Properties

Label 780.2.g.d.131.17
Level $780$
Weight $2$
Character 780.131
Analytic conductor $6.228$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [780,2,Mod(131,780)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(780, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("780.131"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 780.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.22833135766\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 131.17
Character \(\chi\) \(=\) 780.131
Dual form 780.2.g.d.131.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.508677 - 1.31956i) q^{2} +(-1.38682 - 1.03766i) q^{3} +(-1.48250 - 1.34246i) q^{4} -1.00000i q^{5} +(-2.07470 + 1.30216i) q^{6} +3.45974i q^{7} +(-2.52558 + 1.27337i) q^{8} +(0.846536 + 2.87809i) q^{9} +(-1.31956 - 0.508677i) q^{10} -1.38443 q^{11} +(0.662939 + 3.40008i) q^{12} +1.00000 q^{13} +(4.56535 + 1.75989i) q^{14} +(-1.03766 + 1.38682i) q^{15} +(0.395589 + 3.98039i) q^{16} +1.21024i q^{17} +(4.22843 + 0.346957i) q^{18} +6.79078i q^{19} +(-1.34246 + 1.48250i) q^{20} +(3.59002 - 4.79804i) q^{21} +(-0.704225 + 1.82684i) q^{22} -2.54649 q^{23} +(4.82384 + 0.854749i) q^{24} -1.00000 q^{25} +(0.508677 - 1.31956i) q^{26} +(1.81247 - 4.86980i) q^{27} +(4.64457 - 5.12905i) q^{28} +2.34480i q^{29} +(1.30216 + 2.07470i) q^{30} +3.03026i q^{31} +(5.45361 + 1.50273i) q^{32} +(1.91995 + 1.43656i) q^{33} +(1.59699 + 0.615623i) q^{34} +3.45974 q^{35} +(2.60873 - 5.40319i) q^{36} +1.49033 q^{37} +(8.96086 + 3.45431i) q^{38} +(-1.38682 - 1.03766i) q^{39} +(1.27337 + 2.52558i) q^{40} -9.51887i q^{41} +(-4.50515 - 7.17791i) q^{42} +4.80835i q^{43} +(2.05241 + 1.85854i) q^{44} +(2.87809 - 0.846536i) q^{45} +(-1.29534 + 3.36025i) q^{46} -11.4074 q^{47} +(3.58167 - 5.93057i) q^{48} -4.96980 q^{49} +(-0.508677 + 1.31956i) q^{50} +(1.25582 - 1.67839i) q^{51} +(-1.48250 - 1.34246i) q^{52} +1.56155i q^{53} +(-5.50405 - 4.86883i) q^{54} +1.38443i q^{55} +(-4.40552 - 8.73784i) q^{56} +(7.04650 - 9.41758i) q^{57} +(3.09412 + 1.19275i) q^{58} +4.10481 q^{59} +(3.40008 - 0.662939i) q^{60} +13.5929 q^{61} +(3.99862 + 1.54142i) q^{62} +(-9.95743 + 2.92880i) q^{63} +(4.75706 - 6.43198i) q^{64} -1.00000i q^{65} +(2.87227 - 1.80275i) q^{66} -0.680909i q^{67} +(1.62471 - 1.79418i) q^{68} +(3.53152 + 2.64238i) q^{69} +(1.75989 - 4.56535i) q^{70} -0.298499 q^{71} +(-5.80286 - 6.19087i) q^{72} -9.83828 q^{73} +(0.758095 - 1.96658i) q^{74} +(1.38682 + 1.03766i) q^{75} +(9.11636 - 10.0673i) q^{76} -4.78976i q^{77} +(-2.07470 + 1.30216i) q^{78} +15.6146i q^{79} +(3.98039 - 0.395589i) q^{80} +(-7.56675 + 4.87281i) q^{81} +(-12.5608 - 4.84203i) q^{82} -0.226603 q^{83} +(-11.7634 + 2.29360i) q^{84} +1.21024 q^{85} +(6.34492 + 2.44589i) q^{86} +(2.43310 - 3.25182i) q^{87} +(3.49647 - 1.76289i) q^{88} +16.5358i q^{89} +(0.346957 - 4.22843i) q^{90} +3.45974i q^{91} +(3.77516 + 3.41856i) q^{92} +(3.14437 - 4.20243i) q^{93} +(-5.80267 + 15.0528i) q^{94} +6.79078 q^{95} +(-6.00385 - 7.74298i) q^{96} -11.0094 q^{97} +(-2.52802 + 6.55797i) q^{98} +(-1.17197 - 3.98450i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 6 q^{4} + 10 q^{6} + 12 q^{9} + 6 q^{10} - 20 q^{12} + 32 q^{13} - 6 q^{16} + 4 q^{18} + 20 q^{21} + 16 q^{22} + 10 q^{24} - 32 q^{25} + 16 q^{28} + 16 q^{33} + 28 q^{34} + 30 q^{36} - 24 q^{37}+ \cdots + 112 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/780\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(301\) \(391\) \(521\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.508677 1.31956i 0.359689 0.933072i
