420i \(-0.589856\pi\)
−0.876089 + 0.482150i \(0.839856\pi\)
\(402\) 0 0
\(403\) −7.74801 + 3.20933i −0.385956 + 0.159868i
\(404\) 4.62229i 0.229968i
\(405\) 0 0
\(406\) 3.09261 + 3.09261i 0.153484 + 0.153484i
\(407\) 24.5629 1.21754
\(408\) 0 0
\(409\) 2.02920 0.100337 0.0501687 0.998741i \(-0.484024\pi\)
0.0501687 + 0.998741i \(0.484024\pi\)
\(410\) 1.97765 + 1.97765i 0.0976691 + 0.0976691i
\(411\) 0 0
\(412\) 7.96990i 0.392649i
\(413\) 29.0976 12.0526i 1.43180 0.593071i
\(414\) 0 0
\(415\) −29.6480 12.2806i −1.45536 0.602831i
\(416\) 2.46199 2.46199i 0.120709 0.120709i
\(417\) 0 0
\(418\) 1.51843 + 0.628954i 0.0742688 + 0.0307631i
\(419\) 3.28491 7.93049i 0.160479 0.387430i −0.823103 0.567892i \(-0.807759\pi\)
0.983582 + 0.180462i \(0.0577593\pi\)
\(420\) 0 0
\(421\) 15.1592i 0.738815i −0.929267 0.369408i \(-0.879561\pi\)
0.929267 0.369408i \(-0.120439\pi\)
\(422\) 0.986132 + 2.38073i 0.0480041 + 0.115892i
\(423\) 0 0
\(424\) −2.33685 −0.113487
\(425\) −6.25178 + 32.7734i −0.303256 + 1.58974i
\(426\) 0 0
\(427\) −16.0380 16.0380i −0.776133 0.776133i
\(428\) 3.80990 + 9.19792i 0.184159 + 0.444598i
\(429\) 0 0
\(430\) 0.524049 0.217068i 0.0252719 0.0104680i
\(431\) 11.3632 27.4331i 0.547345 1.32141i −0.372102 0.928192i \(-0.621363\pi\)
0.919447 0.393215i \(-0.128637\pi\)
\(432\) 0 0
\(433\) −11.2374 + 11.2374i −0.540037 + 0.540037i −0.923540 0.383503i \(-0.874718\pi\)
0.383503 + 0.923540i \(0.374718\pi\)
\(434\) −1.26849 + 1.26849i −0.0608894 + 0.0608894i
\(435\) 0 0
\(436\) 6.64819 16.0502i 0.318391 0.768663i
\(437\) −5.13495 + 2.12696i −0.245638 + 0.101746i
\(438\) 0 0
\(439\) −3.93225 9.49330i −0.187676 0.453091i 0.801835 0.597545i \(-0.203857\pi\)
−0.989511 + 0.144455i \(0.953857\pi\)
\(440\) −4.31448 4.31448i −0.205685 0.205685i
\(441\) 0 0
\(442\) 0.226098 1.18526i 0.0107544 0.0563772i
\(443\) −4.79437 −0.227787 −0.113894 0.993493i \(-0.536332\pi\)
−0.113894 + 0.993493i \(0.536332\pi\)
\(444\) 0 0
\(445\) −11.9487 28.8466i −0.566421 1.36746i
\(446\) 1.36342i 0.0645597i
\(447\) 0 0
\(448\) −14.3389 + 34.6172i −0.677450 + 1.63551i
\(449\) 17.6923 + 7.32837i 0.834949 + 0.345847i 0.758860 0.651254i \(-0.225757\pi\)
0.0760891 + 0.997101i \(0.475757\pi\)
\(450\) 0 0
\(451\) 17.9852 17.9852i 0.846892 0.846892i
\(452\) −9.66015 4.00137i −0.454375 0.188208i
\(453\) 0 0
\(454\) −1.54788 + 0.641152i −0.0726455 + 0.0300908i
\(455\) 45.4907i 2.13264i
\(456\) 0 0
\(457\) −3.68753 3.68753i −0.172495 0.172495i 0.615579 0.788075i \(-0.288922\pi\)
−0.788075 + 0.615579i \(0.788922\pi\)
\(458\) 1.61113 0.0752830
\(459\) 0 0
\(460\) 10.2838 0.479484
\(461\) −13.1053 13.1053i −0.610374 0.610374i 0.332670 0.943043i \(-0.392051\pi\)
−0.943043 + 0.332670i \(0.892051\pi\)
\(462\) 0 0
\(463\) 36.3578i 1.68969i 0.535009 + 0.844846i \(0.320308\pi\)
−0.535009 + 0.844846i \(0.679692\pi\)
\(464\) 28.7081 11.8913i 1.33274 0.552039i
\(465\) 0 0
\(466\) −0.902999 0.374034i −0.0418306 0.0173268i
\(467\) 10.8866 10.8866i 0.503772 0.503772i −0.408836 0.912608i \(-0.634065\pi\)
0.912608 + 0.408836i \(0.134065\pi\)
\(468\) 0 0
\(469\) −33.1748 13.7414i −1.53187 0.634521i
\(470\) −1.15694 + 2.79309i −0.0533655 + 0.128836i
\(471\) 0 0
\(472\) 2.92305i 0.134544i
\(473\) −1.97407 4.76584i −0.0907681 0.219133i
\(474\) 0 0
\(475\) 31.4455 1.44282
\(476\) 8.09228 + 39.0757i 0.370909 + 1.79103i
\(477\) 0 0
