Properties

Label 7803.2.a.bs.1.8
Level $7803$
Weight $2$
Character 7803.1
Self dual yes
Analytic conductor $62.307$
Analytic rank $1$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7803,2,Mod(1,7803)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7803.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7803 = 3^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7803.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,12,2,0,0,0,0,0,-22,0,0,0,0,16,0,0,-10,-8,0,0,-28,0,8, 0,0,0,-6,0,0,0,0,0,0,0,0,0,0,0,-28,0,-8,-76,0,0,0,0,2,0,0,-4,0,0,42,64, 0,0,0,0,0,-52,0,-36,-32,0,18,0,0,-72,50,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.3072686972\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 16x^{8} + 86x^{6} - 170x^{4} + 73x^{2} - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 459)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(2.06212\) of defining polynomial
Character \(\chi\) \(=\) 7803.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.06212 q^{2} +2.25232 q^{4} +1.44351 q^{5} -0.127581 q^{7} +0.520322 q^{8} +2.97669 q^{10} -5.72509 q^{11} +2.54466 q^{13} -0.263086 q^{14} -3.43168 q^{16} +1.47276 q^{19} +3.25126 q^{20} -11.8058 q^{22} -1.62839 q^{23} -2.91627 q^{25} +5.24738 q^{26} -0.287353 q^{28} -3.94816 q^{29} -0.413424 q^{31} -8.11718 q^{32} -0.184164 q^{35} -5.66603 q^{37} +3.03701 q^{38} +0.751092 q^{40} -1.89147 q^{41} +7.93369 q^{43} -12.8948 q^{44} -3.35792 q^{46} +0.484421 q^{47} -6.98372 q^{49} -6.01369 q^{50} +5.73140 q^{52} -9.05465 q^{53} -8.26423 q^{55} -0.0663830 q^{56} -8.14157 q^{58} -12.0518 q^{59} +4.31213 q^{61} -0.852529 q^{62} -9.87520 q^{64} +3.67325 q^{65} +9.00823 q^{67} -0.379768 q^{70} -10.9893 q^{71} -6.97856 q^{73} -11.6840 q^{74} +3.31714 q^{76} +0.730409 q^{77} +13.9312 q^{79} -4.95368 q^{80} -3.90044 q^{82} -4.09960 q^{83} +16.3602 q^{86} -2.97889 q^{88} +13.1764 q^{89} -0.324649 q^{91} -3.66765 q^{92} +0.998933 q^{94} +2.12595 q^{95} -3.59845 q^{97} -14.4013 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 12 q^{4} + 2 q^{5} - 22 q^{11} + 16 q^{16} - 10 q^{19} - 8 q^{20} - 28 q^{23} + 8 q^{25} - 6 q^{29} - 28 q^{41} - 8 q^{43} - 76 q^{44} + 2 q^{49} - 4 q^{52} + 42 q^{55} + 64 q^{56} - 52 q^{62} - 36 q^{64}+ \cdots - 38 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.06212 1.45814 0.729068 0.684441i \(-0.239954\pi\)
0.729068 + 0.684441i \(0.239954\pi\)
\(3\) 0 0
\(4\) 2.25232 1.12616
\(5\) 1.44351 0.645558 0.322779 0.946474i \(-0.395383\pi\)
0.322779 + 0.946474i \(0.395383\pi\)
\(6\) 0 0
\(7\) −0.127581 −0.0482209 −0.0241105 0.999709i \(-0.507675\pi\)
−0.0241105 + 0.999709i \(0.507675\pi\)
\(8\) 0.520322 0.183962
\(9\) 0 0
\(10\) 2.97669 0.941312
\(11\) −5.72509 −1.72618 −0.863089 0.505052i \(-0.831473\pi\)
−0.863089 + 0.505052i \(0.831473\pi\)
\(12\) 0 0
\(13\) 2.54466 0.705762 0.352881 0.935668i \(-0.385202\pi\)
0.352881 + 0.935668i \(0.385202\pi\)
\(14\) −0.263086 −0.0703127
\(15\) 0 0
\(16\) −3.43168 −0.857921
\(17\) 0 0
\(18\) 0 0
\(19\) 1.47276 0.337875 0.168937 0.985627i \(-0.445966\pi\)
0.168937 + 0.985627i \(0.445966\pi\)
\(20\) 3.25126 0.727003
\(21\) 0 0
\(22\) −11.8058 −2.51700
\(23\) −1.62839 −0.339542 −0.169771 0.985484i \(-0.554303\pi\)
−0.169771 + 0.985484i \(0.554303\pi\)
\(24\) 0 0
\(25\) −2.91627 −0.583255
\(26\) 5.24738 1.02910
\(27\) 0 0
\(28\) −0.287353 −0.0543046
\(29\) −3.94816 −0.733155 −0.366578 0.930388i \(-0.619471\pi\)
−0.366578 + 0.930388i \(0.619471\pi\)
\(30\) 0 0
\(31\) −0.413424 −0.0742532 −0.0371266 0.999311i \(-0.511820\pi\)
−0.0371266 + 0.999311i \(0.511820\pi\)
\(32\) −8.11718 −1.43493
\(33\) 0 0
\(34\) 0 0
\(35\) −0.184164 −0.0311294
\(36\) 0 0
\(37\) −5.66603 −0.931489 −0.465745 0.884919i \(-0.654213\pi\)
−0.465745 + 0.884919i \(0.654213\pi\)
\(38\) 3.03701 0.492667
\(39\) 0 0
\(40\) 0.751092 0.118758
\(41\) −1.89147 −0.295398 −0.147699 0.989032i \(-0.547187\pi\)
−0.147699 + 0.989032i \(0.547187\pi\)
\(42\) 0 0
\(43\) 7.93369 1.20988 0.604938 0.796272i \(-0.293198\pi\)
0.604938 + 0.796272i \(0.293198\pi\)
\(44\) −12.8948 −1.94396
\(45\) 0 0
\(46\) −3.35792 −0.495099
\(47\) 0.484421 0.0706601 0.0353300 0.999376i \(-0.488752\pi\)
0.0353300 + 0.999376i \(0.488752\pi\)
\(48\) 0 0
\(49\) −6.98372 −0.997675
\(50\) −6.01369 −0.850465
\(51\) 0 0
\(52\) 5.73140 0.794802
\(53\) −9.05465 −1.24375 −0.621876 0.783116i \(-0.713629\pi\)
−0.621876 + 0.783116i \(0.713629\pi\)
\(54\) 0 0
\(55\) −8.26423 −1.11435
\(56\) −0.0663830 −0.00887080
\(57\) 0 0
\(58\) −8.14157 −1.06904
\(59\) −12.0518 −1.56901 −0.784504 0.620124i \(-0.787082\pi\)
