Properties

Label 459.2.f.b.55.3
Level $459$
Weight $2$
Character 459.55
Analytic conductor $3.665$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(55,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 24 x^{18} + 253 x^{16} - 1452 x^{14} + 5148 x^{12} - 11204 x^{10} + 15124 x^{8} - 7528 x^{6} + \cdots + 5476 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 55.3
Root \(2.76922 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 459.55
Dual form 459.2.f.b.217.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.06212i q^{2} -2.25232 q^{4} +(-1.02072 + 1.02072i) q^{5} +(-0.0902131 - 0.0902131i) q^{7} +0.520322i q^{8} +(2.10484 + 2.10484i) q^{10} +(-4.04825 - 4.04825i) q^{11} -2.54466 q^{13} +(-0.186030 + 0.186030i) q^{14} -3.43168 q^{16} +(-3.31209 - 2.45561i) q^{17} +1.47276i q^{19} +(2.29899 - 2.29899i) q^{20} +(-8.34796 + 8.34796i) q^{22} +(-1.15144 - 1.15144i) q^{23} +2.91627i q^{25} +5.24738i q^{26} +(0.203189 + 0.203189i) q^{28} +(2.79177 - 2.79177i) q^{29} +(0.292335 - 0.292335i) q^{31} +8.11718i q^{32} +(-5.06376 + 6.82992i) q^{34} +0.184164 q^{35} +(4.00649 - 4.00649i) q^{37} +3.03701 q^{38} +(-0.531102 - 0.531102i) q^{40} +(1.33747 + 1.33747i) q^{41} -7.93369i q^{43} +(9.11797 + 9.11797i) q^{44} +(-2.37441 + 2.37441i) q^{46} +0.484421 q^{47} -6.98372i q^{49} +6.01369 q^{50} +5.73140 q^{52} +9.05465i q^{53} +8.26423 q^{55} +(0.0469399 - 0.0469399i) q^{56} +(-5.75696 - 5.75696i) q^{58} -12.0518i q^{59} +(3.04914 + 3.04914i) q^{61} +(-0.602829 - 0.602829i) q^{62} +9.87520 q^{64} +(2.59738 - 2.59738i) q^{65} +9.00823 q^{67} +(7.45991 + 5.53084i) q^{68} -0.379768i q^{70} +(-7.77062 + 7.77062i) q^{71} +(-4.93459 + 4.93459i) q^{73} +(-8.26184 - 8.26184i) q^{74} -3.31714i q^{76} +0.730409i q^{77} +(-9.85086 - 9.85086i) q^{79} +(3.50278 - 3.50278i) q^{80} +(2.75802 - 2.75802i) q^{82} +4.09960i q^{83} +(5.88720 - 0.874225i) q^{85} -16.3602 q^{86} +(2.10639 - 2.10639i) q^{88} +13.1764 q^{89} +(0.229561 + 0.229561i) q^{91} +(2.59342 + 2.59342i) q^{92} -0.998933i q^{94} +(-1.50327 - 1.50327i) q^{95} +(-2.54449 + 2.54449i) q^{97} -14.4013 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 24 q^{4} + 8 q^{7} + 20 q^{10} + 32 q^{16} + 8 q^{22} + 44 q^{28} - 24 q^{31} - 28 q^{34} - 4 q^{37} - 32 q^{40} + 64 q^{46} - 8 q^{52} - 84 q^{55} + 36 q^{58} + 72 q^{64} + 36 q^{67} - 16 q^{73}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.06212i 1.45814i −0.684441 0.729068i \(-0.739954\pi\)
0.684441 0.729068i \(-0.260046\pi\)
\(3\) 0 0
\(4\) −2.25232 −1.12616
\(5\) −1.02072 + 1.02072i −0.456479 + 0.456479i −0.897498 0.441019i \(-0.854617\pi\)
0.441019 + 0.897498i \(0.354617\pi\)
\(6\) 0 0
\(7\) −0.0902131 0.0902131i −0.0340973 0.0340973i 0.689853 0.723950i \(-0.257675\pi\)
−0.723950 + 0.689853i \(0.757675\pi\)
\(8\) 0.520322i 0.183962i
\(9\) 0 0
\(10\) 2.10484 + 2.10484i 0.665608 + 0.665608i
\(11\) −4.04825 4.04825i −1.22059 1.22059i −0.967422 0.253171i \(-0.918527\pi\)
−0.253171 0.967422i \(-0.581473\pi\)
\(12\) 0 0
\(13\) −2.54466 −0.705762 −0.352881 0.935668i \(-0.614798\pi\)
−0.352881 + 0.935668i \(0.614798\pi\)
\(14\) −0.186030 + 0.186030i −0.0497186 + 0.0497186i
\(15\) 0 0
\(16\) −3.43168 −0.857921
\(17\) −3.31209 2.45561i −0.803301 0.595574i
\(18\) 0 0
\(19\) 1.47276i 0.337875i 0.985627 + 0.168937i \(0.0540335\pi\)
−0.985627 + 0.168937i \(0.945966\pi\)
\(20\) 2.29899 2.29899i 0.514069 0.514069i
\(21\) 0 0
\(22\) −8.34796 + 8.34796i −1.77979 + 1.77979i
\(23\) −1.15144 1.15144i −0.240092 0.240092i 0.576796 0.816888i \(-0.304303\pi\)
−0.816888 + 0.576796i \(0.804303\pi\)
\(24\) 0 0
\(25\) 2.91627i 0.583255i
\(26\) 5.24738i 1.02910i
\(27\) 0 0
\(28\) 0.203189 + 0.203189i 0.0383991 + 0.0383991i
\(29\) 2.79177 2.79177i 0.518419 0.518419i −0.398674 0.917093i \(-0.630529\pi\)
0.917093 + 0.398674i \(0.130529\pi\)
\(30\) 0 0
\(31\) 0.292335 0.292335i 0.0525049 0.0525049i −0.680367 0.732872i \(-0.738180\pi\)
0.732872 + 0.680367i \(0.238180\pi\)
\(32\) 8.11718i 1.43493i
\(33\) 0 0
\(34\) −5.06376 + 6.82992i −0.868428 + 1.17132i
\(35\) 0.184164 0.0311294
\(36\) 0 0
\(37\) 4.00649 4.00649i 0.658662 0.658662i −0.296401 0.955064i \(-0.595787\pi\)
0.955064 + 0.296401i \(0.0957866\pi\)
\(38\) 3.03701 0.492667
\(39\) 0 0
\(40\) −0.531102 0.531102i −0.0839746 0.0839746i
\(41\) 1.33747 + 1.33747i 0.208878 + 0.208878i 0.803791 0.594912i \(-0.202813\pi\)
−0.594912 + 0.803791i \(0.702813\pi\)
\(42\) 0 0
\(43\) 7.93369i 1.20988i −0.796272 0.604938i \(-0.793198\pi\)
0.796272 0.604938i \(-0.206802\pi\)
\(44\) 9.11797 + 9.11797i 1.37458 + 1.37458i
\(45\) 0 0
\(46\) −2.37441 + 2.37441i −0.350088 + 0.350088i
\(47\) 0.484421 0.0706601 0.0353300 0.999376i \(-0.488752\pi\)
0.0353300 + 0.999376i \(0.488752\pi\)
\(48\) 0 0
\(49\) 6.98372i 0.997675i
\(50\) 6.01369 0.850465
\(51\) 0 0
\(52\) 5.73140 0.794802
\(53\) 9.05465i 1.24375i 0.783116 + 0.621876i \(0.213629\pi\)
−0.783116 + 0.621876i \(0.786371\pi\)
\(54\) 0 0
\(55\) 8.26423 1.11435
\(56\) 0.0469399 0.0469399i 0.00627260 0.00627260i
\(57\) 0 0
\(58\) −5.75696 5.75696i −0.755926 0.755926i
\(59\) 12.0518i 1.56901i −0.620124 0.784504i \(-0.712918\pi\)
0.620124 0.784504i \(-0.287082\pi\)
\(60\) 0 0
\(61\) 3.04914 + 3.04914i 0.390402 + 0.390402i 0.874831 0.484429i \(-0.160973\pi\)
−0.484429 + 0.874831i \(0.660973\pi\)
\(62\) −0.602829 0.602829i −0.0765593 0.0765593i
\(63\) 0 0
\(64\) 9.87520 1.23440
\(65\) 2.59738 2.59738i 0.322165 0.322165i
\(66\) 0 0
\(67\) 9.00823 1.10053 0.550265 0.834990i \(-0.314527\pi\)
0.550265 + 0.834990i \(0.314527\pi\)
\(68\) 7.45991 + 5.53084i 0.904647 + 0.670713i
\(69\) 0 0