\(3\) −1.38682 1.03766i −0.800681 0.599092i
\(4\) −1.48250 1.34246i −0.741248 0.671231i
\(5\) 1.00000i 0.447214i
\(6\) −2.07470 + 1.30216i −0.846991 + 0.531606i
\(7\) 3.45974i 1.30766i 0.756642 + 0.653829i \(0.226839\pi\)
−0.756642 + 0.653829i \(0.773161\pi\)
\(8\) −2.52558 + 1.27337i −0.892926 + 0.450204i
\(9\) 0.846536 + 2.87809i 0.282179 + 0.959362i
\(10\) −1.31956 0.508677i −0.417283 0.160858i
\(11\) −1.38443 −0.417420 −0.208710 0.977978i \(-0.566927\pi\)
−0.208710 + 0.977978i \(0.566927\pi\)
\(12\) 0.662939 + 3.40008i 0.191374 + 0.981517i
\(13\) 1.00000 0.277350
\(14\) 4.56535 + 1.75989i 1.22014 + 0.470350i
\(15\) −1.03766 + 1.38682i −0.267922 + 0.358075i
\(16\) 0.395589 + 3.98039i 0.0988974 + 0.995098i
\(17\) 1.21024i 0.293527i 0.989172 + 0.146764i \(0.0468857\pi\)
−0.989172 + 0.146764i \(0.953114\pi\)
\(18\) 4.22843 + 0.346957i 0.996651 + 0.0817785i
\(19\) 6.79078i 1.55791i 0.627079 + 0.778955i \(0.284250\pi\)
−0.627079 + 0.778955i \(0.715750\pi\)
\(20\) −1.34246 + 1.48250i −0.300184 + 0.331496i
\(21\) 3.59002 4.79804i 0.783407 1.04702i
\(22\) −0.704225 + 1.82684i −0.150141 + 0.389483i
\(23\) −2.54649 −0.530979 −0.265489 0.964114i \(-0.585534\pi\)
−0.265489 + 0.964114i \(0.585534\pi\)
\(24\) 4.82384 + 0.854749i 0.984662 + 0.174475i
\(25\) −1.00000 −0.200000
\(26\) 0.508677 1.31956i 0.0997597 0.258788i
\(27\) 1.81247 4.86980i 0.348811 0.937193i
\(28\) 4.64457 5.12905i 0.877741 0.969300i
\(29\) 2.34480i 0.435419i 0.976014 + 0.217709i \(0.0698585\pi\)
−0.976014 + 0.217709i \(0.930141\pi\)
\(30\) 1.30216 + 2.07470i 0.237742 + 0.378786i
\(31\) 3.03026i 0.544251i 0.962262 + 0.272125i \(0.0877266\pi\)
−0.962262 + 0.272125i \(0.912273\pi\)
\(32\) 5.45361 + 1.50273i 0.964070 + 0.265647i
\(33\) 1.91995 + 1.43656i 0.334220 + 0.250073i
\(34\) 1.59699 + 0.615623i 0.273882 + 0.105578i
\(35\) 3.45974 0.584803
\(36\) 2.60873 5.40319i 0.434789 0.900532i
\(37\) 1.49033 0.245008 0.122504 0.992468i \(-0.460907\pi\)
0.122504 + 0.992468i \(0.460907\pi\)
\(38\) 8.96086 + 3.45431i 1.45364 + 0.560363i
\(39\) −1.38682 1.03766i −0.222069 0.166158i
\(40\) 1.27337 + 2.52558i 0.201337 + 0.399329i
\(41\) 9.51887i 1.48660i −0.668959 0.743299i \(-0.733260\pi\)
0.668959 0.743299i \(-0.266740\pi\)
\(42\) −4.50515 7.17791i −0.695160 1.10758i
\(43\) 4.80835i 0.733266i 0.930366 + 0.366633i \(0.119489\pi\)
−0.930366 + 0.366633i \(0.880511\pi\)
\(44\) 2.05241 + 1.85854i 0.309412 + 0.280186i
\(45\) 2.87809 0.846536i 0.429040 0.126194i
\(46\) −1.29534 + 3.36025i −0.190987 + 0.495442i
\(47\) −11.4074 −1.66394 −0.831969 0.554822i \(-0.812786\pi\)
−0.831969 + 0.554822i \(0.812786\pi\)
\(48\) 3.58167 5.93057i 0.516969 0.856004i
\(49\) −4.96980 −0.709972
\(50\) −0.508677 + 1.31956i −0.0719377 + 0.186614i
\(51\) 1.25582 1.67839i 0.175850 0.235021i
\(52\) −1.48250 1.34246i −0.205585 0.186166i