−0.784504 + 0.620124i \(0.787082\pi\)
\(60\) 0 0
\(61\) 4.31213 0.552111 0.276056 0.961142i \(-0.410973\pi\)
0.276056 + 0.961142i \(0.410973\pi\)
\(62\) −0.852529 −0.108271
\(63\) 0 0
\(64\) −9.87520 −1.23440
\(65\) 3.67325 0.455610
\(66\) 0 0
\(67\) 9.00823 1.10053 0.550265 0.834990i \(-0.314527\pi\)
0.550265 + 0.834990i \(0.314527\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −0.379768 −0.0453909
\(71\) −10.9893 −1.30419 −0.652096 0.758136i \(-0.726110\pi\)
−0.652096 + 0.758136i \(0.726110\pi\)
\(72\) 0 0
\(73\) −6.97856 −0.816779 −0.408389 0.912808i \(-0.633909\pi\)
−0.408389 + 0.912808i \(0.633909\pi\)
\(74\) −11.6840 −1.35824
\(75\) 0 0
\(76\) 3.31714 0.380502
\(77\) 0.730409 0.0832379
\(78\) 0 0
\(79\) 13.9312 1.56738 0.783692 0.621149i \(-0.213334\pi\)
0.783692 + 0.621149i \(0.213334\pi\)
\(80\) −4.95368 −0.553838
\(81\) 0 0
\(82\) −3.90044 −0.430731
\(83\) −4.09960 −0.449989 −0.224995 0.974360i \(-0.572236\pi\)
−0.224995 + 0.974360i \(0.572236\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 16.3602 1.76417
\(87\) 0 0
\(88\) −2.97889 −0.317551
\(89\) 13.1764 1.39670 0.698349 0.715758i \(-0.253918\pi\)
0.698349 + 0.715758i \(0.253918\pi\)
\(90\) 0 0
\(91\) −0.324649 −0.0340325
\(92\) −3.66765 −0.382379
\(93\) 0 0
\(94\) 0.998933 0.103032
\(95\) 2.12595 0.218118
\(96\) 0 0
\(97\) −3.59845 −0.365367 −0.182683 0.983172i \(-0.558478\pi\)
−0.182683 + 0.983172i \(0.558478\pi\)
\(98\) −14.4013 −1.45475
\(99\) 0 0
\(100\) −6.56839 −0.656839
\(101\) 3.12471 0.310920 0.155460 0.987842i \(-0.450314\pi\)
0.155460 + 0.987842i \(0.450314\pi\)
\(102\) 0 0
\(103\) 17.4113 1.71559 0.857793 0.513995i \(-0.171835\pi\)
0.857793 + 0.513995i \(0.171835\pi\)
\(104\) 1.32404 0.129833
\(105\) 0 0
\(106\) −18.6718 −1.81356
\(107\) 1.25126 0.120964 0.0604818 0.998169i \(-0.480736\pi\)
0.0604818 + 0.998169i \(0.480736\pi\)
\(108\) 0 0
\(109\) −17.9020 −1.71470 −0.857349 0.514736i \(-0.827890\pi\)
−0.857349 + 0.514736i \(0.827890\pi\)
\(110\) −17.0418 −1.62487
\(111\) 0 0
\(112\) 0.437816 0.0413697
\(113\) −12.9656 −1.21970 −0.609850 0.792517i \(-0.708770\pi\)
−0.609850 + 0.792517i \(0.708770\pi\)
\(114\) 0 0
\(115\) −2.35060 −0.219194
\(116\) −8.89254 −0.825652
\(117\) 0 0
\(118\) −24.8522 −2.28783
\(119\) 0 0
\(120\) 0 0
\(121\) 21.7766 1.97969
\(122\) 8.89211 0.805054
\(123\) 0 0
\(124\) −0.931165 −0.0836211
\(125\) −11.4272 −1.02208
\(126\) 0 0
\(127\) 0.867311 0.0769614 0.0384807 0.999259i \(-0.487748\pi\)
0.0384807 + 0.999259i \(0.487748\pi\)
\(128\) −4.12945 −0.364995
\(129\) 0 0
\(130\) 7.57466 0.664342
\(131\) −10.4046 −0.909058 −0.454529 0.890732i \(-0.650192\pi\)
−0.454529 + 0.890732i \(0.650192\pi\)
\(132\) 0 0
\(133\) −0.187896 −0.0162926
\(134\) 18.5760 1.60472
\(135\) 0 0
\(136\) 0 0
\(137\) 13.1508 1.12355 0.561773 0.827292i \(-0.310120\pi\)
0.561773 + 0.827292i \(0.310120\pi\)
\(138\) 0 0
\(139\) −22.3624 −1.89675 −0.948376 0.317147i \(-0.897275\pi\)
−0.948376 + 0.317147i \(0.897275\pi\)
\(140\) −0.414797 −0.0350568
\(141\) 0 0
\(142\) −22.6612 −1.90169
\(143\) −14.5684 −1.21827
\(144\) 0 0
\(145\) −5.69922 −0.473294
\(146\) −14.3906 −1.19098
\(147\) 0 0
\(148\) −12.7617 −1.04901
\(149\) 14.8896 1.21981 0.609903 0.792476i \(-0.291208\pi\)
0.609903 + 0.792476i \(0.291208\pi\)
\(150\) 0 0
\(151\) −18.9574 −1.54273 −0.771367 0.636391i \(-0.780427\pi\)
−0.771367 + 0.636391i \(0.780427\pi\)
\(152\) 0.766311 0.0621560
\(153\) 0 0
\(154\) 1.50619 0.121372
\(155\) −0.596783 −0.0479347
\(156\) 0 0
\(157\) −17.0660 −1.36201 −0.681006 0.732278i \(-0.738457\pi\)
−0.681006 + 0.732278i \(0.738457\pi\)
\(158\) 28.7278 2.28546
\(159\) 0 0
\(160\) −11.7172 −0.926329
\(161\) 0.207750 0.0163730
\(162\) 0 0
\(163\) −9.55207 −0.748176 −0.374088 0.927393i \(-0.622044\pi\)
−0.374088 + 0.927393i \(0.622044\pi\)
\(164\) −4.26021 −0.332666
\(165\) 0 0
\(166\) −8.45385 −0.656146
\(167\) −19.1189 −1.47946 −0.739731 0.672903i \(-0.765047\pi\)
−0.739731 + 0.672903i \(0.765047\pi\)
\(168\) 0 0
\(169\) −6.52471 −0.501901
\(170\) 0 0
\(171\) 0 0
\(172\) 17.8693 1.36252
\(173\) 12.8270 0.975221 0.487611 0.873061i \(-0.337869\pi\)
0.487611 + 0.873061i \(0.337869\pi\)
\(174\) 0 0
\(175\) 0.372060 0.0281251
\(176\) 19.6467 1.48092
\(177\) 0 0
\(178\) 27.1713 2.03658
\(179\) 9.39230 0.702013 0.351007 0.936373i \(-0.385839\pi\)
0.351007 + 0.936373i \(0.385839\pi\)
\(180\) 0 0
\(181\) 7.19109 0.534510 0.267255 0.963626i \(-0.413883\pi\)
0.267255 + 0.963626i \(0.413883\pi\)
\(182\) −0.669464 −0.0496240
\(183\) 0 0
\(184\) −0.847286 −0.0624627