\(70\) 0.379768i 0.0453909i
\(71\) −7.77062 + 7.77062i −0.922203 + 0.922203i −0.997185 0.0749820i \(-0.976110\pi\)
0.0749820 + 0.997185i \(0.476110\pi\)
\(72\) 0 0
\(73\) −4.93459 + 4.93459i −0.577550 + 0.577550i −0.934228 0.356678i \(-0.883909\pi\)
0.356678 + 0.934228i \(0.383909\pi\)
\(74\) −8.26184 8.26184i −0.960420 0.960420i
\(75\) 0 0
\(76\) 3.31714i 0.380502i
\(77\) 0.730409i 0.0832379i
\(78\) 0 0
\(79\) −9.85086 9.85086i −1.10831 1.10831i −0.993373 0.114935i \(-0.963334\pi\)
−0.114935 0.993373i \(-0.536666\pi\)
\(80\) 3.50278 3.50278i 0.391622 0.391622i
\(81\) 0 0
\(82\) 2.75802 2.75802i 0.304573 0.304573i
\(83\) 4.09960i 0.449989i 0.974360 + 0.224995i \(0.0722364\pi\)
−0.974360 + 0.224995i \(0.927764\pi\)
\(84\) 0 0
\(85\) 5.88720 0.874225i 0.638556 0.0948230i
\(86\) −16.3602 −1.76417
\(87\) 0 0
\(88\) 2.10639 2.10639i 0.224542 0.224542i
\(89\) 13.1764 1.39670 0.698349 0.715758i \(-0.253918\pi\)
0.698349 + 0.715758i \(0.253918\pi\)
\(90\) 0 0
\(91\) 0.229561 + 0.229561i 0.0240646 + 0.0240646i
\(92\) 2.59342 + 2.59342i 0.270383 + 0.270383i
\(93\) 0 0
\(94\) 0.998933i 0.103032i
\(95\) −1.50327 1.50327i −0.154233 0.154233i
\(96\) 0 0
\(97\) −2.54449 + 2.54449i −0.258353 + 0.258353i −0.824384 0.566031i \(-0.808478\pi\)
0.566031 + 0.824384i \(0.308478\pi\)
\(98\) −14.4013 −1.45475
\(99\) 0 0
\(100\) 6.56839i 0.656839i
\(101\) −3.12471 −0.310920 −0.155460 0.987842i \(-0.549686\pi\)
−0.155460 + 0.987842i \(0.549686\pi\)
\(102\) 0 0
\(103\) 17.4113 1.71559 0.857793 0.513995i \(-0.171835\pi\)
0.857793 + 0.513995i \(0.171835\pi\)
\(104\) 1.32404i 0.129833i
\(105\) 0 0
\(106\) 18.6718 1.81356
\(107\) −0.884773 + 0.884773i −0.0855342 + 0.0855342i −0.748579 0.663045i \(-0.769264\pi\)
0.663045 + 0.748579i \(0.269264\pi\)
\(108\) 0 0
\(109\) −12.6586 12.6586i −1.21247 1.21247i −0.970210 0.242264i \(-0.922110\pi\)
−0.242264 0.970210i \(-0.577890\pi\)
\(110\) 17.0418i 1.62487i
\(111\) 0 0
\(112\) 0.309583 + 0.309583i 0.0292528 + 0.0292528i
\(113\) −9.16805 9.16805i −0.862458 0.862458i 0.129165 0.991623i \(-0.458770\pi\)
−0.991623 + 0.129165i \(0.958770\pi\)
\(114\) 0 0
\(115\) 2.35060 0.219194
\(116\) −6.28797 + 6.28797i −0.583824 + 0.583824i
\(117\) 0 0
\(118\) −24.8522 −2.28783
\(119\) 0.0772657 + 0.520322i 0.00708294 + 0.0476979i
\(120\) 0 0
\(121\) 21.7766i 1.97969i
\(122\) 6.28767 6.28767i 0.569259 0.569259i
\(123\) 0 0
\(124\) −0.658433 + 0.658433i −0.0591291 + 0.0591291i
\(125\) −8.08028 8.08028i −0.722722 0.722722i
\(126\) 0 0
\(127\) 0.867311i 0.0769614i −0.999259 0.0384807i \(-0.987748\pi\)
0.999259 0.0384807i \(-0.0122518\pi\)
\(128\) 4.12945i 0.364995i
\(129\) 0 0
\(130\) −5.35609 5.35609i −0.469761 0.469761i
\(131\) 7.35720 7.35720i 0.642801 0.642801i −0.308442 0.951243i \(-0.599808\pi\)
0.951243 + 0.308442i \(0.0998076\pi\)
\(132\) 0 0
\(133\) 0.132862 0.132862i 0.0115206 0.0115206i
\(134\) 18.5760i 1.60472i
\(135\) 0 0
\(136\) 1.27771 1.72336i 0.109563 0.147777i
\(137\) −13.1508 −1.12355 −0.561773 0.827292i \(-0.689880\pi\)
−0.561773 + 0.827292i \(0.689880\pi\)
\(138\) 0 0
\(139\) 15.8126 15.8126i 1.34121 1.34121i 0.446347 0.894860i \(-0.352725\pi\)
0.894860 0.446347i \(-0.147275\pi\)
\(140\) −0.414797 −0.0350568
\(141\) 0 0
\(142\) 16.0239 + 16.0239i 1.34470 + 1.34470i
\(143\) 10.3014 + 10.3014i 0.861447 + 0.861447i
\(144\) 0 0
\(145\) 5.69922i 0.473294i
\(146\) 10.1757 + 10.1757i 0.842147 + 0.842147i
\(147\) 0 0
\(148\) −9.02391 + 9.02391i −0.741761 + 0.741761i
\(149\) 14.8896 1.21981 0.609903 0.792476i \(-0.291208\pi\)
0.609903 + 0.792476i \(0.291208\pi\)
\(150\) 0 0
\(151\) 18.9574i 1.54273i −0.636391 0.771367i \(-0.719573\pi\)
0.636391 0.771367i \(-0.280427\pi\)
\(152\) −0.766311 −0.0621560
\(153\) 0 0
\(154\) 1.50619 0.121372
\(155\) 0.596783i 0.0479347i
\(156\) 0 0
\(157\) 17.0660 1.36201 0.681006 0.732278i \(-0.261543\pi\)
0.681006 + 0.732278i \(0.261543\pi\)
\(158\) −20.3136 + 20.3136i −1.61607 + 1.61607i
\(159\) 0 0
\(160\) −8.28534 8.28534i −0.655014 0.655014i
\(161\) 0.207750i 0.0163730i
\(162\) 0 0
\(163\) −6.75433 6.75433i −0.529040 0.529040i 0.391246 0.920286i \(-0.372044\pi\)
−0.920286 + 0.391246i \(0.872044\pi\)
\(164\) −3.01242 3.01242i −0.235231 0.235231i
\(165\) 0 0
\(166\) 8.45385 0.656146
\(167\) −13.5191 + 13.5191i −1.04614 + 1.04614i −0.0472547 + 0.998883i \(0.515047\pi\)
−0.998883 + 0.0472547i \(0.984953\pi\)
\(168\) 0 0
\(169\) −6.52471 −0.501901
\(170\) −1.80275 12.1401i −0.138265 0.931102i
\(171\) 0 0
\(172\) 17.8693i 1.36252i
\(173\) 9.07008 9.07008i 0.689585 0.689585i −0.272555 0.962140i \(-0.587869\pi\)
0.962140 + 0.272555i \(0.0878686\pi\)
\(174\) 0 0
\(175\) 0.263086 0.263086i 0.0198874 0.0198874i
\(176\) 13.8923 + 13.8923i 1.04717 + 1.04717i
\(177\) 0 0
\(178\) 27.1713i 2.03658i
\(179\) 9.39230i 0.702013i 0.936373 + 0.351007i \(0.114161\pi\)
−0.936373 + 0.351007i \(0.885839\pi\)
\(180\) 0 0
\(181\) −5.08487 5.08487i −0.377955 0.377955i 0.492409 0.870364i \(-0.336117\pi\)
−0.870364 + 0.492409i \(0.836117\pi\)
\(182\) 0.473383 0.473383i 0.0350894 0.0350894i
\(183\) 0 0
\(184\) 0.599122 0.599122i 0.0441678 0.0441678i
\(185\) 8.17898i 0.601330i
\(186\) 0 0
\(187\) 3.46725 + 23.3491i 0.253550 + 1.70746i
\(188\) −1.09107 −0.0795747
\(189\) 0 0
\(190\) −3.09992 + 3.09992i −0.224892 + 0.224892i
\(191\) 9.81454 0.710155 0.355078 0.934837i \(-0.384454\pi\)
0.355078 + 0.934837i \(0.384454\pi\)
\(192\) 0 0
\(193\) −16.2443 16.2443i −1.16929 1.16929i −0.982377 0.186912i \(-0.940152\pi\)
−0.186912 0.982377i \(-0.559848\pi\)
\(194\) 5.24703 + 5.24703i 0.376715 + 0.376715i
\(195\) 0 0
\(196\) 15.7296i 1.12354i