\(53\) 1.56155i 0.214495i 0.994232 + 0.107248i \(0.0342038\pi\)
−0.994232 + 0.107248i \(0.965796\pi\)
\(54\) −5.50405 4.86883i −0.749006 0.662563i
\(55\) 1.38443i 0.186676i
\(56\) −4.40552 8.73784i −0.588713 1.16764i
\(57\) 7.04650 9.41758i 0.933331 1.24739i
\(58\) 3.09412 + 1.19275i 0.406277 + 0.156615i
\(59\) 4.10481 0.534401 0.267201 0.963641i \(-0.413901\pi\)
0.267201 + 0.963641i \(0.413901\pi\)
\(60\) 3.40008 0.662939i 0.438948 0.0855851i
\(61\) 13.5929 1.74039 0.870194 0.492710i \(-0.163994\pi\)
0.870194 + 0.492710i \(0.163994\pi\)
\(62\) 3.99862 + 1.54142i 0.507826 + 0.195761i
\(63\) −9.95743 + 2.92880i −1.25452 + 0.368994i
\(64\) 4.75706 6.43198i 0.594633 0.803997i
\(65\) 1.00000i 0.124035i
\(66\) 2.87227 1.80275i 0.353551 0.221903i
\(67\) 0.680909i 0.0831863i −0.999135 0.0415932i \(-0.986757\pi\)
0.999135 0.0415932i \(-0.0132433\pi\)
\(68\) 1.62471 1.79418i 0.197025 0.217576i
\(69\) 3.53152 + 2.64238i 0.425145 + 0.318105i
\(70\) 1.75989 4.56535i 0.210347 0.545663i
\(71\) −0.298499 −0.0354253 −0.0177127 0.999843i \(-0.505638\pi\)
−0.0177127 + 0.999843i \(0.505638\pi\)
\(72\) −5.80286 6.19087i −0.683873 0.729601i
\(73\) −9.83828 −1.15148 −0.575742 0.817632i \(-0.695287\pi\)
−0.575742 + 0.817632i \(0.695287\pi\)
\(74\) 0.758095 1.96658i 0.0881268 0.228611i
\(75\) 1.38682 + 1.03766i 0.160136 + 0.119818i
\(76\) 9.11636 10.0673i 1.04572 1.15480i
\(77\) 4.78976i 0.545843i
\(78\) −2.07470 + 1.30216i −0.234913 + 0.147441i
\(79\) 15.6146i 1.75678i 0.477943 + 0.878391i \(0.341383\pi\)
−0.477943 + 0.878391i \(0.658617\pi\)
\(80\) 3.98039 0.395589i 0.445021 0.0442282i
\(81\) −7.56675 + 4.87281i −0.840750 + 0.541423i
\(82\) −12.5608 4.84203i −1.38710 0.534713i
\(83\) −0.226603 −0.0248729 −0.0124365 0.999923i \(-0.503959\pi\)
−0.0124365 + 0.999923i \(0.503959\pi\)
\(84\) −11.7634 + 2.29360i −1.28349 + 0.250252i
\(85\) 1.21024 0.131269
\(86\) 6.34492 + 2.44589i 0.684190 + 0.263747i
\(87\) 2.43310 3.25182i 0.260856 0.348631i
\(88\) 3.49647 1.76289i 0.372725 0.187924i
\(89\) 16.5358i 1.75279i 0.481589 + 0.876397i \(0.340060\pi\)
−0.481589 + 0.876397i \(0.659940\pi\)
\(90\) 0.346957 4.22843i 0.0365724 0.445716i
\(91\) 3.45974i 0.362679i
\(92\) 3.77516 + 3.41856i 0.393587 + 0.356410i
\(93\) 3.14437 4.20243i 0.326056 0.435771i
\(94\) −5.80267 + 15.0528i −0.598500 + 1.55257i
\(95\) 6.79078 0.696719
\(96\) −6.00385 7.74298i −0.612766 0.790265i
\(97\) −11.0094 −1.11783 −0.558916 0.829225i \(-0.688782\pi\)
−0.558916 + 0.829225i \(0.688782\pi\)
\(98\) −2.52802 + 6.55797i −0.255369 + 0.662455i
\(99\) −1.17197 3.98450i −0.117787 0.400457i
\(100\) 1.48250 + 1.34246i 0.148250 + 0.134246i
\(101\) 17.7812i 1.76929i 0.466262 + 0.884647i \(0.345601\pi\)
−0.466262 + 0.884647i \(0.654399\pi\)
\(102\) −1.57594 2.51089i −0.156041 0.248615i
\(103\) 2.53384i 0.249667i −0.992178 0.124833i \(-0.960160\pi\)
0.992178 0.124833i \(-0.0398396\pi\)
\(104\) −2.52558 + 1.27337i −0.247653 + 0.124864i
\(105\) −4.79804 3.59002i −0.468240 0.350350i
\(106\) 2.06056 + 0.794323i 0.200140 + 0.0771515i
\(107\) 1.15376 0.111538 0.0557692 0.998444i \(-0.482239\pi\)
0.0557692 + 0.998444i \(0.482239\pi\)
\(108\) −9.22451 + 4.78628i −0.887628 + 0.460560i
\(109\) 1.77381 0.169900 0.0849501 0.996385i \(-0.472927\pi\)