\(185\) −8.17898 −0.601330
\(186\) 0 0
\(187\) 0 0
\(188\) 1.09107 0.0795747
\(189\) 0 0
\(190\) 4.38395 0.318045
\(191\) 9.81454 0.710155 0.355078 0.934837i \(-0.384454\pi\)
0.355078 + 0.934837i \(0.384454\pi\)
\(192\) 0 0
\(193\) 22.9729 1.65362 0.826812 0.562478i \(-0.190152\pi\)
0.826812 + 0.562478i \(0.190152\pi\)
\(194\) −7.42042 −0.532755
\(195\) 0 0
\(196\) −15.7296 −1.12354
\(197\) −15.1901 −1.08225 −0.541126 0.840942i \(-0.682002\pi\)
−0.541126 + 0.840942i \(0.682002\pi\)
\(198\) 0 0
\(199\) −5.15117 −0.365157 −0.182578 0.983191i \(-0.558444\pi\)
−0.182578 + 0.983191i \(0.558444\pi\)
\(200\) −1.51740 −0.107297
\(201\) 0 0
\(202\) 6.44351 0.453364
\(203\) 0.503708 0.0353534
\(204\) 0 0
\(205\) −2.73036 −0.190697
\(206\) 35.9041 2.50156
\(207\) 0 0
\(208\) −8.73247 −0.605488
\(209\) −8.43168 −0.583232
\(210\) 0 0
\(211\) 2.48185 0.170858 0.0854289 0.996344i \(-0.472774\pi\)
0.0854289 + 0.996344i \(0.472774\pi\)
\(212\) −20.3940 −1.40067
\(213\) 0 0
\(214\) 2.58024 0.176381
\(215\) 11.4524 0.781046
\(216\) 0 0
\(217\) 0.0527449 0.00358055
\(218\) −36.9160 −2.50026
\(219\) 0 0
\(220\) −18.6137 −1.25494
\(221\) 0 0
\(222\) 0 0
\(223\) −0.793309 −0.0531239 −0.0265620 0.999647i \(-0.508456\pi\)
−0.0265620 + 0.999647i \(0.508456\pi\)
\(224\) 1.03559 0.0691935
\(225\) 0 0
\(226\) −26.7365 −1.77849
\(227\) 4.44279 0.294878 0.147439 0.989071i \(-0.452897\pi\)
0.147439 + 0.989071i \(0.452897\pi\)
\(228\) 0 0
\(229\) −28.4102 −1.87740 −0.938701 0.344733i \(-0.887969\pi\)
−0.938701 + 0.344733i \(0.887969\pi\)
\(230\) −4.84720 −0.319615
\(231\) 0 0
\(232\) −2.05432 −0.134872
\(233\) 23.1945 1.51952 0.759762 0.650201i \(-0.225315\pi\)
0.759762 + 0.650201i \(0.225315\pi\)
\(234\) 0 0
\(235\) 0.699268 0.0456152
\(236\) −27.1445 −1.76696
\(237\) 0 0
\(238\) 0 0
\(239\) −6.48768 −0.419653 −0.209827 0.977739i \(-0.567290\pi\)
−0.209827 + 0.977739i \(0.567290\pi\)
\(240\) 0 0
\(241\) 27.2402 1.75469 0.877346 0.479858i \(-0.159312\pi\)
0.877346 + 0.479858i \(0.159312\pi\)
\(242\) 44.9059 2.88666
\(243\) 0 0
\(244\) 9.71231 0.621767
\(245\) −10.0811 −0.644057
\(246\) 0 0
\(247\) 3.74768 0.238459
\(248\) −0.215114 −0.0136597
\(249\) 0 0
\(250\) −23.5643 −1.49034
\(251\) −10.8217 −0.683062 −0.341531 0.939871i \(-0.610945\pi\)
−0.341531 + 0.939871i \(0.610945\pi\)
\(252\) 0 0
\(253\) 9.32265 0.586110
\(254\) 1.78850 0.112220
\(255\) 0 0
\(256\) 11.2350 0.702186
\(257\) 0.736456 0.0459388 0.0229694 0.999736i \(-0.492688\pi\)
0.0229694 + 0.999736i \(0.492688\pi\)
\(258\) 0 0
\(259\) 0.722875 0.0449172
\(260\) 8.27334 0.513091
\(261\) 0 0
\(262\) −21.4556 −1.32553
\(263\) 21.9569 1.35392 0.676959 0.736020i \(-0.263297\pi\)
0.676959 + 0.736020i \(0.263297\pi\)
\(264\) 0 0
\(265\) −13.0705 −0.802915
\(266\) −0.387463 −0.0237569
\(267\) 0 0
\(268\) 20.2895 1.23938
\(269\) 9.15898 0.558433 0.279216 0.960228i \(-0.409925\pi\)
0.279216 + 0.960228i \(0.409925\pi\)
\(270\) 0 0
\(271\) 17.4194 1.05815 0.529077 0.848574i \(-0.322538\pi\)
0.529077 + 0.848574i \(0.322538\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 27.1184 1.63828
\(275\) 16.6959 1.00680
\(276\) 0 0
\(277\) −8.76381 −0.526567 −0.263283 0.964719i \(-0.584805\pi\)
−0.263283 + 0.964719i \(0.584805\pi\)
\(278\) −46.1138 −2.76572
\(279\) 0 0
\(280\) −0.0958247 −0.00572662
\(281\) −3.29450 −0.196534 −0.0982668 0.995160i \(-0.531330\pi\)
−0.0982668 + 0.995160i \(0.531330\pi\)
\(282\) 0 0
\(283\) 14.7801 0.878589 0.439294 0.898343i \(-0.355229\pi\)
0.439294 + 0.898343i \(0.355229\pi\)
\(284\) −24.7515 −1.46873
\(285\) 0 0
\(286\) −30.0417 −1.77640
\(287\) 0.241315 0.0142444
\(288\) 0 0
\(289\) 0 0
\(290\) −11.7525 −0.690128
\(291\) 0 0
\(292\) −15.7180 −0.919825
\(293\) −20.3034 −1.18614 −0.593068 0.805152i \(-0.702083\pi\)
−0.593068 + 0.805152i \(0.702083\pi\)
\(294\) 0 0
\(295\) −17.3969 −1.01289
\(296\) −2.94816 −0.171358
\(297\) 0 0
\(298\) 30.7041 1.77864
\(299\) −4.14369 −0.239636
\(300\) 0 0
\(301\) −1.01218 −0.0583414
\(302\) −39.0924 −2.24952
\(303\) 0 0
\(304\) −5.05405 −0.289870
\(305\) 6.22461 0.356420
\(306\) 0 0
\(307\) 1.64581 0.0939312 0.0469656 0.998897i \(-0.485045\pi\)
0.0469656 + 0.998897i \(0.485045\pi\)
\(308\) 1.64512 0.0937394
\(309\) 0 0
\(310\) −1.23064 −0.0698954
\(311\) −31.4084 −1.78101 −0.890505 0.454974i \(-0.849649\pi\)
−0.890505 + 0.454974i \(0.849649\pi\)
\(312\) 0 0
\(313\) −12.1758 −0.688216 −0.344108 0.938930i \(-0.611819\pi\)
−0.344108 + 0.938930i \(0.611819\pi\)
\(314\) −35.1920 −1.98600
\(315\) 0 0
\(316\) 31.3776 1.76513