\(197\) 10.7410 + 10.7410i 0.765267 + 0.765267i 0.977269 0.212002i \(-0.0679983\pi\)
−0.212002 + 0.977269i \(0.567998\pi\)
\(198\) 0 0
\(199\) −3.64243 + 3.64243i −0.258205 + 0.258205i −0.824324 0.566119i \(-0.808444\pi\)
0.566119 + 0.824324i \(0.308444\pi\)
\(200\) −1.51740 −0.107297
\(201\) 0 0
\(202\) 6.44351i 0.453364i
\(203\) −0.503708 −0.0353534
\(204\) 0 0
\(205\) −2.73036 −0.190697
\(206\) 35.9041i 2.50156i
\(207\) 0 0
\(208\) 8.73247 0.605488
\(209\) 5.96210 5.96210i 0.412407 0.412407i
\(210\) 0 0
\(211\) 1.75494 + 1.75494i 0.120815 + 0.120815i 0.764929 0.644114i \(-0.222774\pi\)
−0.644114 + 0.764929i \(0.722774\pi\)
\(212\) 20.3940i 1.40067i
\(213\) 0 0
\(214\) 1.82450 + 1.82450i 0.124721 + 0.124721i
\(215\) 8.09806 + 8.09806i 0.552283 + 0.552283i
\(216\) 0 0
\(217\) −0.0527449 −0.00358055
\(218\) −26.1035 + 26.1035i −1.76795 + 1.76795i
\(219\) 0 0
\(220\) −18.6137 −1.25494
\(221\) 8.42815 + 6.24870i 0.566939 + 0.420333i
\(222\) 0 0
\(223\) 0.793309i 0.0531239i −0.999647 0.0265620i \(-0.991544\pi\)
0.999647 0.0265620i \(-0.00845593\pi\)
\(224\) 0.732275 0.732275i 0.0489272 0.0489272i
\(225\) 0 0
\(226\) −18.9056 + 18.9056i −1.25758 + 1.25758i
\(227\) 3.14153 + 3.14153i 0.208511 + 0.208511i 0.803634 0.595124i \(-0.202897\pi\)
−0.595124 + 0.803634i \(0.702897\pi\)
\(228\) 0 0
\(229\) 28.4102i 1.87740i 0.344733 + 0.938701i \(0.387969\pi\)
−0.344733 + 0.938701i \(0.612031\pi\)
\(230\) 4.84720i 0.319615i
\(231\) 0 0
\(232\) 1.45262 + 1.45262i 0.0953693 + 0.0953693i
\(233\) −16.4010 + 16.4010i −1.07447 + 1.07447i −0.0774719 + 0.996995i \(0.524685\pi\)
−0.996995 + 0.0774719i \(0.975315\pi\)
\(234\) 0 0
\(235\) −0.494457 + 0.494457i −0.0322548 + 0.0322548i
\(236\) 27.1445i 1.76696i
\(237\) 0 0
\(238\) 1.07297 0.159331i 0.0695500 0.0103279i
\(239\) 6.48768 0.419653 0.209827 0.977739i \(-0.432710\pi\)
0.209827 + 0.977739i \(0.432710\pi\)
\(240\) 0 0
\(241\) −19.2617 + 19.2617i −1.24076 + 1.24076i −0.281067 + 0.959688i \(0.590688\pi\)
−0.959688 + 0.281067i \(0.909312\pi\)
\(242\) 44.9059 2.88666
\(243\) 0 0
\(244\) −6.86764 6.86764i −0.439656 0.439656i
\(245\) 7.12841 + 7.12841i 0.455417 + 0.455417i
\(246\) 0 0
\(247\) 3.74768i 0.238459i
\(248\) 0.152108 + 0.152108i 0.00965890 + 0.00965890i
\(249\) 0 0
\(250\) −16.6625 + 16.6625i −1.05383 + 1.05383i
\(251\) −10.8217 −0.683062 −0.341531 0.939871i \(-0.610945\pi\)
−0.341531 + 0.939871i \(0.610945\pi\)
\(252\) 0 0
\(253\) 9.32265i 0.586110i
\(254\) −1.78850 −0.112220
\(255\) 0 0
\(256\) 11.2350 0.702186
\(257\) 0.736456i 0.0459388i −0.999736 0.0229694i \(-0.992688\pi\)
0.999736 0.0229694i \(-0.00731204\pi\)
\(258\) 0 0
\(259\) −0.722875 −0.0449172
\(260\) −5.85014 + 5.85014i −0.362810 + 0.362810i
\(261\) 0 0
\(262\) −15.1714 15.1714i −0.937292 0.937292i
\(263\) 21.9569i 1.35392i 0.736020 + 0.676959i \(0.236703\pi\)
−0.736020 + 0.676959i \(0.763297\pi\)
\(264\) 0 0
\(265\) −9.24224 9.24224i −0.567746 0.567746i
\(266\) −0.273977 0.273977i −0.0167986 0.0167986i
\(267\) 0 0
\(268\) −20.2895 −1.23938
\(269\) 6.47638 6.47638i 0.394872 0.394872i −0.481548 0.876420i \(-0.659925\pi\)
0.876420 + 0.481548i \(0.159925\pi\)
\(270\) 0 0
\(271\) 17.4194 1.05815 0.529077 0.848574i \(-0.322538\pi\)
0.529077 + 0.848574i \(0.322538\pi\)
\(272\) 11.3661 + 8.42689i 0.689168 + 0.510955i
\(273\) 0 0
\(274\) 27.1184i 1.63828i
\(275\) 11.8058 11.8058i 0.711916 0.711916i
\(276\) 0 0
\(277\) −6.19695 + 6.19695i −0.372339 + 0.372339i −0.868328 0.495990i \(-0.834805\pi\)
0.495990 + 0.868328i \(0.334805\pi\)
\(278\) −32.6074 32.6074i −1.95566 1.95566i
\(279\) 0 0
\(280\) 0.0958247i 0.00572662i
\(281\) 3.29450i 0.196534i −0.995160 0.0982668i \(-0.968670\pi\)
0.995160 0.0982668i \(-0.0313298\pi\)
\(282\) 0 0
\(283\) −10.4511 10.4511i −0.621256 0.621256i 0.324597 0.945853i \(-0.394771\pi\)
−0.945853 + 0.324597i \(0.894771\pi\)
\(284\) 17.5020 17.5020i 1.03855 1.03855i
\(285\) 0 0
\(286\) 21.2427 21.2427i 1.25611 1.25611i
\(287\) 0.241315i 0.0142444i
\(288\) 0 0
\(289\) 4.93993 + 16.2664i 0.290584 + 0.956849i
\(290\) 11.7525 0.690128
\(291\) 0 0
\(292\) 11.1143 11.1143i 0.650415 0.650415i
\(293\) −20.3034 −1.18614 −0.593068 0.805152i \(-0.702083\pi\)
−0.593068 + 0.805152i \(0.702083\pi\)
\(294\) 0 0
\(295\) 12.3015 + 12.3015i 0.716219 + 0.716219i
\(296\) 2.08466 + 2.08466i 0.121169 + 0.121169i
\(297\) 0 0
\(298\) 30.7041i 1.77864i
\(299\) 2.93003 + 2.93003i 0.169448 + 0.169448i
\(300\) 0 0
\(301\) −0.715723 + 0.715723i −0.0412536 + 0.0412536i
\(302\) −39.0924 −2.24952
\(303\) 0 0
\(304\) 5.05405i 0.289870i
\(305\) −6.22461 −0.356420
\(306\) 0 0
\(307\) 1.64581 0.0939312 0.0469656 0.998897i \(-0.485045\pi\)
0.0469656 + 0.998897i \(0.485045\pi\)
\(308\) 1.64512i 0.0937394i
\(309\) 0 0
\(310\) 1.23064 0.0698954
\(311\) 22.2091 22.2091i 1.25936 1.25936i 0.307967 0.951397i \(-0.400351\pi\)
0.951397 0.307967i \(-0.0996487\pi\)
\(312\) 0 0
\(313\) −8.60958 8.60958i −0.486642 0.486642i 0.420603 0.907245i \(-0.361819\pi\)
−0.907245 + 0.420603i \(0.861819\pi\)
\(314\) 35.1920i 1.98600i
\(315\) 0 0
\(316\) 22.1873 + 22.1873i 1.24814 + 1.24814i
\(317\) −2.15686 2.15686i −0.121142 0.121142i 0.643937 0.765079i \(-0.277300\pi\)
−0.765079 + 0.643937i \(0.777300\pi\)
\(318\) 0 0
\(319\) −22.6036 −1.26556
\(320\) −10.0798 + 10.0798i −0.563477 + 0.563477i
\(321\) 0 0
\(322\) 0.428405 0.0238741
\(323\) 3.61653 4.87792i 0.201229 0.271415i
\(324\) 0 0
\(325\) 7.42092i 0.411639i
\(326\) −13.9282 + 13.9282i −0.771413 + 0.771413i
\(327\) 0 0
\(328\) −0.695917 + 0.695917i −0.0384256 + 0.0384256i
\(329\) −0.0437011 0.0437011i −0.00240932 0.00240932i