0.0849501 + 0.996385i \(0.472927\pi\)
\(110\) 1.82684 + 0.704225i 0.174182 + 0.0671453i
\(111\) −2.06682 1.54645i −0.196174 0.146782i
\(112\) −13.7711 + 1.36864i −1.30125 + 0.129324i
\(113\) 16.8066i 1.58103i 0.612440 + 0.790517i \(0.290188\pi\)
−0.612440 + 0.790517i \(0.709812\pi\)
\(114\) −8.84271 14.0888i −0.828196 1.31954i
\(115\) 2.54649i 0.237461i
\(116\) 3.14781 3.47616i 0.292267 0.322753i
\(117\) 0.846536 + 2.87809i 0.0782623 + 0.266079i
\(118\) 2.08802 5.41656i 0.192218 0.498635i
\(119\) −4.18713 −0.383833
\(120\) 0.854749 4.82384i 0.0780275 0.440354i
\(121\) −9.08336 −0.825760
\(122\) 6.91437 17.9366i 0.625998 1.62391i
\(123\) −9.87732 + 13.2010i −0.890608 + 1.19029i
\(124\) 4.06801 4.49235i 0.365318 0.403425i
\(125\) 1.00000i 0.0894427i
\(126\) −1.20038 + 14.6293i −0.106938 + 1.30328i
\(127\) 19.9650i 1.77161i −0.464061 0.885803i \(-0.653608\pi\)
0.464061 0.885803i \(-0.346392\pi\)
\(128\) −6.06760 9.54905i −0.536305 0.844024i
\(129\) 4.98941 6.66831i 0.439293 0.587112i
\(130\) −1.31956 0.508677i −0.115733 0.0446139i
\(131\) 10.3844 0.907293 0.453647 0.891182i \(-0.350123\pi\)
0.453647 + 0.891182i \(0.350123\pi\)
\(132\) −0.917790 4.70715i −0.0798834 0.409705i
\(133\) −23.4943 −2.03722
\(134\) −0.898503 0.346363i −0.0776188 0.0299212i
\(135\) −4.86980 1.81247i −0.419126 0.155993i
\(136\) −1.54109 3.05656i −0.132147 0.262098i
\(137\) 14.2655i 1.21878i 0.792871 + 0.609390i \(0.208586\pi\)
−0.792871 + 0.609390i \(0.791414\pi\)
\(138\) 5.28319 3.31594i 0.449735 0.282272i
\(139\) 14.1649i 1.20145i 0.799456 + 0.600724i \(0.205121\pi\)
−0.799456 + 0.600724i \(0.794879\pi\)
\(140\) −5.12905 4.64457i −0.433484 0.392538i
\(141\) 15.8200 + 11.8370i 1.33228 + 0.996851i
\(142\) −0.151840 + 0.393889i −0.0127421 + 0.0330544i
\(143\) −1.38443 −0.115772
\(144\) −11.1210 + 4.50808i −0.926752 + 0.375674i
\(145\) 2.34480 0.194725
\(146\) −5.00450 + 12.9822i −0.414176 + 1.07442i
\(147\) 6.89222 + 5.15695i 0.568461 + 0.425338i
\(148\) −2.20941 2.00071i −0.181612 0.164457i
\(149\) 6.43749i 0.527380i −0.964607 0.263690i \(-0.915060\pi\)
0.964607 0.263690i \(-0.0849396\pi\)
\(150\) 2.07470 1.30216i 0.169398 0.106321i
\(151\) 11.4507i 0.931843i −0.884826 0.465922i \(-0.845723\pi\)
0.884826 0.465922i \(-0.154277\pi\)
\(152\) −8.64716 17.1506i −0.701377 1.39110i
\(153\) −3.48318 + 1.02451i −0.281599 + 0.0828271i
\(154\) −6.32039 2.43644i −0.509311 0.196334i
\(155\) 3.03026 0.243396
\(156\) 0.662939 + 3.40008i 0.0530776 + 0.272224i
\(157\) −16.7386 −1.33589 −0.667944 0.744211i \(-0.732826\pi\)
−0.667944 + 0.744211i \(0.732826\pi\)
\(158\) 20.6045 + 7.94279i 1.63920 + 0.631895i
\(159\) 1.62035 2.16559i 0.128502 0.171742i
\(160\) 1.50273 5.45361i 0.118801 0.431145i
\(161\) 8.81018i 0.694339i
\(162\) 2.58095 + 12.4635i 0.202778 + 0.979225i
\(163\) 19.6769i 1.54121i −0.637313 0.770605i \(-0.719954\pi\)
0.637313 0.770605i \(-0.280046\pi\)
\(164\) −12.7787 + 14.1117i −0.997851 + 1.10194i
\(165\) 1.43656 1.91995i 0.111836 0.149468i
\(166\) −0.115268 + 0.299017i −0.00894651 + 0.0232082i
\(167\) 11.3891 0.881317 0.440659 0.897675i \(-0.354745\pi\)
0.440659 + 0.897675i \(0.354745\pi\)
\(168\) −2.95721 + 16.6892i −0.228154 + 1.28760i