\(317\) −3.05027 −0.171320 −0.0856600 0.996324i \(-0.527300\pi\)
−0.0856600 + 0.996324i \(0.527300\pi\)
\(318\) 0 0
\(319\) 22.6036 1.26556
\(320\) −14.2550 −0.796877
\(321\) 0 0
\(322\) 0.428405 0.0238741
\(323\) 0 0
\(324\) 0 0
\(325\) −7.42092 −0.411639
\(326\) −19.6975 −1.09094
\(327\) 0 0
\(328\) −0.984175 −0.0543420
\(329\) −0.0618027 −0.00340729
\(330\) 0 0
\(331\) 11.9151 0.654915 0.327457 0.944866i \(-0.393808\pi\)
0.327457 + 0.944866i \(0.393808\pi\)
\(332\) −9.23362 −0.506761
\(333\) 0 0
\(334\) −39.4253 −2.15726
\(335\) 13.0035 0.710457
\(336\) 0 0
\(337\) 28.2176 1.53711 0.768555 0.639783i \(-0.220976\pi\)
0.768555 + 0.639783i \(0.220976\pi\)
\(338\) −13.4547 −0.731840
\(339\) 0 0
\(340\) 0 0
\(341\) 2.36689 0.128174
\(342\) 0 0
\(343\) 1.78405 0.0963297
\(344\) 4.12808 0.222571
\(345\) 0 0
\(346\) 26.4508 1.42201
\(347\) 33.5125 1.79905 0.899523 0.436873i \(-0.143914\pi\)
0.899523 + 0.436873i \(0.143914\pi\)
\(348\) 0 0
\(349\) 15.8690 0.849446 0.424723 0.905323i \(-0.360372\pi\)
0.424723 + 0.905323i \(0.360372\pi\)
\(350\) 0.767230 0.0410102
\(351\) 0 0
\(352\) 46.4715 2.47694
\(353\) −22.6893 −1.20763 −0.603816 0.797124i \(-0.706354\pi\)
−0.603816 + 0.797124i \(0.706354\pi\)
\(354\) 0 0
\(355\) −15.8632 −0.841932
\(356\) 29.6776 1.57291
\(357\) 0 0
\(358\) 19.3680 1.02363
\(359\) 32.5288 1.71680 0.858402 0.512978i \(-0.171458\pi\)
0.858402 + 0.512978i \(0.171458\pi\)
\(360\) 0 0
\(361\) −16.8310 −0.885841
\(362\) 14.8289 0.779388
\(363\) 0 0
\(364\) −0.731215 −0.0383261
\(365\) −10.0736 −0.527278
\(366\) 0 0
\(367\) 25.0942 1.30990 0.654952 0.755670i \(-0.272689\pi\)
0.654952 + 0.755670i \(0.272689\pi\)
\(368\) 5.58811 0.291300
\(369\) 0 0
\(370\) −16.8660 −0.876822
\(371\) 1.15520 0.0599749
\(372\) 0 0
\(373\) 8.90157 0.460906 0.230453 0.973083i \(-0.425979\pi\)
0.230453 + 0.973083i \(0.425979\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.252055 0.0129988
\(377\) −10.0467 −0.517433
\(378\) 0 0
\(379\) 8.57311 0.440371 0.220186 0.975458i \(-0.429334\pi\)
0.220186 + 0.975458i \(0.429334\pi\)
\(380\) 4.78833 0.245636
\(381\) 0 0
\(382\) 20.2387 1.03550
\(383\) −26.5050 −1.35434 −0.677170 0.735826i \(-0.736794\pi\)
−0.677170 + 0.735826i \(0.736794\pi\)
\(384\) 0 0
\(385\) 1.05435 0.0537349
\(386\) 47.3728 2.41121
\(387\) 0 0
\(388\) −8.10487 −0.411462
\(389\) −15.4897 −0.785361 −0.392681 0.919675i \(-0.628452\pi\)
−0.392681 + 0.919675i \(0.628452\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −3.63379 −0.183534
\(393\) 0 0
\(394\) −31.3238 −1.57807
\(395\) 20.1099 1.01184
\(396\) 0 0
\(397\) 1.14485 0.0574585 0.0287293 0.999587i \(-0.490854\pi\)
0.0287293 + 0.999587i \(0.490854\pi\)
\(398\) −10.6223 −0.532448
\(399\) 0 0
\(400\) 10.0077 0.500386
\(401\) −15.2415 −0.761126 −0.380563 0.924755i \(-0.624270\pi\)
−0.380563 + 0.924755i \(0.624270\pi\)
\(402\) 0 0
\(403\) −1.05202 −0.0524050
\(404\) 7.03786 0.350146
\(405\) 0 0
\(406\) 1.03871 0.0515501
\(407\) 32.4385 1.60792
\(408\) 0 0
\(409\) −20.8505 −1.03099 −0.515495 0.856893i \(-0.672392\pi\)
−0.515495 + 0.856893i \(0.672392\pi\)
\(410\) −5.63033 −0.278062
\(411\) 0 0
\(412\) 39.2159 1.93203
\(413\) 1.53757 0.0756590
\(414\) 0 0
\(415\) −5.91782 −0.290494
\(416\) −20.6554 −1.01272
\(417\) 0 0
\(418\) −17.3871 −0.850432
\(419\) −1.58643 −0.0775020 −0.0387510 0.999249i \(-0.512338\pi\)
−0.0387510 + 0.999249i \(0.512338\pi\)
\(420\) 0 0
\(421\) 6.69178 0.326138 0.163069 0.986615i \(-0.447861\pi\)
0.163069 + 0.986615i \(0.447861\pi\)
\(422\) 5.11787 0.249134
\(423\) 0 0
\(424\) −4.71134 −0.228803
\(425\) 0 0
\(426\) 0 0
\(427\) −0.550144 −0.0266233
\(428\) 2.81824 0.136225
\(429\) 0 0
\(430\) 23.6161 1.13887
\(431\) −20.4283 −0.983995 −0.491998 0.870597i \(-0.663733\pi\)
−0.491998 + 0.870597i \(0.663733\pi\)
\(432\) 0 0
\(433\) −37.9714 −1.82479 −0.912395 0.409310i \(-0.865769\pi\)
−0.912395 + 0.409310i \(0.865769\pi\)
\(434\) 0.108766 0.00522094
\(435\) 0 0
\(436\) −40.3211 −1.93103
\(437\) −2.39822 −0.114723
\(438\) 0 0
\(439\) −18.8231 −0.898377 −0.449188 0.893437i \(-0.648287\pi\)
−0.449188 + 0.893437i \(0.648287\pi\)
\(440\) −4.30006 −0.204998
\(441\) 0 0
\(442\) 0 0
\(443\) −29.2336 −1.38893 −0.694465 0.719526i \(-0.744359\pi\)
−0.694465 + 0.719526i \(0.744359\pi\)
\(444\) 0 0
\(445\) 19.0203 0.901650
\(446\) −1.63590 −0.0774619
\(447\) 0 0
\(448\) 1.25988 0.0595239
\(449\) −8.55507 −0.403739 −0.201869 0.979412i \(-0.564702\pi\)
−0.201869 + 0.979412i \(0.564702\pi\)
\(450\) 0 0
\(451\) 10.8288 0.509910
\(452\) −29.2027 −1.37358
\(453\) 0 0
\(454\) 9.16155 0.429973