\(478\) −1.28945 1.28945i −0.0589782 0.0589782i
\(479\) 5.31206 + 12.8244i 0.242714 + 0.585964i 0.997551 0.0699493i \(-0.0222838\pi\)
−0.754836 + 0.655913i \(0.772284\pi\)
\(480\) 0 0
\(481\) −15.7025 + 6.50418i −0.715971 + 0.296565i
\(482\) 0.141729 0.342164i 0.00645559 0.0155852i
\(483\) 0 0
\(484\) −4.09889 + 4.09889i −0.186313 + 0.186313i
\(485\) −9.30143 + 9.30143i −0.422356 + 0.422356i
\(486\) 0 0
\(487\) 9.09789 21.9642i 0.412265 0.995295i −0.572264 0.820070i \(-0.693935\pi\)
0.984528 0.175225i \(-0.0560654\pi\)
\(488\) 1.94480 0.805562i 0.0880369 0.0364661i
\(489\) 0 0
\(490\) −2.62496 6.33721i −0.118583 0.286286i
\(491\) 8.20903 + 8.20903i 0.370468 + 0.370468i 0.867648 0.497179i \(-0.165631\pi\)
−0.497179 + 0.867648i \(0.665631\pi\)
\(492\) 0 0
\(493\) 17.9300 27.2959i 0.807525 1.22934i
\(494\) −1.13724 −0.0511669
\(495\) 0 0
\(496\) 4.87742 + 11.7751i 0.219003 + 0.528719i
\(497\) 6.59366i 0.295766i
\(498\) 0 0
\(499\) 0.150251 0.362737i 0.00672614 0.0162383i −0.920481 0.390788i \(-0.872203\pi\)
0.927207 + 0.374549i \(0.122203\pi\)
\(500\) −20.5397 8.50782i −0.918563 0.380481i
\(501\) 0 0
\(502\) −0.0315300 + 0.0315300i −0.00140725 + 0.00140725i
\(503\) 22.8920 + 9.48218i 1.02070 + 0.422789i 0.829349 0.558732i \(-0.188712\pi\)
0.191355 + 0.981521i \(0.438712\pi\)
\(504\) 0 0
\(505\) 7.77582 3.22085i 0.346020 0.143326i
\(506\) 0.604919i 0.0268919i
\(507\) 0 0
\(508\) 4.40260 + 4.40260i 0.195334 + 0.195334i
\(509\) 17.1712 0.761100 0.380550 0.924760i \(-0.375735\pi\)
0.380550 + 0.924760i \(0.375735\pi\)
\(510\) 0 0
\(511\) −55.5866 −2.45900
\(512\) −6.24950 6.24950i −0.276192 0.276192i
\(513\) 0 0
\(514\) 0.173455i 0.00765077i
\(515\) 13.4073 5.55349i 0.590797 0.244716i
\(516\) 0 0
\(517\) 25.4011 + 10.5215i 1.11714 + 0.462734i
\(518\) −2.57078 + 2.57078i −0.112953 + 0.112953i
\(519\) 0 0
\(520\) 3.90061 + 1.61569i 0.171053 + 0.0708525i
\(521\) −11.5679 + 27.9275i −0.506801 + 1.22353i 0.438914 + 0.898529i \(0.355363\pi\)
−0.945715 + 0.324997i \(0.894637\pi\)
\(522\) 0 0
\(523\) 32.1131i 1.40421i 0.712074 + 0.702104i \(0.247756\pi\)
−0.712074 + 0.702104i \(0.752244\pi\)
\(524\) −1.85203 4.47119i −0.0809061 0.195325i
\(525\) 0 0
\(526\) 1.17619 0.0512843
\(527\) 11.1959 + 7.35428i 0.487700 + 0.320358i
\(528\) 0 0
\(529\) 14.8169 + 14.8169i 0.644215 + 0.644215i
\(530\) −0.811542 1.95924i −0.0352511 0.0851038i
\(531\) 0 0
\(532\) 34.7470 14.3927i 1.50647 0.624002i
\(533\) −6.73511 + 16.2600i −0.291730 + 0.704298i
\(534\) 0 0
\(535\) −12.8184 + 12.8184i −0.554186 + 0.554186i
\(536\) 2.35653 2.35653i 0.101786 0.101786i
\(537\) 0 0
\(538\) −1.24221 + 2.99896i −0.0535554 + 0.129294i
\(539\) −57.6322 + 23.8720i −2.48239 + 1.02824i
\(540\) 0 0
\(541\) −4.49686 10.8564i −0.193335 0.466752i 0.797250 0.603649i \(-0.206287\pi\)
−0.990585 + 0.136897i \(0.956287\pi\)
\(542\) 0.313414 + 0.313414i 0.0134623 + 0.0134623i
\(543\) 0 0
\(544\) −5.46282 1.04208i −0.234216 0.0446786i
\(545\) 31.6328 1.35500
\(546\) 0 0
\(547\) −9.35821 22.5927i −0.400128 0.965995i −0.987634 0.156775i \(-0.949890\pi\)
0.587506 0.809220i \(-0.300110\pi\)
\(548\) 43.5062i 1.85849i
\(549\) 0 0
\(550\) 1.30971 3.16192i 0.0558463 0.134825i
\(551\) −28.4369 11.7790i −1.21145 0.501800i
\(552\) 0 0
\(553\) −8.80214 + 8.80214i −0.374305 + 0.374305i
\(554\) 1.86979 + 0.774492i 0.0794397 + 0.0329050i
\(555\) 0 0