\(169\) 1.00000 0.0769231
\(170\) 0.615623 1.59699i 0.0472161 0.122484i
\(171\) −19.5444 + 5.74864i −1.49460 + 0.439609i
\(172\) 6.45502 7.12835i 0.492191 0.543532i
\(173\) 20.6240i 1.56801i −0.620753 0.784007i \(-0.713173\pi\)
0.620753 0.784007i \(-0.286827\pi\)
\(174\) −3.05332 4.86475i −0.231471 0.368796i
\(175\) 3.45974i 0.261532i
\(176\) −0.547665 5.51056i −0.0412818 0.415374i
\(177\) −5.69264 4.25939i −0.427885 0.320155i
\(178\) 21.8201 + 8.41139i 1.63548 + 0.630460i
\(179\) −9.70558 −0.725429 −0.362715 0.931900i \(-0.618150\pi\)
−0.362715 + 0.931900i \(0.618150\pi\)
\(180\) −5.40319 2.60873i −0.402730 0.194444i
\(181\) 23.4173 1.74059 0.870296 0.492530i \(-0.163928\pi\)
0.870296 + 0.492530i \(0.163928\pi\)
\(182\) 4.56535 + 1.75989i 0.338406 + 0.130452i
\(183\) −18.8508 14.1047i −1.39349 1.04265i
\(184\) 6.43134 3.24262i 0.474125 0.239049i
\(185\) 1.49033i 0.109571i
\(186\) −3.94590 6.28687i −0.289327 0.460976i
\(187\) 1.67549i 0.122524i
\(188\) 16.9114 + 15.3140i 1.23339 + 1.11689i
\(189\) 16.8482 + 6.27068i 1.22553 + 0.456125i
\(190\) 3.45431 8.96086i 0.250602 0.650089i
\(191\) −19.1176 −1.38330 −0.691651 0.722232i \(-0.743116\pi\)
−0.691651 + 0.722232i \(0.743116\pi\)
\(192\) −13.2714 + 3.98379i −0.957779 + 0.287505i
\(193\) −10.3671 −0.746244 −0.373122 0.927782i \(-0.621713\pi\)
−0.373122 + 0.927782i \(0.621713\pi\)
\(194\) −5.60020 + 14.5276i −0.402071 + 1.04302i
\(195\) −1.03766 + 1.38682i −0.0743082 + 0.0993122i
\(196\) 7.36771 + 6.67177i 0.526265 + 0.476555i
\(197\) 15.7570i 1.12264i 0.827598 + 0.561321i \(0.189707\pi\)
−0.827598 + 0.561321i \(0.810293\pi\)
\(198\) −5.85395 0.480336i −0.416022 0.0341360i
\(199\) 10.0605i 0.713170i 0.934263 + 0.356585i \(0.116059\pi\)
−0.934263 + 0.356585i \(0.883941\pi\)
\(200\) 2.52558 1.27337i 0.178585 0.0900408i
\(201\) −0.706550 + 0.944298i −0.0498362 + 0.0666057i
\(202\) 23.4634 + 9.04487i 1.65088 + 0.636395i
\(203\) −8.11241 −0.569379
\(204\) −4.11492 + 0.802318i −0.288102 + 0.0561735i
\(205\) −9.51887 −0.664827
\(206\) −3.34357 1.28891i −0.232957 0.0898023i
\(207\) −2.15569 7.32900i −0.149831 0.509401i
\(208\) 0.395589 + 3.98039i 0.0274292 + 0.275990i
\(209\) 9.40133i 0.650304i
\(210\) −7.17791 + 4.50515i −0.495323 + 0.310885i
\(211\) 19.6214i 1.35079i −0.737456 0.675395i \(-0.763973\pi\)
0.737456 0.675395i \(-0.236027\pi\)
\(212\) 2.09632 2.31499i 0.143976 0.158994i
\(213\) 0.413964 + 0.309740i 0.0283644 + 0.0212230i
\(214\) 0.586891 1.52246i 0.0401191 0.104073i
\(215\) 4.80835 0.327926
\(216\) 1.62351 + 14.6070i 0.110466 + 0.993880i
\(217\) −10.4839 −0.711695
\(218\) 0.902296 2.34066i 0.0611112 0.158529i
\(219\) 13.6439 + 10.2088i 0.921971 + 0.689844i
\(220\) 1.85854 2.05241i 0.125303 0.138373i
\(221\) 1.21024i 0.0814098i
\(222\) −3.09198 + 1.94065i −0.207520 + 0.130248i
\(223\) 11.4776i 0.768598i −0.923209 0.384299i \(-0.874443\pi\)
0.923209 0.384299i \(-0.125557\pi\)
\(224\) −5.19904 + 18.8681i −0.347376 + 1.26068i
\(225\) −0.846536 2.87809i −0.0564357 0.191872i
\(226\) 22.1774 + 8.54913i 1.47522 + 0.568680i
\(227\) 6.06016 0.402227 0.201113 0.979568i \(-0.435544\pi\)
0.201113 + 0.979568i \(0.435544\pi\)
\(228\) −23.0892 + 4.50187i −1.52912 + 0.298144i