\(455\) −0.468635 −0.0219699
\(456\) 0 0
\(457\) 17.8952 0.837101 0.418550 0.908194i \(-0.362538\pi\)
0.418550 + 0.908194i \(0.362538\pi\)
\(458\) −58.5852 −2.73751
\(459\) 0 0
\(460\) −5.29430 −0.246848
\(461\) 30.3494 1.41351 0.706756 0.707457i \(-0.250158\pi\)
0.706756 + 0.707457i \(0.250158\pi\)
\(462\) 0 0
\(463\) 10.8211 0.502901 0.251451 0.967870i \(-0.419092\pi\)
0.251451 + 0.967870i \(0.419092\pi\)
\(464\) 13.5488 0.628989
\(465\) 0 0
\(466\) 47.8298 2.21567
\(467\) 33.7498 1.56175 0.780876 0.624686i \(-0.214773\pi\)
0.780876 + 0.624686i \(0.214773\pi\)
\(468\) 0 0
\(469\) −1.14927 −0.0530686
\(470\) 1.44197 0.0665132
\(471\) 0 0
\(472\) −6.27081 −0.288638
\(473\) −45.4211 −2.08846
\(474\) 0 0
\(475\) −4.29497 −0.197067
\(476\) 0 0
\(477\) 0 0
\(478\) −13.3783 −0.611911
\(479\) 28.9330 1.32198 0.660990 0.750395i \(-0.270136\pi\)
0.660990 + 0.750395i \(0.270136\pi\)
\(480\) 0 0
\(481\) −14.4181 −0.657409
\(482\) 56.1724 2.55858
\(483\) 0 0
\(484\) 49.0480 2.22945
\(485\) −5.19440 −0.235866
\(486\) 0 0
\(487\) 28.0554 1.27131 0.635655 0.771973i \(-0.280730\pi\)
0.635655 + 0.771973i \(0.280730\pi\)
\(488\) 2.24370 0.101567
\(489\) 0 0
\(490\) −20.7884 −0.939123
\(491\) −20.1762 −0.910541 −0.455271 0.890353i \(-0.650457\pi\)
−0.455271 + 0.890353i \(0.650457\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 7.72814 0.347706
\(495\) 0 0
\(496\) 1.41874 0.0637033
\(497\) 1.40202 0.0628893
\(498\) 0 0
\(499\) −29.9876 −1.34243 −0.671214 0.741264i \(-0.734227\pi\)
−0.671214 + 0.741264i \(0.734227\pi\)
\(500\) −25.7378 −1.15103
\(501\) 0 0
\(502\) −22.3157 −0.995997
\(503\) −1.08769 −0.0484979 −0.0242490 0.999706i \(-0.507719\pi\)
−0.0242490 + 0.999706i \(0.507719\pi\)
\(504\) 0 0
\(505\) 4.51055 0.200717
\(506\) 19.2244 0.854629
\(507\) 0 0
\(508\) 1.95347 0.0866710
\(509\) 14.0982 0.624892 0.312446 0.949935i \(-0.398852\pi\)
0.312446 + 0.949935i \(0.398852\pi\)
\(510\) 0 0
\(511\) 0.890328 0.0393858
\(512\) 31.4267 1.38888
\(513\) 0 0
\(514\) 1.51866 0.0669851
\(515\) 25.1334 1.10751
\(516\) 0 0
\(517\) −2.77335 −0.121972
\(518\) 1.49065 0.0654955
\(519\) 0 0
\(520\) 1.91127 0.0838148
\(521\) 0.519431 0.0227567 0.0113783 0.999935i \(-0.496378\pi\)
0.0113783 + 0.999935i \(0.496378\pi\)
\(522\) 0 0
\(523\) 1.99821 0.0873757 0.0436879 0.999045i \(-0.486089\pi\)
0.0436879 + 0.999045i \(0.486089\pi\)
\(524\) −23.4346 −1.02375
\(525\) 0 0
\(526\) 45.2776 1.97420
\(527\) 0 0
\(528\) 0 0
\(529\) −20.3484 −0.884711
\(530\) −26.9529 −1.17076
\(531\) 0 0
\(532\) −0.423202 −0.0183481
\(533\) −4.81315 −0.208481
\(534\) 0 0
\(535\) 1.80621 0.0780891
\(536\) 4.68718 0.202456
\(537\) 0 0
\(538\) 18.8869 0.814271
\(539\) 39.9824 1.72216
\(540\) 0 0
\(541\) −4.03513 −0.173484 −0.0867420 0.996231i \(-0.527646\pi\)
−0.0867420 + 0.996231i \(0.527646\pi\)
\(542\) 35.9209 1.54293
\(543\) 0 0
\(544\) 0 0
\(545\) −25.8417 −1.10694
\(546\) 0 0
\(547\) −2.46695 −0.105479 −0.0527396 0.998608i \(-0.516795\pi\)
−0.0527396 + 0.998608i \(0.516795\pi\)
\(548\) 29.6198 1.26529
\(549\) 0 0
\(550\) 34.4289 1.46805
\(551\) −5.81470 −0.247714
\(552\) 0 0
\(553\) −1.77735 −0.0755807
\(554\) −18.0720 −0.767806
\(555\) 0 0
\(556\) −50.3673 −2.13605
\(557\) 13.9487 0.591024 0.295512 0.955339i \(-0.404510\pi\)
0.295512 + 0.955339i \(0.404510\pi\)
\(558\) 0 0
\(559\) 20.1885 0.853885
\(560\) 0.631993 0.0267066
\(561\) 0 0
\(562\) −6.79365 −0.286573
\(563\) 2.16638 0.0913019 0.0456510 0.998957i \(-0.485464\pi\)
0.0456510 + 0.998957i \(0.485464\pi\)
\(564\) 0 0
\(565\) −18.7160 −0.787387
\(566\) 30.4784 1.28110
\(567\) 0 0
\(568\) −5.71799 −0.239921
\(569\) −13.9324 −0.584078 −0.292039 0.956406i \(-0.594334\pi\)
−0.292039 + 0.956406i \(0.594334\pi\)
\(570\) 0 0
\(571\) −5.20600 −0.217864 −0.108932 0.994049i \(-0.534743\pi\)
−0.108932 + 0.994049i \(0.534743\pi\)
\(572\) −32.8127 −1.37197
\(573\) 0 0
\(574\) 0.497620 0.0207702
\(575\) 4.74882 0.198039
\(576\) 0 0
\(577\) 1.33032 0.0553821 0.0276911 0.999617i \(-0.491185\pi\)
0.0276911 + 0.999617i \(0.491185\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −12.8365 −0.533006
\(581\) 0.523029 0.0216989
\(582\) 0 0
\(583\) 51.8387 2.14694
\(584\) −3.63110 −0.150256
\(585\) 0 0
\(586\) −41.8679 −1.72955
\(587\) −10.1422 −0.418615 −0.209308 0.977850i \(-0.567121\pi\)
−0.209308 + 0.977850i \(0.567121\pi\)
\(588\) 0 0
\(589\) −0.608875 −0.0250883
\(590\) −35.8744 −1.47693
\(591\) 0 0
\(592\) 19.4440 0.799144
\(593\) 23.8630 0.979937 0.489968 0.871740i \(-0.337008\pi\)
0.489968 + 0.871740i \(0.337008\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 33.5363 1.37370