\(330\) 0 0
\(331\) 11.9151i 0.654915i −0.944866 0.327457i \(-0.893808\pi\)
0.944866 0.327457i \(-0.106192\pi\)
\(332\) 9.23362i 0.506761i
\(333\) 0 0
\(334\) 27.8779 + 27.8779i 1.52541 + 1.52541i
\(335\) −9.19486 + 9.19486i −0.502369 + 0.502369i
\(336\) 0 0
\(337\) −19.9529 + 19.9529i −1.08690 + 1.08690i −0.0910557 + 0.995846i \(0.529024\pi\)
−0.995846 + 0.0910557i \(0.970976\pi\)
\(338\) 13.4547i 0.731840i
\(339\) 0 0
\(340\) −13.2599 + 1.96904i −0.719118 + 0.106786i
\(341\) −2.36689 −0.128174
\(342\) 0 0
\(343\) −1.26151 + 1.26151i −0.0681154 + 0.0681154i
\(344\) 4.12808 0.222571
\(345\) 0 0
\(346\) −18.7036 18.7036i −1.00551 1.00551i
\(347\) −23.6969 23.6969i −1.27212 1.27212i −0.944975 0.327144i \(-0.893914\pi\)
−0.327144 0.944975i \(-0.606086\pi\)
\(348\) 0 0
\(349\) 15.8690i 0.849446i −0.905323 0.424723i \(-0.860372\pi\)
0.905323 0.424723i \(-0.139628\pi\)
\(350\) −0.542514 0.542514i −0.0289986 0.0289986i
\(351\) 0 0
\(352\) 32.8603 32.8603i 1.75146 1.75146i
\(353\) −22.6893 −1.20763 −0.603816 0.797124i \(-0.706354\pi\)
−0.603816 + 0.797124i \(0.706354\pi\)
\(354\) 0 0
\(355\) 15.8632i 0.841932i
\(356\) −29.6776 −1.57291
\(357\) 0 0
\(358\) 19.3680 1.02363
\(359\) 32.5288i 1.71680i −0.512978 0.858402i \(-0.671458\pi\)
0.512978 0.858402i \(-0.328542\pi\)
\(360\) 0 0
\(361\) 16.8310 0.885841
\(362\) −10.4856 + 10.4856i −0.551111 + 0.551111i
\(363\) 0 0
\(364\) −0.517047 0.517047i −0.0271006 0.0271006i
\(365\) 10.0736i 0.527278i
\(366\) 0 0
\(367\) 17.7443 + 17.7443i 0.926242 + 0.926242i 0.997461 0.0712184i \(-0.0226887\pi\)
−0.0712184 + 0.997461i \(0.522689\pi\)
\(368\) 3.95139 + 3.95139i 0.205980 + 0.205980i
\(369\) 0 0
\(370\) 16.8660 0.876822
\(371\) 0.816848 0.816848i 0.0424086 0.0424086i
\(372\) 0 0
\(373\) 8.90157 0.460906 0.230453 0.973083i \(-0.425979\pi\)
0.230453 + 0.973083i \(0.425979\pi\)
\(374\) 48.1486 7.14986i 2.48970 0.369711i
\(375\) 0 0
\(376\) 0.252055i 0.0129988i
\(377\) −7.10411 + 7.10411i −0.365880 + 0.365880i
\(378\) 0 0
\(379\) 6.06211 6.06211i 0.311390 0.311390i −0.534058 0.845448i \(-0.679334\pi\)
0.845448 + 0.534058i \(0.179334\pi\)
\(380\) 3.38586 + 3.38586i 0.173691 + 0.173691i
\(381\) 0 0
\(382\) 20.2387i 1.03550i
\(383\) 26.5050i 1.35434i −0.735826 0.677170i \(-0.763206\pi\)
0.735826 0.677170i \(-0.236794\pi\)
\(384\) 0 0
\(385\) −0.745541 0.745541i −0.0379963 0.0379963i
\(386\) −33.4976 + 33.4976i −1.70498 + 1.70498i
\(387\) 0 0
\(388\) 5.73101 5.73101i 0.290948 0.290948i
\(389\) 15.4897i 0.785361i 0.919675 + 0.392681i \(0.128452\pi\)
−0.919675 + 0.392681i \(0.871548\pi\)
\(390\) 0 0
\(391\) 0.986189 + 6.64119i 0.0498737 + 0.335859i
\(392\) 3.63379 0.183534
\(393\) 0 0
\(394\) 22.1493 22.1493i 1.11586 1.11586i
\(395\) 20.1099 1.01184
\(396\) 0 0
\(397\) −0.809534 0.809534i −0.0406293 0.0406293i 0.686500 0.727130i \(-0.259146\pi\)
−0.727130 + 0.686500i \(0.759146\pi\)
\(398\) 7.51111 + 7.51111i 0.376498 + 0.376498i
\(399\) 0 0
\(400\) 10.0077i 0.500386i
\(401\) 10.7774 + 10.7774i 0.538197 + 0.538197i 0.922999 0.384802i \(-0.125730\pi\)
−0.384802 + 0.922999i \(0.625730\pi\)
\(402\) 0 0
\(403\) −0.743893 + 0.743893i −0.0370560 + 0.0370560i
\(404\) 7.03786 0.350146
\(405\) 0 0
\(406\) 1.03871i 0.0515501i
\(407\) −32.4385 −1.60792
\(408\) 0 0
\(409\) −20.8505 −1.03099 −0.515495 0.856893i \(-0.672392\pi\)
−0.515495 + 0.856893i \(0.672392\pi\)
\(410\) 5.63033i 0.278062i
\(411\) 0 0
\(412\) −39.2159 −1.93203
\(413\) −1.08723 + 1.08723i −0.0534990 + 0.0534990i
\(414\) 0 0
\(415\) −4.18453 4.18453i −0.205410 0.205410i
\(416\) 20.6554i 1.01272i
\(417\) 0 0
\(418\) −12.2945 12.2945i −0.601346 0.601346i
\(419\) −1.12177 1.12177i −0.0548022 0.0548022i 0.679175 0.733977i \(-0.262338\pi\)
−0.733977 + 0.679175i \(0.762338\pi\)
\(420\) 0 0
\(421\) −6.69178 −0.326138 −0.163069 0.986615i \(-0.552139\pi\)
−0.163069 + 0.986615i \(0.552139\pi\)
\(422\) 3.61888 3.61888i 0.176164 0.176164i
\(423\) 0 0
\(424\) −4.71134 −0.228803
\(425\) 7.16124 9.65897i 0.347371 0.468529i
\(426\) 0 0
\(427\) 0.550144i 0.0266233i
\(428\) 1.99279 1.99279i 0.0963254 0.0963254i
\(429\) 0 0
\(430\) 16.6991 16.6991i 0.805304 0.805304i
\(431\) −14.4450 14.4450i −0.695790 0.695790i 0.267710 0.963500i \(-0.413733\pi\)
−0.963500 + 0.267710i \(0.913733\pi\)
\(432\) 0 0
\(433\) 37.9714i 1.82479i 0.409310 + 0.912395i \(0.365769\pi\)
−0.409310 + 0.912395i \(0.634231\pi\)
\(434\) 0.108766i 0.00522094i
\(435\) 0 0
\(436\) 28.5113 + 28.5113i 1.36544 + 1.36544i
\(437\) 1.69580 1.69580i 0.0811211 0.0811211i
\(438\) 0 0
\(439\) 13.3099 13.3099i 0.635248 0.635248i −0.314131 0.949380i \(-0.601713\pi\)
0.949380 + 0.314131i \(0.101713\pi\)
\(440\) 4.30006i 0.204998i
\(441\) 0 0
\(442\) 12.8855 17.3798i 0.612903 0.826674i
\(443\) 29.2336 1.38893 0.694465 0.719526i \(-0.255641\pi\)
0.694465 + 0.719526i \(0.255641\pi\)
\(444\) 0 0
\(445\) −13.4494 + 13.4494i −0.637563 + 0.637563i
\(446\) −1.63590 −0.0774619
\(447\) 0 0
\(448\) −0.890872 0.890872i −0.0420897 0.0420897i
\(449\) 6.04935 + 6.04935i 0.285487 + 0.285487i 0.835292 0.549806i \(-0.185298\pi\)
−0.549806 + 0.835292i \(0.685298\pi\)
\(450\) 0 0
\(451\) 10.8288i 0.509910i
\(452\) 20.6494 + 20.6494i 0.971267 + 0.971267i
\(453\) 0 0
\(454\) 6.47820 6.47820i 0.304037 0.304037i
\(455\) −0.468635 −0.0219699
\(456\) 0 0
\(457\) 17.8952i 0.837101i 0.908194 + 0.418550i \(0.137462\pi\)
−0.908194 + 0.418550i \(0.862538\pi\)
\(458\) 58.5852 2.73751
\(459\) 0 0
\(460\) −5.29430 −0.246848
\(461\) 30.3494i 1.41351i −0.707457 0.706756i \(-0.750158\pi\)
0.707457 0.706756i \(-0.249842\pi\)
\(462\) 0 0