\(556\) −9.28021 + 3.84399i −0.393569 + 0.163021i
\(557\) 31.7081i 1.34351i −0.740772 0.671757i \(-0.765540\pi\)
0.740772 0.671757i \(-0.234460\pi\)
\(558\) 0 0
\(559\) 2.52396 + 2.52396i 0.106752 + 0.106752i
\(560\) −69.1350 −2.92149
\(561\) 0 0
\(562\) −3.02629 −0.127657
\(563\) 25.3596 + 25.3596i 1.06878 + 1.06878i 0.997453 + 0.0713245i \(0.0227226\pi\)
0.0713245 + 0.997453i \(0.477277\pi\)
\(564\) 0 0
\(565\) 19.0389i 0.800973i
\(566\) 1.91944 0.795060i 0.0806803 0.0334189i
\(567\) 0 0
\(568\) 0.565375 + 0.234186i 0.0237226 + 0.00982622i
\(569\) −20.7901 + 20.7901i −0.871567 + 0.871567i −0.992643 0.121076i \(-0.961366\pi\)
0.121076 + 0.992643i \(0.461366\pi\)
\(570\) 0 0
\(571\) 37.6782 + 15.6068i 1.57678 + 0.653124i 0.987900 0.155095i \(-0.0495683\pi\)
0.588882 + 0.808219i \(0.299568\pi\)
\(572\) 7.32305 17.6794i 0.306192 0.739213i
\(573\) 0 0
\(574\) 3.76471i 0.157136i
\(575\) 4.42911 + 10.6928i 0.184707 + 0.445922i
\(576\) 0 0
\(577\) −8.38687 −0.349150 −0.174575 0.984644i \(-0.555855\pi\)
−0.174575 + 0.984644i \(0.555855\pi\)
\(578\) −1.76880 + 0.765436i −0.0735723 + 0.0318379i
\(579\) 0 0
\(580\) 40.2703 + 40.2703i 1.67213 + 1.67213i
\(581\) −16.5305 39.9083i −0.685803 1.65567i
\(582\) 0 0
\(583\) −17.8178 + 7.38037i −0.737938 + 0.305664i
\(584\) 1.97426 4.76628i 0.0816954 0.197230i
\(585\) 0 0
\(586\) −1.33320 + 1.33320i −0.0550738 + 0.0550738i
\(587\) −17.4929 + 17.4929i −0.722011 + 0.722011i −0.969015 0.247004i \(-0.920554\pi\)
0.247004 + 0.969015i \(0.420554\pi\)
\(588\) 0 0
\(589\) 4.83134 11.6639i 0.199072 0.480602i
\(590\) −2.45072 + 1.01512i −0.100895 + 0.0417919i
\(591\) 0 0
\(592\) 9.88480 + 23.8640i 0.406263 + 0.980805i
\(593\) −0.504383 0.504383i −0.0207125 0.0207125i 0.696675 0.717387i \(-0.254662\pi\)
−0.717387 + 0.696675i \(0.754662\pi\)
\(594\) 0 0
\(595\) −60.0961 + 40.8415i −2.46370 + 1.67434i
\(596\) 42.0550 1.72264
\(597\) 0 0
\(598\) −0.160181 0.386711i −0.00655028 0.0158138i
\(599\) 26.1042i 1.06659i 0.845930 + 0.533294i \(0.179046\pi\)
−0.845930 + 0.533294i \(0.820954\pi\)
\(600\) 0 0
\(601\) 13.8000 33.3162i 0.562915 1.35900i −0.344510 0.938783i \(-0.611955\pi\)
0.907425 0.420214i \(-0.138045\pi\)
\(602\) 0.705407 + 0.292189i 0.0287502 + 0.0119087i
\(603\) 0 0
\(604\) 8.74426 8.74426i 0.355799 0.355799i
\(605\) −9.75147 4.03919i −0.396454 0.164216i
\(606\) 0 0
\(607\) 30.4241 12.6021i 1.23488 0.511503i 0.332767 0.943009i \(-0.392018\pi\)
0.902110 + 0.431507i \(0.142018\pi\)
\(608\) 5.24149i 0.212570i
\(609\) 0 0
\(610\) 1.35078 + 1.35078i 0.0546916 + 0.0546916i
\(611\) −19.0244 −0.769644
\(612\) 0 0
\(613\) 16.1615 0.652756 0.326378 0.945239i \(-0.394172\pi\)
0.326378 + 0.945239i \(0.394172\pi\)
\(614\) −2.23940 2.23940i −0.0903749 0.0903749i
\(615\) 0 0
\(616\) 8.21318i 0.330918i
\(617\) −27.6059 + 11.4347i −1.11137 + 0.460345i −0.861410 0.507910i \(-0.830418\pi\)
−0.249962 + 0.968256i \(0.580418\pi\)
\(618\) 0 0
\(619\) 34.8056 + 14.4170i 1.39896 + 0.579467i 0.949481 0.313825i \(-0.101611\pi\)
0.449476 + 0.893292i \(0.351611\pi\)
\(620\) −16.5175 + 16.5175i −0.663361 + 0.663361i
\(621\) 0 0
\(622\) 1.34267 + 0.556152i 0.0538362 + 0.0222997i
\(623\) 16.0837 38.8295i 0.644381 1.55567i
\(624\) 0 0
\(625\) 0.0208904i 0.000835616i
\(626\) −0.00992337 0.0239571i −0.000396618 0.000957520i
\(627\) 0 0
\(628\) −16.3026 −0.650543
\(629\) 22.6901 + 14.9045i 0.904713 + 0.594282i