\(229\) 8.00430 0.528939 0.264469 0.964394i \(-0.414803\pi\)
0.264469 + 0.964394i \(0.414803\pi\)
\(230\) 3.36025 + 1.29534i 0.221568 + 0.0854121i
\(231\) −4.97012 + 6.64253i −0.327010 + 0.437046i
\(232\) −2.98580 5.92198i −0.196027 0.388797i
\(233\) 9.96081i 0.652554i 0.945274 + 0.326277i \(0.105794\pi\)
−0.945274 + 0.326277i \(0.894206\pi\)
\(234\) 4.22843 + 0.346957i 0.276421 + 0.0226813i
\(235\) 11.4074i 0.744136i
\(236\) −6.08537 5.51056i −0.396124 0.358707i
\(237\) 16.2026 21.6547i 1.05247 1.40662i
\(238\) −2.12989 + 5.52518i −0.138061 + 0.358144i
\(239\) 3.19418 0.206614 0.103307 0.994649i \(-0.467058\pi\)
0.103307 + 0.994649i \(0.467058\pi\)
\(240\) −5.93057 3.58167i −0.382817 0.231196i
\(241\) 5.12470 0.330111 0.165056 0.986284i \(-0.447220\pi\)
0.165056 + 0.986284i \(0.447220\pi\)
\(242\) −4.62049 + 11.9861i −0.297017 + 0.770494i
\(243\) 15.5500 + 1.09399i 0.997534 + 0.0701795i
\(244\) −20.1514 18.2479i −1.29006 1.16820i
\(245\) 4.96980i 0.317509i
\(246\) 12.3951 + 19.7488i 0.790285 + 1.25914i
\(247\) 6.79078i 0.432087i
\(248\) −3.85864 7.65315i −0.245024 0.485976i
\(249\) 0.314258 + 0.235136i 0.0199153 + 0.0149012i
\(250\) 1.31956 + 0.508677i 0.0834565 + 0.0321715i
\(251\) 3.84674 0.242804 0.121402 0.992603i \(-0.461261\pi\)
0.121402 + 0.992603i \(0.461261\pi\)
\(252\) 18.6936 + 9.02555i 1.17759 + 0.568556i
\(253\) 3.52542 0.221641
\(254\) −26.3451 10.1557i −1.65304 0.637227i
\(255\) −1.67839 1.25582i −0.105105 0.0786423i
\(256\) −15.6870 + 3.14920i −0.980439 + 0.196825i
\(257\) 0.131199i 0.00818398i 0.999992 + 0.00409199i \(0.00130252\pi\)
−0.999992 + 0.00409199i \(0.998697\pi\)
\(258\) −6.26126 9.97586i −0.389809 0.621070i
\(259\) 5.15615i 0.320387i
\(260\) −1.34246 + 1.48250i −0.0832560 + 0.0919405i
\(261\) −6.74854 + 1.98496i −0.417724 + 0.122866i
\(262\) 5.28233 13.7029i 0.326343 0.846570i
\(263\) 6.78828 0.418583 0.209292 0.977853i \(-0.432884\pi\)
0.209292 + 0.977853i \(0.432884\pi\)
\(264\) −6.67825 1.18334i −0.411018 0.0728294i
\(265\) 1.56155 0.0959252
\(266\) −11.9510 + 31.0023i −0.732764 + 1.90087i
\(267\) 17.1585 22.9322i 1.05008 1.40343i
\(268\) −0.914095 + 1.00945i −0.0558372 + 0.0616617i
\(269\) 4.80080i 0.292710i 0.989232 + 0.146355i \(0.0467542\pi\)
−0.989232 + 0.146355i \(0.953246\pi\)
\(270\) −4.86883 + 5.50405i −0.296307 + 0.334966i
\(271\) 5.15632i 0.313224i −0.987660 0.156612i \(-0.949943\pi\)
0.987660 0.156612i \(-0.0500572\pi\)
\(272\) −4.81724 + 0.478760i −0.292088 + 0.0290291i
\(273\) 3.59002 4.79804i 0.217278 0.290390i
\(274\) 18.8242 + 7.25651i 1.13721 + 0.438382i
\(275\) 1.38443 0.0834841
\(276\) −1.68816 8.65824i −0.101616 0.521165i
\(277\) −15.2008 −0.913328 −0.456664 0.889639i \(-0.650956\pi\)
−0.456664 + 0.889639i \(0.650956\pi\)
\(278\) 18.6915 + 7.20534i 1.12104 + 0.432148i
\(279\) −8.72135 + 2.56523i −0.522134 + 0.153576i
\(280\) −8.73784 + 4.40552i −0.522186 + 0.263280i
\(281\) 8.54887i 0.509983i −0.966943 0.254991i \(-0.917927\pi\)
0.966943 0.254991i \(-0.0820726\pi\)
\(282\) 23.6669 14.8543i 1.40934 0.884560i
\(283\) 4.72559i 0.280907i 0.990087 + 0.140454i \(0.0448561\pi\)
−0.990087 + 0.140454i \(0.955144\pi\)
\(284\) 0.442524 + 0.400724i 0.0262590 + 0.0237786i
\(285\) −9.41758 7.04650i −0.557849 0.417398i