\(597\) 0 0
\(598\) −8.54477 −0.349422
\(599\) −23.4361 −0.957574 −0.478787 0.877931i \(-0.658923\pi\)
−0.478787 + 0.877931i \(0.658923\pi\)
\(600\) 0 0
\(601\) −13.1802 −0.537633 −0.268817 0.963191i \(-0.586633\pi\)
−0.268817 + 0.963191i \(0.586633\pi\)
\(602\) −2.08724 −0.0850697
\(603\) 0 0
\(604\) −42.6983 −1.73737
\(605\) 31.4348 1.27801
\(606\) 0 0
\(607\) 25.8950 1.05105 0.525523 0.850779i \(-0.323869\pi\)
0.525523 + 0.850779i \(0.323869\pi\)
\(608\) −11.9547 −0.484826
\(609\) 0 0
\(610\) 12.8359 0.519709
\(611\) 1.23269 0.0498692
\(612\) 0 0
\(613\) −32.9459 −1.33067 −0.665337 0.746543i \(-0.731712\pi\)
−0.665337 + 0.746543i \(0.731712\pi\)
\(614\) 3.39385 0.136964
\(615\) 0 0
\(616\) 0.380048 0.0153126
\(617\) −3.62573 −0.145966 −0.0729831 0.997333i \(-0.523252\pi\)
−0.0729831 + 0.997333i \(0.523252\pi\)
\(618\) 0 0
\(619\) 38.7024 1.55558 0.777791 0.628523i \(-0.216340\pi\)
0.777791 + 0.628523i \(0.216340\pi\)
\(620\) −1.34415 −0.0539823
\(621\) 0 0
\(622\) −64.7679 −2.59696
\(623\) −1.68105 −0.0673500
\(624\) 0 0
\(625\) −1.91399 −0.0765594
\(626\) −25.1079 −1.00351
\(627\) 0 0
\(628\) −38.4381 −1.53385
\(629\) 0 0
\(630\) 0 0
\(631\) −20.0655 −0.798793 −0.399396 0.916778i \(-0.630780\pi\)
−0.399396 + 0.916778i \(0.630780\pi\)
\(632\) 7.24873 0.288339
\(633\) 0 0
\(634\) −6.29001 −0.249808
\(635\) 1.25197 0.0496830
\(636\) 0 0
\(637\) −17.7712 −0.704120
\(638\) 46.6112 1.84535
\(639\) 0 0
\(640\) −5.96091 −0.235626
\(641\) −40.6812 −1.60681 −0.803405 0.595432i \(-0.796981\pi\)
−0.803405 + 0.595432i \(0.796981\pi\)
\(642\) 0 0
\(643\) 26.7094 1.05332 0.526659 0.850077i \(-0.323445\pi\)
0.526659 + 0.850077i \(0.323445\pi\)
\(644\) 0.467921 0.0184387
\(645\) 0 0
\(646\) 0 0
\(647\) −1.47428 −0.0579601 −0.0289800 0.999580i \(-0.509226\pi\)
−0.0289800 + 0.999580i \(0.509226\pi\)
\(648\) 0 0
\(649\) 68.9975 2.70839
\(650\) −15.3028 −0.600225
\(651\) 0 0
\(652\) −21.5144 −0.842568
\(653\) −1.95400 −0.0764658 −0.0382329 0.999269i \(-0.512173\pi\)
−0.0382329 + 0.999269i \(0.512173\pi\)
\(654\) 0 0
\(655\) −15.0192 −0.586850
\(656\) 6.49093 0.253428
\(657\) 0 0
\(658\) −0.127444 −0.00496830
\(659\) −33.4094 −1.30145 −0.650723 0.759315i \(-0.725534\pi\)
−0.650723 + 0.759315i \(0.725534\pi\)
\(660\) 0 0
\(661\) −23.3283 −0.907366 −0.453683 0.891163i \(-0.649890\pi\)
−0.453683 + 0.891163i \(0.649890\pi\)
\(662\) 24.5704 0.954955
\(663\) 0 0
\(664\) −2.13311 −0.0827808
\(665\) −0.271230 −0.0105178
\(666\) 0 0
\(667\) 6.42913 0.248937
\(668\) −43.0619 −1.66611
\(669\) 0 0
\(670\) 26.8147 1.03594
\(671\) −24.6873 −0.953043
\(672\) 0 0
\(673\) −8.54944 −0.329557 −0.164778 0.986331i \(-0.552691\pi\)
−0.164778 + 0.986331i \(0.552691\pi\)
\(674\) 58.1880 2.24132
\(675\) 0 0
\(676\) −14.6958 −0.565222
\(677\) 19.1127 0.734562 0.367281 0.930110i \(-0.380289\pi\)
0.367281 + 0.930110i \(0.380289\pi\)
\(678\) 0 0
\(679\) 0.459092 0.0176183
\(680\) 0 0
\(681\) 0 0
\(682\) 4.88080 0.186895
\(683\) −0.0672121 −0.00257180 −0.00128590 0.999999i \(-0.500409\pi\)
−0.00128590 + 0.999999i \(0.500409\pi\)
\(684\) 0 0
\(685\) 18.9833 0.725314
\(686\) 3.67892 0.140462
\(687\) 0 0
\(688\) −27.2259 −1.03798
\(689\) −23.0410 −0.877793
\(690\) 0 0
\(691\) −0.152462 −0.00579991 −0.00289996 0.999996i \(-0.500923\pi\)
−0.00289996 + 0.999996i \(0.500923\pi\)
\(692\) 28.8906 1.09826
\(693\) 0 0
\(694\) 69.1067 2.62326
\(695\) −32.2804 −1.22446
\(696\) 0 0
\(697\) 0 0
\(698\) 32.7236 1.23861
\(699\) 0 0
\(700\) 0.837999 0.0316734
\(701\) 28.8361 1.08912 0.544562 0.838721i \(-0.316696\pi\)
0.544562 + 0.838721i \(0.316696\pi\)
\(702\) 0 0
\(703\) −8.34470 −0.314726
\(704\) 56.5363 2.13079
\(705\) 0 0
\(706\) −46.7881 −1.76089
\(707\) −0.398652 −0.0149928
\(708\) 0 0
\(709\) 24.7973 0.931281 0.465641 0.884974i \(-0.345824\pi\)
0.465641 + 0.884974i \(0.345824\pi\)
\(710\) −32.7118 −1.22765
\(711\) 0 0
\(712\) 6.85599 0.256939
\(713\) 0.673214 0.0252121
\(714\) 0 0
\(715\) −21.0297 −0.786464
\(716\) 21.1545 0.790581
\(717\) 0 0
\(718\) 67.0781 2.50333
\(719\) −9.66469 −0.360432 −0.180216 0.983627i \(-0.557680\pi\)
−0.180216 + 0.983627i \(0.557680\pi\)
\(720\) 0 0
\(721\) −2.22134 −0.0827271
\(722\) −34.7074 −1.29168
\(723\) 0 0
\(724\) 16.1967 0.601945
\(725\) 11.5139 0.427616
\(726\) 0 0
\(727\) 32.5242 1.20626 0.603129 0.797644i \(-0.293920\pi\)
0.603129 + 0.797644i \(0.293920\pi\)
\(728\) −0.168922 −0.00626067
\(729\) 0 0
\(730\) −20.7730 −0.768844
\(731\) 0 0
\(732\) 0 0
\(733\) −33.0498 −1.22072 −0.610361 0.792123i \(-0.708976\pi\)