\(630\) 0 0
\(631\) −14.2914 14.2914i −0.568930 0.568930i 0.362899 0.931829i \(-0.381787\pi\)
−0.931829 + 0.362899i \(0.881787\pi\)
\(632\) −0.442117 1.06737i −0.0175865 0.0424575i
\(633\) 0 0
\(634\) 1.33614 0.553447i 0.0530648 0.0219802i
\(635\) −4.33848 + 10.4740i −0.172167 + 0.415649i
\(636\) 0 0
\(637\) 30.5217 30.5217i 1.20931 1.20931i
\(638\) −2.36880 + 2.36880i −0.0937818 + 0.0937818i
\(639\) 0 0
\(640\) 4.94299 11.9334i 0.195389 0.471711i
\(641\) 10.1347 4.19794i 0.400297 0.165809i −0.173447 0.984843i \(-0.555490\pi\)
0.573744 + 0.819035i \(0.305490\pi\)
\(642\) 0 0
\(643\) 1.55897 + 3.76370i 0.0614800 + 0.148426i 0.951634 0.307234i \(-0.0994034\pi\)
−0.890154 + 0.455660i \(0.849403\pi\)
\(644\) 9.78826 + 9.78826i 0.385711 + 0.385711i
\(645\) 0 0
\(646\) 1.02101 + 1.50237i 0.0401712 + 0.0591099i
\(647\) 17.4383 0.685570 0.342785 0.939414i \(-0.388630\pi\)
0.342785 + 0.939414i \(0.388630\pi\)
\(648\) 0 0
\(649\) 9.23177 + 22.2875i 0.362379 + 0.874860i
\(650\) 2.36815i 0.0928866i
\(651\) 0 0
\(652\) 12.1311 29.2870i 0.475090 1.14697i
\(653\) 19.7152 + 8.16629i 0.771514 + 0.319572i 0.733485 0.679705i \(-0.237892\pi\)
0.0380284 + 0.999277i \(0.487892\pi\)
\(654\) 0 0
\(655\) 6.23112 6.23112i 0.243470 0.243470i
\(656\) 24.7113 + 10.2358i 0.964814 + 0.399639i
\(657\) 0 0
\(658\) −3.75969 + 1.55732i −0.146568 + 0.0607105i
\(659\) 31.9158i 1.24326i −0.783310 0.621631i \(-0.786470\pi\)
0.783310 0.621631i \(-0.213530\pi\)
\(660\) 0 0
\(661\) −27.9585 27.9585i −1.08746 1.08746i −0.995790 0.0916692i \(-0.970780\pi\)
−0.0916692 0.995790i \(-0.529220\pi\)
\(662\) 0.456999 0.0177618
\(663\) 0 0
\(664\) 4.00906 0.155582
\(665\) 48.4240 + 48.4240i 1.87780 + 1.87780i
\(666\) 0 0
\(667\) 11.3288i 0.438654i
\(668\) 29.0563 12.0355i 1.12422 0.465669i
\(669\) 0 0
\(670\) 2.79411 + 1.15736i 0.107946 + 0.0447127i
\(671\) 12.2844 12.2844i 0.474233 0.474233i
\(672\) 0 0
\(673\) −25.1388 10.4128i −0.969030 0.401386i −0.158679 0.987330i \(-0.550724\pi\)
−0.810351 + 0.585945i \(0.800724\pi\)
\(674\) 0.142818 0.344794i 0.00550116 0.0132810i
\(675\) 0 0
\(676\) 12.5917i 0.484298i
\(677\) −9.20473 22.2222i −0.353766 0.854068i −0.996148 0.0876831i \(-0.972054\pi\)
0.642382 0.766385i \(-0.277946\pi\)
\(678\) 0 0
\(679\) −17.7065 −0.679513
\(680\) −1.36754 6.60352i −0.0524426 0.253233i
\(681\) 0 0
\(682\) −0.971605 0.971605i −0.0372047 0.0372047i
\(683\) −4.93467 11.9133i −0.188820 0.455851i 0.800913 0.598781i \(-0.204348\pi\)
−0.989733 + 0.142929i \(0.954348\pi\)
\(684\) 0 0
\(685\) 73.1880 30.3155i 2.79637 1.15829i
\(686\) 2.05422 4.95934i 0.0784307 0.189348i
\(687\) 0 0
\(688\) 3.83582 3.83582i 0.146239 0.146239i
\(689\) 9.43620 9.43620i 0.359491 0.359491i
\(690\) 0 0
\(691\) 18.6705 45.0746i 0.710260 1.71472i 0.0109088 0.999940i \(-0.496528\pi\)
0.699351 0.714778i \(-0.253472\pi\)
\(692\) 36.7839 15.2364i 1.39832 0.579201i
\(693\) 0 0
\(694\) −0.453461 1.09475i −0.0172131 0.0415562i
\(695\) −12.9331 12.9331i −0.490579 0.490579i
\(696\) 0 0
\(697\) 27.5272 5.70068i 1.04267 0.215929i
\(698\) −0.0568884 −0.00215326
\(699\) 0 0
\(700\) −29.9708 72.3560i −1.13279 2.73480i
\(701\) 13.4261i 0.507097i 0.967323 + 0.253548i \(0.0815977\pi\)
−0.967323 + 0.253548i \(0.918402\pi\)
\(702\) 0 0
\(703\) 9.79141 23.6386i 0.369290 0.891545i
\(704\) −26.5152 10.9830i −0.999330 0.413936i
\(705\) 0 0