\(463\) −10.8211 −0.502901 −0.251451 0.967870i \(-0.580908\pi\)
−0.251451 + 0.967870i \(0.580908\pi\)
\(464\) −9.58048 + 9.58048i −0.444762 + 0.444762i
\(465\) 0 0
\(466\) 33.8208 + 33.8208i 1.56672 + 1.56672i
\(467\) 33.7498i 1.56175i 0.624686 + 0.780876i \(0.285227\pi\)
−0.624686 + 0.780876i \(0.714773\pi\)
\(468\) 0 0
\(469\) −0.812660 0.812660i −0.0375252 0.0375252i
\(470\) 1.01963 + 1.01963i 0.0470319 + 0.0470319i
\(471\) 0 0
\(472\) 6.27081 0.288638
\(473\) −32.1176 + 32.1176i −1.47677 + 1.47677i
\(474\) 0 0
\(475\) −4.29497 −0.197067
\(476\) −0.174028 1.17193i −0.00797654 0.0537155i
\(477\) 0 0
\(478\) 13.3783i 0.611911i
\(479\) 20.4587 20.4587i 0.934781 0.934781i −0.0632185 0.998000i \(-0.520136\pi\)
0.998000 + 0.0632185i \(0.0201365\pi\)
\(480\) 0 0
\(481\) −10.1951 + 10.1951i −0.464859 + 0.464859i
\(482\) 39.7199 + 39.7199i 1.80919 + 1.80919i
\(483\) 0 0
\(484\) 49.0480i 2.22945i
\(485\) 5.19440i 0.235866i
\(486\) 0 0
\(487\) −19.8381 19.8381i −0.898952 0.898952i 0.0963916 0.995343i \(-0.469270\pi\)
−0.995343 + 0.0963916i \(0.969270\pi\)
\(488\) −1.58653 + 1.58653i −0.0718190 + 0.0718190i
\(489\) 0 0
\(490\) 14.6996 14.6996i 0.664060 0.664060i
\(491\) 20.1762i 0.910541i 0.890353 + 0.455271i \(0.150457\pi\)
−0.890353 + 0.455271i \(0.849543\pi\)
\(492\) 0 0
\(493\) −16.1021 + 2.39110i −0.725203 + 0.107690i
\(494\) −7.72814 −0.347706
\(495\) 0 0
\(496\) −1.00320 + 1.00320i −0.0450451 + 0.0450451i
\(497\) 1.40202 0.0628893
\(498\) 0 0
\(499\) 21.2044 + 21.2044i 0.949240 + 0.949240i 0.998772 0.0495328i \(-0.0157732\pi\)
−0.0495328 + 0.998772i \(0.515773\pi\)
\(500\) 18.1994 + 18.1994i 0.813902 + 0.813902i
\(501\) 0 0
\(502\) 22.3157i 0.995997i
\(503\) 0.769116 + 0.769116i 0.0342932 + 0.0342932i 0.724045 0.689752i \(-0.242281\pi\)
−0.689752 + 0.724045i \(0.742281\pi\)
\(504\) 0 0
\(505\) 3.18944 3.18944i 0.141928 0.141928i
\(506\) 19.2244 0.854629
\(507\) 0 0
\(508\) 1.95347i 0.0866710i
\(509\) −14.0982 −0.624892 −0.312446 0.949935i \(-0.601148\pi\)
−0.312446 + 0.949935i \(0.601148\pi\)
\(510\) 0 0
\(511\) 0.890328 0.0393858
\(512\) 31.4267i 1.38888i
\(513\) 0 0
\(514\) −1.51866 −0.0669851
\(515\) −17.7720 + 17.7720i −0.783129 + 0.783129i
\(516\) 0 0
\(517\) −1.96106 1.96106i −0.0862472 0.0862472i
\(518\) 1.49065i 0.0654955i
\(519\) 0 0
\(520\) 1.35147 + 1.35147i 0.0592660 + 0.0592660i
\(521\) 0.367293 + 0.367293i 0.0160914 + 0.0160914i 0.715107 0.699015i \(-0.246378\pi\)
−0.699015 + 0.715107i \(0.746378\pi\)
\(522\) 0 0
\(523\) −1.99821 −0.0873757 −0.0436879 0.999045i \(-0.513911\pi\)
−0.0436879 + 0.999045i \(0.513911\pi\)
\(524\) −16.5708 + 16.5708i −0.723898 + 0.723898i
\(525\) 0 0
\(526\) 45.2776 1.97420
\(527\) −1.68610 + 0.250379i −0.0734478 + 0.0109067i
\(528\) 0 0
\(529\) 20.3484i 0.884711i
\(530\) −19.0586 + 19.0586i −0.827852 + 0.827852i
\(531\) 0 0
\(532\) −0.299249 + 0.299249i −0.0129741 + 0.0129741i
\(533\) −3.40341 3.40341i −0.147418 0.147418i
\(534\) 0 0
\(535\) 1.80621i 0.0780891i
\(536\) 4.68718i 0.202456i
\(537\) 0 0
\(538\) −13.3550 13.3550i −0.575777 0.575777i
\(539\) −28.2718 + 28.2718i −1.21775 + 1.21775i
\(540\) 0 0
\(541\) 2.85327 2.85327i 0.122672 0.122672i −0.643106 0.765777i \(-0.722354\pi\)
0.765777 + 0.643106i \(0.222354\pi\)
\(542\) 35.9209i 1.54293i
\(543\) 0 0
\(544\) 19.9326 26.8848i 0.854605 1.15268i
\(545\) 25.8417 1.10694
\(546\) 0 0
\(547\) 1.74440 1.74440i 0.0745851 0.0745851i −0.668830 0.743415i \(-0.733205\pi\)
0.743415 + 0.668830i \(0.233205\pi\)
\(548\) 29.6198 1.26529
\(549\) 0 0
\(550\) −24.3449 24.3449i −1.03807 1.03807i
\(551\) 4.11161 + 4.11161i 0.175161 + 0.175161i
\(552\) 0 0
\(553\) 1.77735i 0.0755807i
\(554\) 12.7788 + 12.7788i 0.542921 + 0.542921i
\(555\) 0 0
\(556\) −35.6151 + 35.6151i −1.51042 + 1.51042i
\(557\) 13.9487 0.591024 0.295512 0.955339i \(-0.404510\pi\)
0.295512 + 0.955339i \(0.404510\pi\)
\(558\) 0 0
\(559\) 20.1885i 0.853885i
\(560\) −0.631993 −0.0267066
\(561\) 0 0
\(562\) −6.79365 −0.286573
\(563\) 2.16638i 0.0913019i −0.998957 0.0456510i \(-0.985464\pi\)
0.998957 0.0456510i \(-0.0145362\pi\)
\(564\) 0 0
\(565\) 18.7160 0.787387
\(566\) −21.5515 + 21.5515i −0.905876 + 0.905876i
\(567\) 0 0
\(568\) −4.04323 4.04323i −0.169650 0.169650i
\(569\) 13.9324i 0.584078i −0.956406 0.292039i \(-0.905666\pi\)
0.956406 0.292039i \(-0.0943336\pi\)
\(570\) 0 0
\(571\) −3.68120 3.68120i −0.154053 0.154053i 0.625872 0.779926i \(-0.284743\pi\)
−0.779926 + 0.625872i \(0.784743\pi\)
\(572\) −23.2021 23.2021i −0.970129 0.970129i
\(573\) 0 0
\(574\) −0.497620 −0.0207702
\(575\) 3.35792 3.35792i 0.140035 0.140035i
\(576\) 0 0
\(577\) 1.33032 0.0553821 0.0276911 0.999617i \(-0.491185\pi\)
0.0276911 + 0.999617i \(0.491185\pi\)
\(578\) 33.5433 10.1867i 1.39522 0.423711i
\(579\) 0 0
\(580\) 12.8365i 0.533006i
\(581\) 0.369837 0.369837i 0.0153434 0.0153434i
\(582\) 0 0
\(583\) 36.6555 36.6555i 1.51811 1.51811i
\(584\) −2.56758 2.56758i −0.106247 0.106247i
\(585\) 0 0
\(586\) 41.8679i 1.72955i
\(587\) 10.1422i 0.418615i −0.977850 0.209308i \(-0.932879\pi\)
0.977850 0.209308i \(-0.0671210\pi\)
\(588\) 0 0
\(589\) 0.430540 + 0.430540i 0.0177401 + 0.0177401i
\(590\) 25.3670 25.3670i 1.04434 1.04434i
\(591\) 0 0
\(592\) −13.7490 + 13.7490i −0.565080 + 0.565080i
\(593\) 23.8630i 0.979937i −0.871740 0.489968i \(-0.837008\pi\)
0.871740 0.489968i \(-0.162992\pi\)
\(594\) 0 0
\(595\) −0.609968 0.452236i −0.0250063 0.0185398i
\(596\) −33.5363 −1.37370
\(597\) 0 0
\(598\) 6.04206 6.04206i 0.247078 0.247078i
\(599\) −23.4361 −0.957574 −0.478787 0.877931i \(-0.658923\pi\)
−0.478787 + 0.877931i \(0.658923\pi\)
\(600\) 0 0