\(286\) −0.704225 + 1.82684i −0.0416417 + 0.108023i
\(287\) 32.9328 1.94396
\(288\) 0.291700 + 16.9681i 0.0171886 + 0.999852i
\(289\) 15.5353 0.913842
\(290\) 1.19275 3.09412i 0.0700405 0.181693i
\(291\) 15.2680 + 11.4239i 0.895026 + 0.669683i
\(292\) 14.5852 + 13.2075i 0.853535 + 0.772912i
\(293\) 2.09135i 0.122178i −0.998132 0.0610890i \(-0.980543\pi\)
0.998132 0.0610890i \(-0.0194574\pi\)
\(294\) 10.3108 6.47150i 0.601340 0.377426i
\(295\) 4.10481i 0.238992i
\(296\) −3.76394 + 1.89774i −0.218774 + 0.110304i
\(297\) −2.50924 + 6.74188i −0.145601 + 0.391204i
\(298\) −8.49468 3.27460i −0.492084 0.189693i
\(299\) −2.54649 −0.147267
\(300\) −0.662939 3.40008i −0.0382748 0.196303i
\(301\) −16.6356 −0.958862
\(302\) −15.1099 5.82469i −0.869477 0.335174i
\(303\) 18.4508 24.6593i 1.05997 1.41664i
\(304\) −27.0299 + 2.68636i −1.55027 + 0.154073i
\(305\) 13.5929i 0.778325i
\(306\) −0.419902 + 5.11743i −0.0240042 + 0.292544i
\(307\) 19.0109i 1.08501i 0.840053 + 0.542504i \(0.182524\pi\)
−0.840053 + 0.542504i \(0.817476\pi\)
\(308\) −6.43007 + 7.10080i −0.366387 + 0.404605i
\(309\) −2.62926 + 3.51398i −0.149573 + 0.199903i
\(310\) 1.54142 3.99862i 0.0875470 0.227106i
\(311\) 4.52893 0.256812 0.128406 0.991722i \(-0.459014\pi\)
0.128406 + 0.991722i \(0.459014\pi\)
\(312\) 4.82384 + 0.854749i 0.273096 + 0.0483906i
\(313\) 3.80338 0.214980 0.107490 0.994206i \(-0.465719\pi\)
0.107490 + 0.994206i \(0.465719\pi\)
\(314\) −8.51455 + 22.0877i −0.480504 + 1.24648i
\(315\) 2.92880 + 9.95743i 0.165019 + 0.561038i
\(316\) 20.9620 23.1486i 1.17921 1.30221i
\(317\) 21.6248i 1.21457i −0.794484 0.607285i \(-0.792259\pi\)
0.794484 0.607285i \(-0.207741\pi\)
\(318\) −2.03339 3.23974i −0.114027 0.181676i
\(319\) 3.24621i 0.181753i
\(320\) −6.43198 4.75706i −0.359558 0.265928i
\(321\) −1.60006 1.19721i −0.0893066 0.0668217i
\(322\) −11.6256 4.48153i −0.647869 0.249746i
\(323\) −8.21849 −0.457289
\(324\) 17.7592 + 2.93416i 0.986625 + 0.163009i
\(325\) −1.00000 −0.0554700
\(326\) −25.9649 10.0092i −1.43806 0.554356i
\(327\) −2.45996 1.84061i −0.136036 0.101786i
\(328\) 12.1210 + 24.0406i 0.669272 + 1.32742i
\(329\) 39.4666i 2.17586i
\(330\) −1.80275 2.87227i −0.0992382 0.158113i
\(331\) 18.1376i 0.996933i −0.866909 0.498466i \(-0.833897\pi\)
0.866909 0.498466i \(-0.166103\pi\)
\(332\) 0.335938 + 0.304206i 0.0184370 + 0.0166955i
\(333\) 1.26162 + 4.28929i 0.0691362 + 0.235052i
\(334\) 5.79338 15.0287i 0.317000 0.822333i
\(335\) −0.680909 −0.0372020
\(336\) 20.5182 + 12.3916i 1.11936 + 0.676020i
\(337\) 24.8905 1.35587 0.677935 0.735122i \(-0.262875\pi\)
0.677935 + 0.735122i \(0.262875\pi\)
\(338\) 0.508677 1.31956i 0.0276684 0.0717748i
\(339\) 17.4395 23.3077i 0.947184 1.26590i
\(340\) −1.79418 1.62471i −0.0973031 0.0881121i
\(341\) 4.19517i 0.227181i
\(342\) −2.35610 + 28.7143i −0.127404 + 1.55269i
\(343\) 7.02395i 0.379258i
\(344\) −6.12280 12.1438i −0.330119 0.654752i
\(345\) 2.64238 3.53152i 0.142261 0.190130i
\(346\) −27.2147 10.4909i −1.46307 0.563997i
\(347\) −25.3104 −1.35873 −0.679367 0.733799i \(-0.737745\pi\)
−0.679367 + 0.733799i \(0.737745\pi\)
\(348\) −7.97251 + 1.55446i −0.427371 + 0.0833279i
\(349\) −5.74690 −0.307625 −0.153812 0.988100i \(-0.549155\pi\)