\(706\) −2.39711 + 2.39711i −0.0902165 + 0.0902165i
\(707\) 10.4668 + 4.33549i 0.393644 + 0.163053i
\(708\) 0 0
\(709\) −26.5494 + 10.9971i −0.997083 + 0.413005i −0.820727 0.571321i \(-0.806431\pi\)
−0.176356 + 0.984326i \(0.556431\pi\)
\(710\) 0.555344i 0.0208417i
\(711\) 0 0
\(712\) 2.75821 + 2.75821i 0.103368 + 0.103368i
\(713\) 4.64672 0.174021
\(714\) 0 0
\(715\) 34.8438 1.30309
\(716\) −25.9902 25.9902i −0.971299 0.971299i
\(717\) 0 0
\(718\) 1.54540i 0.0576737i
\(719\) 10.1716 4.21320i 0.379335 0.157126i −0.184865 0.982764i \(-0.559185\pi\)
0.564200 + 0.825638i \(0.309185\pi\)
\(720\) 0 0
\(721\) 18.0472 + 7.47538i 0.672112 + 0.278398i
\(722\) −0.312576 + 0.312576i −0.0116329 + 0.0116329i
\(723\) 0 0
\(724\) −8.90627 3.68910i −0.330999 0.137104i
\(725\) −24.5281 + 59.2160i −0.910950 + 2.19923i
\(726\) 0 0
\(727\) 5.45319i 0.202248i 0.994874 + 0.101124i \(0.0322438\pi\)
−0.994874 + 0.101124i \(0.967756\pi\)
\(728\) 2.17483 + 5.25050i 0.0806044 + 0.194596i
\(729\) 0 0
\(730\) 4.68172 0.173278
\(731\) 1.06831 5.60032i 0.0395127 0.207135i
\(732\) 0 0
\(733\) −11.2048 11.2048i −0.413858 0.413858i 0.469222 0.883080i \(-0.344534\pi\)
−0.883080 + 0.469222i \(0.844534\pi\)
\(734\) −0.579835 1.39984i −0.0214021 0.0516692i
\(735\) 0 0
\(736\) −1.78233 + 0.738265i −0.0656976 + 0.0272128i
\(737\) 10.5253 25.4104i 0.387705 0.936003i
\(738\) 0 0
\(739\) 23.3188 23.3188i 0.857795 0.857795i −0.133283 0.991078i \(-0.542552\pi\)
0.991078 + 0.133283i \(0.0425519\pi\)
\(740\) −33.4752 + 33.4752i −1.23057 + 1.23057i
\(741\) 0 0
\(742\) 1.09239 2.63727i 0.0401030 0.0968171i
\(743\) −38.7942 + 16.0691i −1.42322 + 0.589517i −0.955668 0.294448i \(-0.904864\pi\)
−0.467553 + 0.883965i \(0.654864\pi\)
\(744\) 0 0
\(745\) 29.3043 + 70.7468i 1.07363 + 2.59196i
\(746\) 1.31286 + 1.31286i 0.0480673 + 0.0480673i
\(747\) 0 0
\(748\) −29.9302 + 6.19832i −1.09436 + 0.226633i
\(749\) −24.4014 −0.891609
\(750\) 0 0
\(751\) −5.58970 13.4947i −0.203971 0.492430i 0.788481 0.615059i \(-0.210868\pi\)
−0.992453 + 0.122629i \(0.960868\pi\)
\(752\) 28.9125i 1.05433i
\(753\) 0 0
\(754\) 0.887068 2.14157i 0.0323051 0.0779915i
\(755\) 20.8031 + 8.61691i 0.757101 + 0.313601i
\(756\) 0 0
\(757\) −24.1046 + 24.1046i −0.876098 + 0.876098i −0.993128 0.117031i \(-0.962662\pi\)
0.117031 + 0.993128i \(0.462662\pi\)
\(758\) 2.22939 + 0.923442i 0.0809749 + 0.0335409i
\(759\) 0 0
\(760\) −5.87200 + 2.43226i −0.213000 + 0.0882274i
\(761\) 0.721195i 0.0261433i −0.999915 0.0130716i \(-0.995839\pi\)
0.999915 0.0130716i \(-0.00416095\pi\)
\(762\) 0 0
\(763\) 30.1086 + 30.1086i 1.09000 + 1.09000i
\(764\) 9.26180 0.335080
\(765\) 0 0
\(766\) 1.10705 0.0399992
\(767\) −11.8033 11.8033i −0.426193 0.426193i
\(768\) 0 0
\(769\) 34.6936i 1.25108i 0.780191 + 0.625542i \(0.215122\pi\)
−0.780191 + 0.625542i \(0.784878\pi\)
\(770\) 6.88602 2.85228i 0.248155 0.102789i
\(771\) 0 0
\(772\) 18.1908 + 7.53487i 0.654701 + 0.271186i
\(773\) 7.39294 7.39294i 0.265906 0.265906i −0.561542 0.827448i \(-0.689792\pi\)
0.827448 + 0.561542i \(0.189792\pi\)
\(774\) 0 0
\(775\) −24.2885 10.0606i −0.872468 0.361388i
\(776\) 0.628878 1.51825i 0.0225754 0.0545019i
\(777\) 0 0
\(778\) 0.0207716i 0.000744698i
\(779\) −10.1391 24.4779i −0.363269 0.877010i
\(780\) 0 0
\(781\) 5.05044 0.180719
\(782\) −0.367059 + 0.558797i −0.0131260 + 0.0199825i
\(783\) 0 0