−0.610361 + 0.792123i \(0.708976\pi\)
\(734\) 51.7471 1.91002
\(735\) 0 0
\(736\) 13.2179 0.487218
\(737\) −51.5729 −1.89971
\(738\) 0 0
\(739\) −3.87288 −0.142466 −0.0712330 0.997460i \(-0.522693\pi\)
−0.0712330 + 0.997460i \(0.522693\pi\)
\(740\) −18.4217 −0.677196
\(741\) 0 0
\(742\) 2.38215 0.0874515
\(743\) −22.8764 −0.839253 −0.419626 0.907697i \(-0.637839\pi\)
−0.419626 + 0.907697i \(0.637839\pi\)
\(744\) 0 0
\(745\) 21.4934 0.787456
\(746\) 18.3561 0.672063
\(747\) 0 0
\(748\) 0 0
\(749\) −0.159636 −0.00583297
\(750\) 0 0
\(751\) 47.9834 1.75094 0.875469 0.483274i \(-0.160552\pi\)
0.875469 + 0.483274i \(0.160552\pi\)
\(752\) −1.66238 −0.0606208
\(753\) 0 0
\(754\) −20.7175 −0.754487
\(755\) −27.3653 −0.995924
\(756\) 0 0
\(757\) 7.24009 0.263146 0.131573 0.991307i \(-0.457997\pi\)
0.131573 + 0.991307i \(0.457997\pi\)
\(758\) 17.6788 0.642122
\(759\) 0 0
\(760\) 1.10618 0.0401253
\(761\) 23.8187 0.863426 0.431713 0.902011i \(-0.357909\pi\)
0.431713 + 0.902011i \(0.357909\pi\)
\(762\) 0 0
\(763\) 2.28394 0.0826843
\(764\) 22.1055 0.799750
\(765\) 0 0
\(766\) −54.6563 −1.97481
\(767\) −30.6677 −1.10735
\(768\) 0 0
\(769\) 6.92589 0.249754 0.124877 0.992172i \(-0.460146\pi\)
0.124877 + 0.992172i \(0.460146\pi\)
\(770\) 2.17420 0.0783528
\(771\) 0 0
\(772\) 51.7424 1.86225
\(773\) 8.04876 0.289494 0.144747 0.989469i \(-0.453763\pi\)
0.144747 + 0.989469i \(0.453763\pi\)
\(774\) 0 0
\(775\) 1.20566 0.0433085
\(776\) −1.87235 −0.0672135
\(777\) 0 0
\(778\) −31.9417 −1.14516
\(779\) −2.78569 −0.0998076
\(780\) 0 0
\(781\) 62.9148 2.25127
\(782\) 0 0
\(783\) 0 0
\(784\) 23.9659 0.855926
\(785\) −24.6349 −0.879258
\(786\) 0 0
\(787\) 38.6780 1.37872 0.689360 0.724419i \(-0.257892\pi\)
0.689360 + 0.724419i \(0.257892\pi\)
\(788\) −34.2131 −1.21879
\(789\) 0 0
\(790\) 41.4689 1.47540
\(791\) 1.65416 0.0588150
\(792\) 0 0
\(793\) 10.9729 0.389659
\(794\) 2.36082 0.0837824
\(795\) 0 0
\(796\) −11.6021 −0.411226
\(797\) −50.6758 −1.79503 −0.897514 0.440985i \(-0.854629\pi\)
−0.897514 + 0.440985i \(0.854629\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 23.6719 0.836928
\(801\) 0 0
\(802\) −31.4298 −1.10983
\(803\) 39.9529 1.40991
\(804\) 0 0
\(805\) 0.299890 0.0105697
\(806\) −2.16940 −0.0764137
\(807\) 0 0
\(808\) 1.62586 0.0571974
\(809\) −34.7611 −1.22214 −0.611068 0.791578i \(-0.709260\pi\)
−0.611068 + 0.791578i \(0.709260\pi\)
\(810\) 0 0
\(811\) 23.2649 0.816942 0.408471 0.912771i \(-0.366062\pi\)
0.408471 + 0.912771i \(0.366062\pi\)
\(812\) 1.13451 0.0398137
\(813\) 0 0
\(814\) 66.8919 2.34456
\(815\) −13.7885 −0.482991
\(816\) 0 0
\(817\) 11.6844 0.408787
\(818\) −42.9961 −1.50332
\(819\) 0 0
\(820\) −6.14966 −0.214756
\(821\) −9.90703 −0.345758 −0.172879 0.984943i \(-0.555307\pi\)
−0.172879 + 0.984943i \(0.555307\pi\)
\(822\) 0 0
\(823\) 3.84078 0.133881 0.0669406 0.997757i \(-0.478676\pi\)
0.0669406 + 0.997757i \(0.478676\pi\)
\(824\) 9.05949 0.315602
\(825\) 0 0
\(826\) 3.17065 0.110321
\(827\) 12.1752 0.423373 0.211687 0.977338i \(-0.432104\pi\)
0.211687 + 0.977338i \(0.432104\pi\)
\(828\) 0 0
\(829\) −40.9472 −1.42216 −0.711078 0.703113i \(-0.751793\pi\)
−0.711078 + 0.703113i \(0.751793\pi\)
\(830\) −12.2032 −0.423580
\(831\) 0 0
\(832\) −25.1290 −0.871192
\(833\) 0 0
\(834\) 0 0
\(835\) −27.5983 −0.955079
\(836\) −18.9909 −0.656814
\(837\) 0 0
\(838\) −3.27140 −0.113009
\(839\) 9.30970 0.321407 0.160703 0.987003i \(-0.448624\pi\)
0.160703 + 0.987003i \(0.448624\pi\)
\(840\) 0 0
\(841\) −13.4120 −0.462484
\(842\) 13.7992 0.475553
\(843\) 0 0
\(844\) 5.58994 0.192414
\(845\) −9.41849 −0.324006
\(846\) 0 0
\(847\) −2.77827 −0.0954625
\(848\) 31.0727 1.06704
\(849\) 0 0
\(850\) 0 0
\(851\) 9.22648 0.316280
\(852\) 0 0
\(853\) −26.1377 −0.894939 −0.447469 0.894299i \(-0.647675\pi\)
−0.447469 + 0.894299i \(0.647675\pi\)
\(854\) −1.13446 −0.0388204
\(855\) 0 0
\(856\) 0.651057 0.0222527
\(857\) −45.2942 −1.54722 −0.773611 0.633661i \(-0.781552\pi\)
−0.773611 + 0.633661i \(0.781552\pi\)
\(858\) 0 0
\(859\) 26.0657 0.889351 0.444675 0.895692i \(-0.353319\pi\)
0.444675 + 0.895692i \(0.353319\pi\)
\(860\) 25.7945 0.879584
\(861\) 0 0
\(862\) −42.1255 −1.43480
\(863\) −7.52107 −0.256020 −0.128010 0.991773i \(-0.540859\pi\)
−0.128010 + 0.991773i \(0.540859\pi\)
\(864\) 0 0
\(865\) 18.5160 0.629562
\(866\) −78.3015 −2.66079
\(867\) 0 0
\(868\) 0.118799 0.00403229
\(869\) −79.7574 −2.70559
\(870\) 0 0
\(871\) 22.9229 0.776712
\(872\) −9.31480 −0.315439
\(873\) 0 0
\(874\) −4.94542 −0.167281
\(875\) 1.45789 0.0492858