\(601\) 9.31984 + 9.31984i 0.380164 + 0.380164i 0.871161 0.490997i \(-0.163367\pi\)
−0.490997 + 0.871161i \(0.663367\pi\)
\(602\) 1.47590 + 1.47590i 0.0601533 + 0.0601533i
\(603\) 0 0
\(604\) 42.6983i 1.73737i
\(605\) −22.2278 22.2278i −0.903687 0.903687i
\(606\) 0 0
\(607\) 18.3106 18.3106i 0.743202 0.743202i −0.229990 0.973193i \(-0.573869\pi\)
0.973193 + 0.229990i \(0.0738695\pi\)
\(608\) −11.9547 −0.484826
\(609\) 0 0
\(610\) 12.8359i 0.519709i
\(611\) −1.23269 −0.0498692
\(612\) 0 0
\(613\) −32.9459 −1.33067 −0.665337 0.746543i \(-0.731712\pi\)
−0.665337 + 0.746543i \(0.731712\pi\)
\(614\) 3.39385i 0.136964i
\(615\) 0 0
\(616\) −0.380048 −0.0153126
\(617\) 2.56378 2.56378i 0.103214 0.103214i −0.653614 0.756828i \(-0.726748\pi\)
0.756828 + 0.653614i \(0.226748\pi\)
\(618\) 0 0
\(619\) 27.3667 + 27.3667i 1.09996 + 1.09996i 0.994414 + 0.105548i \(0.0336596\pi\)
0.105548 + 0.994414i \(0.466340\pi\)
\(620\) 1.34415i 0.0539823i
\(621\) 0 0
\(622\) −45.7978 45.7978i −1.83632 1.83632i
\(623\) −1.18869 1.18869i −0.0476237 0.0476237i
\(624\) 0 0
\(625\) 1.91399 0.0765594
\(626\) −17.7540 + 17.7540i −0.709591 + 0.709591i
\(627\) 0 0
\(628\) −38.4381 −1.53385
\(629\) −23.1082 + 3.43148i −0.921386 + 0.136822i
\(630\) 0 0
\(631\) 20.0655i 0.798793i −0.916778 0.399396i \(-0.869220\pi\)
0.916778 0.399396i \(-0.130780\pi\)
\(632\) 5.12562 5.12562i 0.203886 0.203886i
\(633\) 0 0
\(634\) −4.44771 + 4.44771i −0.176641 + 0.176641i
\(635\) 0.885279 + 0.885279i 0.0351312 + 0.0351312i
\(636\) 0 0
\(637\) 17.7712i 0.704120i
\(638\) 46.6112i 1.84535i
\(639\) 0 0
\(640\) 4.21500 + 4.21500i 0.166613 + 0.166613i
\(641\) 28.7660 28.7660i 1.13619 1.13619i 0.147059 0.989128i \(-0.453019\pi\)
0.989128 0.147059i \(-0.0469808\pi\)
\(642\) 0 0
\(643\) −18.8864 + 18.8864i −0.744808 + 0.744808i −0.973499 0.228691i \(-0.926555\pi\)
0.228691 + 0.973499i \(0.426555\pi\)
\(644\) 0.467921i 0.0184387i
\(645\) 0 0
\(646\) −10.0588 7.45771i −0.395760 0.293420i
\(647\) 1.47428 0.0579601 0.0289800 0.999580i \(-0.490774\pi\)
0.0289800 + 0.999580i \(0.490774\pi\)
\(648\) 0 0
\(649\) −48.7886 + 48.7886i −1.91512 + 1.91512i
\(650\) −15.3028 −0.600225
\(651\) 0 0
\(652\) 15.2130 + 15.2130i 0.595785 + 0.595785i
\(653\) 1.38168 + 1.38168i 0.0540695 + 0.0540695i 0.733625 0.679555i \(-0.237827\pi\)
−0.679555 + 0.733625i \(0.737827\pi\)
\(654\) 0 0
\(655\) 15.0192i 0.586850i
\(656\) −4.58978 4.58978i −0.179201 0.179201i
\(657\) 0 0
\(658\) −0.0901168 + 0.0901168i −0.00351312 + 0.00351312i
\(659\) −33.4094 −1.30145 −0.650723 0.759315i \(-0.725534\pi\)
−0.650723 + 0.759315i \(0.725534\pi\)
\(660\) 0 0
\(661\) 23.3283i 0.907366i −0.891163 0.453683i \(-0.850110\pi\)
0.891163 0.453683i \(-0.149890\pi\)
\(662\) −24.5704 −0.954955
\(663\) 0 0
\(664\) −2.13311 −0.0827808
\(665\) 0.271230i 0.0105178i
\(666\) 0 0
\(667\) −6.42913 −0.248937
\(668\) 30.4493 30.4493i 1.17812 1.17812i
\(669\) 0 0
\(670\) 18.9609 + 18.9609i 0.732522 + 0.732522i
\(671\) 24.6873i 0.953043i
\(672\) 0 0
\(673\) −6.04536 6.04536i −0.233032 0.233032i 0.580925 0.813957i \(-0.302691\pi\)
−0.813957 + 0.580925i \(0.802691\pi\)
\(674\) 41.1451 + 41.1451i 1.58485 + 1.58485i
\(675\) 0 0
\(676\) 14.6958 0.565222
\(677\) 13.5147 13.5147i 0.519414 0.519414i −0.397980 0.917394i \(-0.630289\pi\)
0.917394 + 0.397980i \(0.130289\pi\)
\(678\) 0 0
\(679\) 0.459092 0.0176183
\(680\) 0.454879 + 3.06324i 0.0174438 + 0.117470i
\(681\) 0 0
\(682\) 4.88080i 0.186895i
\(683\) −0.0475261 + 0.0475261i −0.00181854 + 0.00181854i −0.708015 0.706197i \(-0.750409\pi\)
0.706197 + 0.708015i \(0.250409\pi\)
\(684\) 0 0
\(685\) 13.4232 13.4232i 0.512874 0.512874i
\(686\) 2.60139 + 2.60139i 0.0993215 + 0.0993215i
\(687\) 0 0
\(688\) 27.2259i 1.03798i
\(689\) 23.0410i 0.877793i
\(690\) 0 0
\(691\) 0.107807 + 0.107807i 0.00410116 + 0.00410116i 0.709154 0.705053i \(-0.249077\pi\)
−0.705053 + 0.709154i \(0.749077\pi\)
\(692\) −20.4288 + 20.4288i −0.776585 + 0.776585i
\(693\) 0 0
\(694\) −48.8658 + 48.8658i −1.85492 + 1.85492i
\(695\) 32.2804i 1.22446i
\(696\) 0 0
\(697\) −1.14552 7.71415i −0.0433897 0.292194i
\(698\) −32.7236 −1.23861
\(699\) 0 0
\(700\) −0.592555 + 0.592555i −0.0223965 + 0.0223965i
\(701\) 28.8361 1.08912 0.544562 0.838721i \(-0.316696\pi\)
0.544562 + 0.838721i \(0.316696\pi\)
\(702\) 0 0
\(703\) 5.90060 + 5.90060i 0.222545 + 0.222545i
\(704\) −39.9772 39.9772i −1.50670 1.50670i
\(705\) 0 0
\(706\) 46.7881i 1.76089i
\(707\) 0.281889 + 0.281889i 0.0106015 + 0.0106015i
\(708\) 0 0
\(709\) 17.5343 17.5343i 0.658515 0.658515i −0.296513 0.955029i \(-0.595824\pi\)
0.955029 + 0.296513i \(0.0958240\pi\)
\(710\) −32.7118 −1.22765
\(711\) 0 0
\(712\) 6.85599i 0.256939i
\(713\) −0.673214 −0.0252121
\(714\) 0 0
\(715\) −21.0297 −0.786464
\(716\) 21.1545i 0.790581i
\(717\) 0 0
\(718\) −67.0781 −2.50333
\(719\) 6.83397 6.83397i 0.254864 0.254864i −0.568097 0.822961i \(-0.692320\pi\)
0.822961 + 0.568097i \(0.192320\pi\)
\(720\) 0 0
\(721\) −1.57073 1.57073i −0.0584969 0.0584969i
\(722\) 34.7074i 1.29168i
\(723\) 0 0
\(724\) 11.4528 + 11.4528i 0.425639 + 0.425639i
\(725\) 8.14157 + 8.14157i 0.302370 + 0.302370i
\(726\) 0 0
\(727\) −32.5242 −1.20626 −0.603129 0.797644i \(-0.706080\pi\)
−0.603129 + 0.797644i \(0.706080\pi\)
\(728\) −0.119446 + 0.119446i −0.00442696 + 0.00442696i
\(729\) 0 0
\(730\) −20.7730 −0.768844
\(731\) −19.4821 + 26.2771i −0.720571 + 0.971895i
\(732\) 0 0
\(733\) 33.0498i 1.22072i −0.792123 0.610361i \(-0.791024\pi\)
0.792123 0.610361i \(-0.208976\pi\)
\(734\) 36.5907 36.5907i 1.35059 1.35059i
\(735\) 0 0
\(736\) 9.34647 9.34647i 0.344515 0.344515i