\(784\) −46.3857 46.3857i −1.65663 1.65663i
\(785\) −11.3598 27.4249i −0.405447 0.978836i
\(786\) 0 0
\(787\) −48.5309 + 20.1022i −1.72994 + 0.716565i −0.730508 + 0.682904i \(0.760717\pi\)
−0.999433 + 0.0336613i \(0.989283\pi\)
\(788\) −9.85078 + 23.7819i −0.350920 + 0.847195i
\(789\) 0 0
\(790\) 0.741351 0.741351i 0.0263761 0.0263761i
\(791\) 18.1215 18.1215i 0.644327 0.644327i
\(792\) 0 0
\(793\) −4.60025 + 11.1060i −0.163360 + 0.394385i
\(794\) 2.84103 1.17680i 0.100825 0.0417629i
\(795\) 0 0
\(796\) −21.0757 50.8812i −0.747008 1.80344i
\(797\) −13.5472 13.5472i −0.479866 0.479866i 0.425223 0.905089i \(-0.360196\pi\)
−0.905089 + 0.425223i \(0.860196\pi\)
\(798\) 0 0
\(799\) 17.0800 + 25.1324i 0.604249 + 0.889121i
\(800\) 10.9147 0.385893
\(801\) 0 0
\(802\) 1.08580 + 2.62135i 0.0383409 + 0.0925630i
\(803\) 42.5768i 1.50250i
\(804\) 0 0
\(805\) −9.64570 + 23.2868i −0.339966 + 0.820751i
\(806\) 0.878403 + 0.363847i 0.0309404 + 0.0128159i
\(807\) 0 0
\(808\) −0.743495 + 0.743495i −0.0261561 + 0.0261561i
\(809\) −37.3957 15.4898i −1.31476 0.544592i −0.388492 0.921452i \(-0.627004\pi\)
−0.926270 + 0.376860i \(0.877004\pi\)
\(810\) 0 0
\(811\) 48.2917 20.0031i 1.69575 0.702403i 0.695876 0.718162i \(-0.255016\pi\)
0.999876 + 0.0157590i \(0.00501646\pi\)
\(812\) 76.6597i 2.69023i
\(813\) 0 0
\(814\) −1.96910 1.96910i −0.0690169 0.0690169i
\(815\) 57.7210 2.02188
\(816\) 0 0
\(817\) −5.37342 −0.187992
\(818\) −0.162672 0.162672i −0.00568770 0.00568770i
\(819\) 0 0
\(820\) 49.0219i 1.71192i
\(821\) −41.7614 + 17.2982i −1.45748 + 0.603710i −0.963966 0.266026i \(-0.914289\pi\)
−0.493518 + 0.869735i \(0.664289\pi\)
\(822\) 0 0
\(823\) 18.1831 + 7.53171i 0.633825 + 0.262539i 0.676377 0.736555i \(-0.263549\pi\)
−0.0425525 + 0.999094i \(0.513549\pi\)
\(824\) −1.28196 + 1.28196i −0.0446591 + 0.0446591i
\(825\) 0 0
\(826\) −3.29884 1.36642i −0.114781 0.0475440i
\(827\) −13.0577 + 31.5241i −0.454061 + 1.09620i 0.516703 + 0.856165i \(0.327159\pi\)
−0.970764 + 0.240036i \(0.922841\pi\)
\(828\) 0 0
\(829\) 43.1191i 1.49759i 0.662802 + 0.748794i \(0.269367\pi\)
−0.662802 + 0.748794i \(0.730633\pi\)
\(830\) 1.39227 + 3.36123i 0.0483264 + 0.116670i
\(831\) 0 0
\(832\) 19.8588 0.688481
\(833\) −67.7234 12.9188i −2.34648 0.447609i
\(834\) 0 0
\(835\) 40.4934 + 40.4934i 1.40133 + 1.40133i
\(836\) 11.0241 + 26.6147i 0.381278 + 0.920487i
\(837\) 0 0
\(838\) −0.899090 + 0.372415i −0.0310586 + 0.0128649i
\(839\) 4.12300 9.95380i 0.142342 0.343643i −0.836590 0.547829i \(-0.815455\pi\)
0.978932 + 0.204185i \(0.0654545\pi\)
\(840\) 0 0
\(841\) 23.8565 23.8565i 0.822637 0.822637i
\(842\) −1.21525 + 1.21525i −0.0418803 + 0.0418803i
\(843\) 0 0
\(844\) −17.2847 + 41.7289i −0.594963 + 1.43637i
\(845\) 21.1824 8.77403i 0.728696 0.301836i
\(846\) 0 0
\(847\) −5.43703 13.1262i −0.186819 0.451020i
\(848\) −14.3408 14.3408i −0.492464 0.492464i
\(849\) 0 0
\(850\) 3.12848 2.12612i 0.107306 0.0729254i
\(851\) 9.41725 0.322819
\(852\) 0 0
\(853\) −13.0379 31.4763i −0.446410 1.07773i −0.973657 0.228016i \(-0.926776\pi\)
0.527248 0.849712i \(-0.323224\pi\)
\(854\) 2.57139i 0.0879912i
\(855\) 0 0
\(856\) 0.866662 2.09231i 0.0296219 0.0715136i
\(857\) −22.8837 9.47874i −0.781692 0.323787i −0.0440939 0.999027i \(-0.514040\pi\)
−0.737598 + 0.675240i \(0.764040\pi\)
\(858\) 0 0
\(859\) 0.681709 0.681709i 0.0232596 0.0232596i −0.695381 0.718641i \(-0.744765\pi\)