\(876\) 0 0
\(877\) 10.3399 0.349155 0.174577 0.984643i \(-0.444144\pi\)
0.174577 + 0.984643i \(0.444144\pi\)
\(878\) −38.8154 −1.30996
\(879\) 0 0
\(880\) 28.3602 0.956023
\(881\) 29.7263 1.00150 0.500752 0.865591i \(-0.333057\pi\)
0.500752 + 0.865591i \(0.333057\pi\)
\(882\) 0 0
\(883\) 33.0395 1.11187 0.555933 0.831227i \(-0.312361\pi\)
0.555933 + 0.831227i \(0.312361\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −60.2831 −2.02525
\(887\) 11.4794 0.385440 0.192720 0.981254i \(-0.438269\pi\)
0.192720 + 0.981254i \(0.438269\pi\)
\(888\) 0 0
\(889\) −0.110652 −0.00371115
\(890\) 39.2221 1.31473
\(891\) 0 0
\(892\) −1.78679 −0.0598262
\(893\) 0.713437 0.0238742
\(894\) 0 0
\(895\) 13.5579 0.453191
\(896\) 0.526838 0.0176004
\(897\) 0 0
\(898\) −17.6416 −0.588707
\(899\) 1.63227 0.0544391
\(900\) 0 0
\(901\) 0 0
\(902\) 22.3303 0.743519
\(903\) 0 0
\(904\) −6.74628 −0.224378
\(905\) 10.3804 0.345057
\(906\) 0 0
\(907\) −16.4437 −0.546004 −0.273002 0.962014i \(-0.588016\pi\)
−0.273002 + 0.962014i \(0.588016\pi\)
\(908\) 10.0066 0.332081
\(909\) 0 0
\(910\) −0.966379 −0.0320352
\(911\) −11.9515 −0.395971 −0.197985 0.980205i \(-0.563440\pi\)
−0.197985 + 0.980205i \(0.563440\pi\)
\(912\) 0 0
\(913\) 23.4705 0.776762
\(914\) 36.9019 1.22061
\(915\) 0 0
\(916\) −63.9891 −2.11426
\(917\) 1.32743 0.0438356
\(918\) 0 0
\(919\) 43.9032 1.44823 0.724116 0.689678i \(-0.242248\pi\)
0.724116 + 0.689678i \(0.242248\pi\)
\(920\) −1.22307 −0.0403233
\(921\) 0 0
\(922\) 62.5840 2.06109
\(923\) −27.9641 −0.920448
\(924\) 0 0
\(925\) 16.5237 0.543295
\(926\) 22.3145 0.733299
\(927\) 0 0
\(928\) 32.0479 1.05202
\(929\) −15.2019 −0.498760 −0.249380 0.968406i \(-0.580227\pi\)
−0.249380 + 0.968406i \(0.580227\pi\)
\(930\) 0 0
\(931\) −10.2854 −0.337089
\(932\) 52.2416 1.71123
\(933\) 0 0
\(934\) 69.5959 2.27725
\(935\) 0 0
\(936\) 0 0
\(937\) −44.2687 −1.44620 −0.723098 0.690745i \(-0.757283\pi\)
−0.723098 + 0.690745i \(0.757283\pi\)
\(938\) −2.36994 −0.0773812
\(939\) 0 0
\(940\) 1.57498 0.0513701
\(941\) 9.10999 0.296977 0.148489 0.988914i \(-0.452559\pi\)
0.148489 + 0.988914i \(0.452559\pi\)
\(942\) 0 0
\(943\) 3.08005 0.100300
\(944\) 41.3579 1.34608
\(945\) 0 0
\(946\) −93.6635 −3.04526
\(947\) −28.2018 −0.916435 −0.458217 0.888840i \(-0.651512\pi\)
−0.458217 + 0.888840i \(0.651512\pi\)
\(948\) 0 0
\(949\) −17.7581 −0.576451
\(950\) −8.85674 −0.287350
\(951\) 0 0
\(952\) 0 0
\(953\) −29.0372 −0.940607 −0.470304 0.882505i \(-0.655856\pi\)
−0.470304 + 0.882505i \(0.655856\pi\)
\(954\) 0 0
\(955\) 14.1674 0.458447
\(956\) −14.6124 −0.472597
\(957\) 0 0
\(958\) 59.6631 1.92763
\(959\) −1.67778 −0.0541784
\(960\) 0 0
\(961\) −30.8291 −0.994486
\(962\) −29.7318 −0.958592
\(963\) 0 0
\(964\) 61.3537 1.97607
\(965\) 33.1616 1.06751
\(966\) 0 0
\(967\) 40.3570 1.29779 0.648897 0.760876i \(-0.275231\pi\)
0.648897 + 0.760876i \(0.275231\pi\)
\(968\) 11.3309 0.364187
\(969\) 0 0
\(970\) −10.7115 −0.343924
\(971\) 18.1373 0.582053 0.291026 0.956715i \(-0.406003\pi\)
0.291026 + 0.956715i \(0.406003\pi\)
\(972\) 0 0
\(973\) 2.85300 0.0914631
\(974\) 57.8534 1.85374
\(975\) 0 0
\(976\) −14.7979 −0.473668
\(977\) 41.5209 1.32837 0.664185 0.747568i \(-0.268779\pi\)
0.664185 + 0.747568i \(0.268779\pi\)
\(978\) 0 0
\(979\) −75.4361 −2.41095
\(980\) −22.7059 −0.725313
\(981\) 0 0
\(982\) −41.6058 −1.32769
\(983\) 6.41860 0.204722 0.102361 0.994747i \(-0.467360\pi\)
0.102361 + 0.994747i \(0.467360\pi\)
\(984\) 0 0
\(985\) −21.9271 −0.698656
\(986\) 0 0
\(987\) 0 0
\(988\) 8.44098 0.268543
\(989\) −12.9191 −0.410804
\(990\) 0 0
\(991\) −13.5445 −0.430255 −0.215128 0.976586i \(-0.569017\pi\)
−0.215128 + 0.976586i \(0.569017\pi\)
\(992\) 3.35584 0.106548
\(993\) 0 0
\(994\) 2.89113 0.0917012
\(995\) −7.43577 −0.235730
\(996\) 0 0
\(997\) −9.01169 −0.285403 −0.142702 0.989766i \(-0.545579\pi\)
−0.142702 + 0.989766i \(0.545579\pi\)
\(998\) −61.8378 −1.95744
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7803.2.a.bs.1.8 10
3.2 odd 2 7803.2.a.br.1.3 10
17.8 even 8 459.2.f.b.217.3 yes 20
17.15 even 8 459.2.f.b.55.8 yes 20
17.16 even 2 7803.2.a.br.1.8 10
51.8 odd 8 459.2.f.b.217.8 yes 20
51.32 odd 8 459.2.f.b.55.3 20
51.50 odd 2 inner 7803.2.a.bs.1.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.f.b.55.3 20 51.32 odd 8
459.2.f.b.55.8 yes 20 17.15 even 8
459.2.f.b.217.3 yes 20 17.8 even 8
459.2.f.b.217.8 yes 20 51.8 odd 8
7803.2.a.br.1.3 10 3.2 odd 2
7803.2.a.br.1.8 10 17.16 even 2
7803.2.a.bs.1.3 10 51.50 odd 2 inner
7803.2.a.bs.1.8 10 1.1 even 1 trivial