\(737\) −36.4675 36.4675i −1.34330 1.34330i
\(738\) 0 0
\(739\) 3.87288i 0.142466i 0.997460 + 0.0712330i \(0.0226934\pi\)
−0.997460 + 0.0712330i \(0.977307\pi\)
\(740\) 18.4217i 0.677196i
\(741\) 0 0
\(742\) −1.68444 1.68444i −0.0618376 0.0618376i
\(743\) 16.1760 16.1760i 0.593441 0.593441i −0.345118 0.938559i \(-0.612161\pi\)
0.938559 + 0.345118i \(0.112161\pi\)
\(744\) 0 0
\(745\) −15.1981 + 15.1981i −0.556815 + 0.556815i
\(746\) 18.3561i 0.672063i
\(747\) 0 0
\(748\) −7.80936 52.5897i −0.285539 1.92287i
\(749\) 0.159636 0.00583297
\(750\) 0 0
\(751\) −33.9294 + 33.9294i −1.23810 + 1.23810i −0.277324 + 0.960776i \(0.589448\pi\)
−0.960776 + 0.277324i \(0.910552\pi\)
\(752\) −1.66238 −0.0606208
\(753\) 0 0
\(754\) 14.6495 + 14.6495i 0.533503 + 0.533503i
\(755\) 19.3502 + 19.3502i 0.704225 + 0.704225i
\(756\) 0 0
\(757\) 7.24009i 0.263146i −0.991307 0.131573i \(-0.957997\pi\)
0.991307 0.131573i \(-0.0420027\pi\)
\(758\) −12.5008 12.5008i −0.454048 0.454048i
\(759\) 0 0
\(760\) 0.782186 0.782186i 0.0283729 0.0283729i
\(761\) 23.8187 0.863426 0.431713 0.902011i \(-0.357909\pi\)
0.431713 + 0.902011i \(0.357909\pi\)
\(762\) 0 0
\(763\) 2.28394i 0.0826843i
\(764\) −22.1055 −0.799750
\(765\) 0 0
\(766\) −54.6563 −1.97481
\(767\) 30.6677i 1.10735i
\(768\) 0 0
\(769\) −6.92589 −0.249754 −0.124877 0.992172i \(-0.539854\pi\)
−0.124877 + 0.992172i \(0.539854\pi\)
\(770\) −1.53739 + 1.53739i −0.0554038 + 0.0554038i
\(771\) 0 0
\(772\) 36.5874 + 36.5874i 1.31681 + 1.31681i
\(773\) 8.04876i 0.289494i 0.989469 + 0.144747i \(0.0462368\pi\)
−0.989469 + 0.144747i \(0.953763\pi\)
\(774\) 0 0
\(775\) 0.852529 + 0.852529i 0.0306237 + 0.0306237i
\(776\) −1.32395 1.32395i −0.0475272 0.0475272i
\(777\) 0 0
\(778\) 31.9417 1.14516
\(779\) −1.96978 + 1.96978i −0.0705746 + 0.0705746i
\(780\) 0 0
\(781\) 62.9148 2.25127
\(782\) 13.6949 2.03364i 0.489729 0.0727227i
\(783\) 0 0
\(784\) 23.9659i 0.855926i
\(785\) −17.4195 + 17.4195i −0.621729 + 0.621729i
\(786\) 0 0
\(787\) 27.3494 27.3494i 0.974902 0.974902i −0.0247902 0.999693i \(-0.507892\pi\)
0.999693 + 0.0247902i \(0.00789177\pi\)
\(788\) −24.1923 24.1923i −0.861815 0.861815i
\(789\) 0 0
\(790\) 41.4689i 1.47540i
\(791\) 1.65416i 0.0588150i
\(792\) 0 0
\(793\) −7.75901 7.75901i −0.275531 0.275531i
\(794\) −1.66935 + 1.66935i −0.0592431 + 0.0592431i
\(795\) 0 0
\(796\) 8.20392 8.20392i 0.290780 0.290780i
\(797\) 50.6758i 1.79503i 0.440985 + 0.897514i \(0.354629\pi\)
−0.440985 + 0.897514i \(0.645371\pi\)
\(798\) 0 0
\(799\) −1.60445 1.18955i −0.0567613 0.0420833i
\(800\) −23.6719 −0.836928
\(801\) 0 0
\(802\) 22.2242 22.2242i 0.784765 0.784765i
\(803\) 39.9529 1.40991
\(804\) 0 0
\(805\) −0.212054 0.212054i −0.00747393 0.00747393i
\(806\) 1.53399 + 1.53399i 0.0540326 + 0.0540326i
\(807\) 0 0
\(808\) 1.62586i 0.0571974i
\(809\) 24.5798 + 24.5798i 0.864180 + 0.864180i 0.991821 0.127640i \(-0.0407403\pi\)
−0.127640 + 0.991821i \(0.540740\pi\)
\(810\) 0 0
\(811\) 16.4508 16.4508i 0.577666 0.577666i −0.356594 0.934259i \(-0.616062\pi\)
0.934259 + 0.356594i \(0.116062\pi\)
\(812\) 1.13451 0.0398137
\(813\) 0 0
\(814\) 66.8919i 2.34456i
\(815\) 13.7885 0.482991
\(816\) 0 0
\(817\) 11.6844 0.408787
\(818\) 42.9961i 1.50332i
\(819\) 0 0
\(820\) 6.14966 0.214756
\(821\) 7.00533 7.00533i 0.244488 0.244488i −0.574216 0.818704i \(-0.694693\pi\)
0.818704 + 0.574216i \(0.194693\pi\)
\(822\) 0 0
\(823\) 2.71584 + 2.71584i 0.0946683 + 0.0946683i 0.752855 0.658187i \(-0.228676\pi\)
−0.658187 + 0.752855i \(0.728676\pi\)
\(824\) 9.05949i 0.315602i
\(825\) 0 0
\(826\) 2.24199 + 2.24199i 0.0780088 + 0.0780088i
\(827\) 8.60917 + 8.60917i 0.299370 + 0.299370i 0.840767 0.541397i \(-0.182104\pi\)
−0.541397 + 0.840767i \(0.682104\pi\)
\(828\) 0 0
\(829\) 40.9472 1.42216 0.711078 0.703113i \(-0.248207\pi\)
0.711078 + 0.703113i \(0.248207\pi\)
\(830\) −8.62899 + 8.62899i −0.299516 + 0.299516i
\(831\) 0 0
\(832\) −25.1290 −0.871192
\(833\) −17.1493 + 23.1307i −0.594189 + 0.801433i
\(834\) 0 0
\(835\) 27.5983i 0.955079i
\(836\) −13.4286 + 13.4286i −0.464437 + 0.464437i
\(837\) 0 0
\(838\) −2.31323 + 2.31323i −0.0799091 + 0.0799091i
\(839\) 6.58295 + 6.58295i 0.227269 + 0.227269i 0.811551 0.584282i \(-0.198624\pi\)
−0.584282 + 0.811551i \(0.698624\pi\)
\(840\) 0 0
\(841\) 13.4120i 0.462484i
\(842\) 13.7992i 0.475553i
\(843\) 0 0
\(844\) −3.95268 3.95268i −0.136057 0.136057i
\(845\) 6.65988 6.65988i 0.229107 0.229107i
\(846\) 0 0
\(847\) 1.96453 1.96453i 0.0675022 0.0675022i
\(848\) 31.0727i 1.06704i
\(849\) 0 0
\(850\) −19.9179 14.7673i −0.683179 0.506514i
\(851\) −9.22648 −0.316280
\(852\) 0 0
\(853\) 18.4822 18.4822i 0.632817 0.632817i −0.315956 0.948774i \(-0.602325\pi\)
0.948774 + 0.315956i \(0.102325\pi\)
\(854\) −1.13446 −0.0388204
\(855\) 0 0
\(856\) −0.460367 0.460367i −0.0157350 0.0157350i
\(857\) 32.0279 + 32.0279i 1.09405 + 1.09405i 0.995091 + 0.0989597i \(0.0315515\pi\)
0.0989597 + 0.995091i \(0.468448\pi\)
\(858\) 0 0
\(859\) 26.0657i 0.889351i −0.895692 0.444675i \(-0.853319\pi\)
0.895692 0.444675i \(-0.146681\pi\)
\(860\) −18.2395 18.2395i −0.621960 0.621960i
\(861\) 0 0
\(862\) −29.7872 + 29.7872i −1.01456 + 1.01456i
\(863\) −7.52107 −0.256020 −0.128010 0.991773i \(-0.540859\pi\)
−0.128010 + 0.991773i \(0.540859\pi\)
\(864\) 0 0
\(865\) 18.5160i 0.629562i
\(866\) 78.3015 2.66079
\(867\) 0 0
\(868\) 0.118799 0.00403229
\(869\) 79.7574i 2.70559i
\(870\) 0 0
\(871\) −22.9229 −0.776712
\(872\) 6.58656 6.58656i 0.223049 0.223049i
\(873\) 0 0
\(874\) −3.49694 3.49694i −0.118286 0.118286i
\(875\) 1.45789i 0.0492858i
\(876\) 0 0