0.718641 + 0.695381i \(0.244765\pi\)
\(860\) 9.18541 + 3.80472i 0.313220 + 0.129740i
\(861\) 0 0
\(862\) −3.11013 + 1.28826i −0.105931 + 0.0438783i
\(863\) 42.1294i 1.43410i 0.697022 + 0.717050i \(0.254508\pi\)
−0.697022 + 0.717050i \(0.745492\pi\)
\(864\) 0 0
\(865\) 51.2627 + 51.2627i 1.74298 + 1.74298i
\(866\) 1.80172 0.0612248
\(867\) 0 0
\(868\) −31.4433 −1.06725
\(869\) −6.74204 6.74204i −0.228708 0.228708i
\(870\) 0 0
\(871\) 19.0313i 0.644853i
\(872\) −3.65103 + 1.51230i −0.123639 + 0.0512131i
\(873\) 0 0
\(874\) 0.582156 + 0.241137i 0.0196917 + 0.00815658i
\(875\) 38.5305 38.5305i 1.30257 1.30257i
\(876\) 0 0
\(877\) −48.1715 19.9533i −1.62664 0.673775i −0.631788 0.775141i \(-0.717679\pi\)
−0.994849 + 0.101366i \(0.967679\pi\)
\(878\) −0.445805 + 1.07627i −0.0150452 + 0.0363223i
\(879\) 0 0
\(880\) 52.9543i 1.78509i
\(881\) 6.59863 + 15.9305i 0.222313 + 0.536712i 0.995203 0.0978281i \(-0.0311895\pi\)
−0.772890 + 0.634540i \(0.781190\pi\)
\(882\) 0 0
\(883\) −19.4857 −0.655747 −0.327873 0.944722i \(-0.606332\pi\)
−0.327873 + 0.944722i \(0.606332\pi\)
\(884\) 17.4924 11.8879i 0.588334 0.399833i
\(885\) 0 0
\(886\) 0.384344 + 0.384344i 0.0129123 + 0.0129123i
\(887\) 2.12565 + 5.13176i 0.0713722 + 0.172308i 0.955540 0.294862i \(-0.0952737\pi\)
−0.884168 + 0.467170i \(0.845274\pi\)
\(888\) 0 0
\(889\) −14.0987 + 5.83989i −0.472857 + 0.195864i
\(890\) −1.35464 + 3.27038i −0.0454075 + 0.109623i
\(891\) 0 0
\(892\) 16.8982 16.8982i 0.565794 0.565794i
\(893\) 20.2511 20.2511i 0.677677 0.677677i
\(894\) 0 0
\(895\) 25.6117 61.8320i 0.856103 2.06682i
\(896\) 16.0632 6.65361i 0.536635 0.222282i
\(897\) 0 0
\(898\) −0.830828 2.00580i −0.0277251 0.0669343i
\(899\) 18.1961 + 18.1961i 0.606873 + 0.606873i
\(900\) 0 0
\(901\) −20.9376 3.99402i −0.697533 0.133060i
\(902\) −2.88360 −0.0960133
\(903\) 0 0
\(904\) 0.910215 + 2.19745i 0.0302733 + 0.0730862i
\(905\) 17.5531i 0.583485i
\(906\) 0 0
\(907\) −4.25298 + 10.2676i −0.141218 + 0.340930i −0.978626 0.205648i \(-0.934070\pi\)
0.837408 + 0.546578i \(0.184070\pi\)
\(908\) −27.1308 11.2380i −0.900369 0.372945i
\(909\) 0 0
\(910\) −3.64680 + 3.64680i −0.120890 + 0.120890i
\(911\) 28.5444 + 11.8235i 0.945717 + 0.391729i 0.801619 0.597835i \(-0.203972\pi\)
0.144097 + 0.989564i \(0.453972\pi\)
\(912\) 0 0
\(913\) 30.5679 12.6617i 1.01165 0.419040i
\(914\) 0.591227i 0.0195560i
\(915\) 0 0
\(916\) 19.9683 + 19.9683i 0.659771 + 0.659771i
\(917\) 11.8617 0.391709
\(918\) 0 0
\(919\) −26.7590 −0.882699 −0.441349 0.897335i \(-0.645500\pi\)
−0.441349 + 0.897335i \(0.645500\pi\)
\(920\) −1.65415 1.65415i −0.0545356 0.0545356i
\(921\) 0 0
\(922\) 2.10119i 0.0691989i
\(923\) −3.22863 + 1.33734i −0.106272 + 0.0440192i
\(924\) 0 0
\(925\) −49.2241 20.3893i −1.61848 0.670396i
\(926\) 2.91465 2.91465i 0.0957814 0.0957814i
\(927\) 0 0
\(928\) −9.87040 4.08845i −0.324012 0.134210i
\(929\) −4.52207 + 10.9172i −0.148364 + 0.358183i −0.980537 0.196333i \(-0.937097\pi\)
0.832173 + 0.554516i \(0.187097\pi\)
\(930\) 0 0
\(931\) 64.9795i 2.12962i
\(932\) −6.55599 15.8275i −0.214748 0.518449i
\(933\) 0 0
\(934\) −1.74547 −0.0571134
\(935\) −31.2827 46.0309i −1.02305 1.50537i
\(936\) 0 0
\(937\) −10.1101 10.1101i −0.330284 0.330284i 0.522410 0.852694i \(-0.325033\pi\)
−0.852694 + 0.522410i \(0.825033\pi\)
\(938\) 1.55789 + 3.76107i 0.0508668 + 0.122803i
\(939\) 0 0
\(940\) −48.9566 + 20.2785i −1.59679 + 0.661412i
\(941\) −6.62017 + 15.9825i −0.215811 + 0.521015i −0.994297 0.106648i \(-0.965988\pi\)
0.778485 + 0.627663i \(0.215988\pi\)
\(942\) 0 0
\(943\) 6.89543 6.89543i 0.224546 0.224546i
\(944\) −17.9382 + 17.9382i −0.583840 + 0.583840i
\(945\) 0 0
\(946\) −0.223804 + 0.540310i −0.00727648 + 0.0175670i
\(947\) −38.0356 + 15.7549i −1.23599 + 0.511964i −0.902460 0.430774i \(-0.858240\pi\)
−0.333532 + 0.942739i \(0.608240\pi\)
\(948\) 0 0
\(949\) 11.2742 + 27.2184i 0.365977 + 0.883546i
\(950\) −2.52085 2.52085i −0.0817873 0.0817873i
\(951\) 0 0
\(952\) 4.98368 7.58697i 0.161522 0.245895i
\(953\) −11.2870 −0.365623 −0.182812 0.983148i \(-0.558520\pi\)
−0.182812 + 0.983148i \(0.558520\pi\)
\(954\) 0 0
\(955\) 6.45370 + 15.5806i 0.208837 + 0.504177i
\(956\) 31.9629i 1.03375i
\(957\) 0 0
\(958\) 0.602236 1.45393i 0.0194573 0.0469742i
\(959\) 98.5162 + 40.8067i 3.18125 + 1.31772i
\(960\) 0 0
\(961\) 14.4569 14.4569i 0.466351 0.466351i
\(962\) 1.78021 + 0.737388i 0.0573963 + 0.0237743i
\(963\) 0 0
\(964\) 5.99738 2.48419i 0.193163 0.0800105i
\(965\) 35.8517i 1.15411i
\(966\) 0 0
\(967\) −10.5780 10.5780i −0.340164 0.340164i 0.516265 0.856429i \(-0.327322\pi\)
−0.856429 + 0.516265i \(0.827322\pi\)
\(968\) 1.31861 0.0423818
\(969\) 0 0
\(970\) 1.49131 0.0478831
\(971\) −36.2522 36.2522i −1.16339 1.16339i −0.983729 0.179661i \(-0.942500\pi\)
−0.179661 0.983729i \(-0.557500\pi\)
\(972\) 0 0
\(973\) 24.6198i 0.789273i
\(974\) −2.49012 + 1.03144i −0.0797885 + 0.0330495i
\(975\) 0 0
\(976\) 16.8785 + 6.99128i 0.540266 + 0.223786i
\(977\) 25.1236 25.1236i 0.803775 0.803775i −0.179908 0.983683i \(-0.557580\pi\)
0.983683 + 0.179908i \(0.0575801\pi\)
\(978\) 0 0
\(979\) 29.7417 + 12.3194i 0.950548 + 0.393730i
\(980\) 46.0096 111.077i 1.46972 3.54823i
\(981\) 0 0
\(982\) 1.31617i 0.0420005i
\(983\) 22.2990 + 53.8345i 0.711227 + 1.71705i 0.696912 + 0.717157i \(0.254557\pi\)
0.0143153 + 0.999898i \(0.495443\pi\)
\(984\) 0 0
\(985\) −46.8710 −1.49344
\(986\) −3.62556 + 0.750825i −0.115461 + 0.0239112i
\(987\) 0 0
\(988\) −14.0950 14.0950i −0.448421 0.448421i
\(989\) −0.756848 1.82719i −0.0240664 0.0581013i
\(990\) 0 0
\(991\) 2.64825 1.09694i 0.0841244 0.0348455i −0.340224 0.940344i \(-0.610503\pi\)
0.424349 + 0.905499i \(0.360503\pi\)
\(992\) 1.67695 4.04851i 0.0532432 0.128540i
\(993\) 0 0
\(994\) −0.528585 + 0.528585i −0.0167657 + 0.0167657i
\(995\) 70.9089 70.9089i 2.24796 2.24796i
\(996\) 0 0
\(997\) −14.6016 + 35.2515i −0.462439 + 1.11643i 0.504954 + 0.863146i \(0.331509\pi\)
−0.967393 + 0.253280i \(0.918491\pi\)
\(998\) −0.0411240 + 0.0170341i −0.00130176 + 0.000539205i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.l.a.406.6 48
3.2 odd 2 inner 459.2.l.a.406.7 yes 48
17.5 odd 16 7803.2.a.cd.1.13 24
17.8 even 8 inner 459.2.l.a.433.6 yes 48
17.12 odd 16 7803.2.a.cg.1.13 24
51.5 even 16 7803.2.a.cg.1.12 24
51.8 odd 8 inner 459.2.l.a.433.7 yes 48
51.29 even 16 7803.2.a.cd.1.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.l.a.406.6 48 1.1 even 1 trivial
459.2.l.a.406.7 yes 48 3.2 odd 2 inner
459.2.l.a.433.6 yes 48 17.8 even 8 inner
459.2.l.a.433.7 yes 48 51.8 odd 8 inner
7803.2.a.cd.1.12 24 51.29 even 16
7803.2.a.cd.1.13 24 17.5 odd 16
7803.2.a.cg.1.12 24 51.5 even 16
7803.2.a.cg.1.13 24 17.12 odd 16