\(877\) 7.31144 + 7.31144i 0.246890 + 0.246890i 0.819693 0.572803i \(-0.194144\pi\)
−0.572803 + 0.819693i \(0.694144\pi\)
\(878\) −27.4466 27.4466i −0.926279 0.926279i
\(879\) 0 0
\(880\) −28.3602 −0.956023
\(881\) 21.0197 21.0197i 0.708170 0.708170i −0.257980 0.966150i \(-0.583057\pi\)
0.966150 + 0.257980i \(0.0830569\pi\)
\(882\) 0 0
\(883\) 33.0395 1.11187 0.555933 0.831227i \(-0.312361\pi\)
0.555933 + 0.831227i \(0.312361\pi\)
\(884\) −18.9829 14.0741i −0.638465 0.473363i
\(885\) 0 0
\(886\) 60.2831i 2.02525i
\(887\) 8.11716 8.11716i 0.272548 0.272548i −0.557577 0.830125i \(-0.688269\pi\)
0.830125 + 0.557577i \(0.188269\pi\)
\(888\) 0 0
\(889\) −0.0782427 + 0.0782427i −0.00262418 + 0.00262418i
\(890\) 27.7342 + 27.7342i 0.929653 + 0.929653i
\(891\) 0 0
\(892\) 1.78679i 0.0598262i
\(893\) 0.713437i 0.0238742i
\(894\) 0 0
\(895\) −9.58688 9.58688i −0.320454 0.320454i
\(896\) −0.372530 + 0.372530i −0.0124454 + 0.0124454i
\(897\) 0 0
\(898\) 12.4745 12.4745i 0.416278 0.416278i
\(899\) 1.63227i 0.0544391i
\(900\) 0 0
\(901\) 22.2347 29.9899i 0.740746 0.999107i
\(902\) −22.3303 −0.743519
\(903\) 0 0
\(904\) 4.77034 4.77034i 0.158659 0.158659i
\(905\) 10.3804 0.345057
\(906\) 0 0
\(907\) 11.6274 + 11.6274i 0.386083 + 0.386083i 0.873288 0.487205i \(-0.161984\pi\)
−0.487205 + 0.873288i \(0.661984\pi\)
\(908\) −7.07574 7.07574i −0.234817 0.234817i
\(909\) 0 0
\(910\) 0.966379i 0.0320352i
\(911\) 8.45098 + 8.45098i 0.279993 + 0.279993i 0.833106 0.553113i \(-0.186560\pi\)
−0.553113 + 0.833106i \(0.686560\pi\)
\(912\) 0 0
\(913\) 16.5962 16.5962i 0.549253 0.549253i
\(914\) 36.9019 1.22061
\(915\) 0 0
\(916\) 63.9891i 2.11426i
\(917\) −1.32743 −0.0438356
\(918\) 0 0
\(919\) 43.9032 1.44823 0.724116 0.689678i \(-0.242248\pi\)
0.724116 + 0.689678i \(0.242248\pi\)
\(920\) 1.22307i 0.0403233i
\(921\) 0 0
\(922\) −62.5840 −2.06109
\(923\) 19.7736 19.7736i 0.650855 0.650855i
\(924\) 0 0
\(925\) 11.6840 + 11.6840i 0.384168 + 0.384168i
\(926\) 22.3145i 0.733299i
\(927\) 0 0
\(928\) 22.6613 + 22.6613i 0.743894 + 0.743894i
\(929\) −10.7494 10.7494i −0.352676 0.352676i 0.508428 0.861104i \(-0.330227\pi\)
−0.861104 + 0.508428i \(0.830227\pi\)
\(930\) 0 0
\(931\) 10.2854 0.337089
\(932\) 36.9404 36.9404i 1.21002 1.21002i
\(933\) 0 0
\(934\) 69.5959 2.27725
\(935\) −27.3719 20.2937i −0.895157 0.663677i
\(936\) 0 0
\(937\) 44.2687i 1.44620i −0.690745 0.723098i \(-0.742717\pi\)
0.690745 0.723098i \(-0.257283\pi\)
\(938\) −1.67580 + 1.67580i −0.0547168 + 0.0547168i
\(939\) 0 0
\(940\) 1.11368 1.11368i 0.0363242 0.0363242i
\(941\) 6.44173 + 6.44173i 0.209994 + 0.209994i 0.804265 0.594271i \(-0.202559\pi\)
−0.594271 + 0.804265i \(0.702559\pi\)
\(942\) 0 0
\(943\) 3.08005i 0.100300i
\(944\) 41.3579i 1.34608i
\(945\) 0 0
\(946\) 66.2301 + 66.2301i 2.15333 + 2.15333i
\(947\) 19.9417 19.9417i 0.648017 0.648017i −0.304496 0.952514i \(-0.598488\pi\)
0.952514 + 0.304496i \(0.0984881\pi\)
\(948\) 0 0
\(949\) 12.5568 12.5568i 0.407612 0.407612i
\(950\) 8.85674i 0.287350i
\(951\) 0 0
\(952\) −0.270735 + 0.0402031i −0.00877459 + 0.00130299i
\(953\) 29.0372 0.940607 0.470304 0.882505i \(-0.344144\pi\)
0.470304 + 0.882505i \(0.344144\pi\)
\(954\) 0 0
\(955\) −10.0179 + 10.0179i −0.324171 + 0.324171i
\(956\) −14.6124 −0.472597
\(957\) 0 0
\(958\) −42.1882 42.1882i −1.36304 1.36304i
\(959\) 1.18637 + 1.18637i 0.0383099 + 0.0383099i
\(960\) 0 0
\(961\) 30.8291i 0.994486i
\(962\) 21.0236 + 21.0236i 0.677827 + 0.677827i
\(963\) 0 0
\(964\) 43.3836 43.3836i 1.39729 1.39729i
\(965\) 33.1616 1.06751
\(966\) 0 0
\(967\) 40.3570i 1.29779i 0.760876 + 0.648897i \(0.224769\pi\)
−0.760876 + 0.648897i \(0.775231\pi\)
\(968\) −11.3309 −0.364187
\(969\) 0 0
\(970\) −10.7115 −0.343924
\(971\) 18.1373i 0.582053i −0.956715 0.291026i \(-0.906003\pi\)
0.956715 0.291026i \(-0.0939968\pi\)
\(972\) 0 0
\(973\) −2.85300 −0.0914631
\(974\) −40.9086 + 40.9086i −1.31079 + 1.31079i
\(975\) 0 0
\(976\) −10.4637 10.4637i −0.334934 0.334934i
\(977\) 41.5209i 1.32837i 0.747568 + 0.664185i \(0.231221\pi\)
−0.747568 + 0.664185i \(0.768779\pi\)
\(978\) 0 0
\(979\) −53.3414 53.3414i −1.70480 1.70480i
\(980\) −16.0555 16.0555i −0.512874 0.512874i
\(981\) 0 0
\(982\) 41.6058 1.32769
\(983\) 4.53864 4.53864i 0.144760 0.144760i −0.631013 0.775773i \(-0.717360\pi\)
0.775773 + 0.631013i \(0.217360\pi\)
\(984\) 0 0
\(985\) −21.9271 −0.698656
\(986\) 4.93072 + 33.2044i 0.157026 + 1.05744i
\(987\) 0 0
\(988\) 8.44098i 0.268543i
\(989\) −9.13520 + 9.13520i −0.290482 + 0.290482i
\(990\) 0 0
\(991\) −9.57741 + 9.57741i −0.304236 + 0.304236i −0.842669 0.538432i \(-0.819017\pi\)
0.538432 + 0.842669i \(0.319017\pi\)
\(992\) 2.37293 + 2.37293i 0.0753408 + 0.0753408i
\(993\) 0 0
\(994\) 2.89113i 0.0917012i
\(995\) 7.43577i 0.235730i
\(996\) 0 0
\(997\) 6.37223 + 6.37223i 0.201810 + 0.201810i 0.800775 0.598965i \(-0.204421\pi\)
−0.598965 + 0.800775i \(0.704421\pi\)
\(998\) 43.7260 43.7260i 1.38412 1.38412i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.f.b.55.3 20
3.2 odd 2 inner 459.2.f.b.55.8 yes 20
17.8 even 8 7803.2.a.br.1.3 10
17.9 even 8 7803.2.a.bs.1.3 10
17.13 even 4 inner 459.2.f.b.217.8 yes 20
51.8 odd 8 7803.2.a.bs.1.8 10
51.26 odd 8 7803.2.a.br.1.8 10
51.47 odd 4 inner 459.2.f.b.217.3 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.f.b.55.3 20 1.1 even 1 trivial
459.2.f.b.55.8 yes 20 3.2 odd 2 inner
459.2.f.b.217.3 yes 20 51.47 odd 4 inner
459.2.f.b.217.8 yes 20 17.13 even 4 inner
7803.2.a.br.1.3 10 17.8 even 8
7803.2.a.br.1.8 10 51.26 odd 8
7803.2.a.bs.1.3 10 17.9 even 8
7803.2.a.bs.1.8 10 51.8 odd 8