−0.153812 + 0.988100i \(0.549155\pi\)
\(350\) −4.56535 1.75989i −0.244028 0.0940700i
\(351\) 1.81247 4.86980i 0.0967426 0.259931i
\(352\) −7.55012 2.08041i −0.402423 0.110886i
\(353\) 14.9735i 0.796957i 0.917178 + 0.398479i \(0.130462\pi\)
−0.917178 + 0.398479i \(0.869538\pi\)
\(354\) −8.51625 + 5.34514i −0.452633 + 0.284091i
\(355\) 0.298499i 0.0158427i
\(356\) 22.1987 24.5143i 1.17653 1.29926i
\(357\) 5.80679 + 4.34480i 0.307328 + 0.229951i
\(358\) −4.93700 + 12.8071i −0.260929 + 0.676878i
\(359\) 2.49644 0.131757 0.0658786 0.997828i \(-0.479015\pi\)
0.0658786 + 0.997828i \(0.479015\pi\)
\(360\) −6.19087 + 5.80286i −0.326288 + 0.305837i
\(361\) −27.1146 −1.42709
\(362\) 11.9118 30.9006i 0.626071 1.62410i
\(363\) 12.5970 + 9.42541i 0.661170 + 0.494706i
\(364\) 4.64457 5.12905i 0.243442 0.268835i
\(365\) 9.83828i 0.514959i
\(366\) −28.2011 + 17.7001i −1.47409 + 0.925201i
\(367\) 20.6629i 1.07859i −0.842116 0.539296i \(-0.818690\pi\)
0.842116 0.539296i \(-0.181310\pi\)
\(368\) −1.00736 10.1360i −0.0525124 0.528376i
\(369\) 27.3961 8.05807i 1.42619 0.419486i
\(370\) −1.96658 0.758095i −0.102238 0.0394115i
\(371\) −5.40255 −0.280487
\(372\) −10.3031 + 2.00888i −0.534192 + 0.104155i
\(373\) 26.3144 1.36251 0.681254 0.732048i \(-0.261435\pi\)
0.681254 + 0.732048i \(0.261435\pi\)
\(374\) −2.21092 0.852284i −0.114324 0.0440706i
\(375\) 1.03766 1.38682i 0.0535844 0.0716150i
\(376\) 28.8102 14.5258i 1.48577 0.749111i
\(377\) 2.34480i 0.120763i
\(378\) 16.8449 19.0426i 0.866407 0.979444i
\(379\) 5.38855i 0.276791i 0.990377 + 0.138396i \(0.0441946\pi\)
−0.990377 + 0.138396i \(0.955805\pi\)
\(380\) −10.0673 9.11636i −0.516442 0.467660i
\(381\) −20.7168 + 27.6878i −1.06135 + 1.41849i
\(382\) −9.72468 + 25.2269i −0.497558 + 1.29072i
\(383\) −24.2343 −1.23831 −0.619156 0.785268i \(-0.712525\pi\)
−0.619156 + 0.785268i \(0.712525\pi\)
\(384\) −1.49397 + 19.5389i −0.0762391 + 0.997090i
\(385\) −4.78976 −0.244109
\(386\) −5.27353 + 13.6801i −0.268415 + 0.696299i
\(387\) −13.8388 + 4.07044i −0.703467 + 0.206912i
\(388\) 16.3213 + 14.7797i 0.828590 + 0.750323i
\(389\) 29.3011i 1.48562i −0.669500 0.742812i \(-0.733492\pi\)
0.669500 0.742812i \(-0.266508\pi\)
\(390\) 1.30216 + 2.07470i 0.0659377 + 0.105056i
\(391\) 3.08187i 0.155857i
\(392\) 12.5516 6.32839i 0.633952 0.319632i
\(393\) −14.4014 10.7755i −0.726452 0.543552i
\(394\) 20.7924 + 8.01524i 1.04751 + 0.403802i
\(395\) 15.6146 0.785657
\(396\) −3.61160 + 7.48032i −0.181490 + 0.375900i
\(397\) −26.9542 −1.35279 −0.676395 0.736539i \(-0.736459\pi\)
−0.676395 + 0.736539i \(0.736459\pi\)
\(398\) 13.2755 + 5.11754i 0.665439 + 0.256519i
\(399\) 32.5824 + 24.3790i 1.63116 + 1.22048i
\(400\) −0.395589 3.98039i −0.0197795 0.199020i
\(401\) 7.92292i 0.395652i 0.980237 + 0.197826i \(0.0633880\pi\)
−0.980237 + 0.197826i \(0.936612\pi\)
\(402\) 0.886656 + 1.41268i 0.0442224 + 0.0704581i
\(403\) 3.03026i 0.150948i
\(404\) 23.8706 26.3605i 1.18761 1.31149i
\(405\) 4.87281 + 7.56675i 0.242132 + 0.375995i
\(406\) −4.12659 + 10.7048i −0.204799 + 0.531272i
\(407\) −2.06325 −0.102272
\(408\) −1.03445 + 5.83802i −0.0512131 + 0.289025i
\(409\) 1.73500 0.0857903 0.0428952 0.999080i \(-0.486342\pi\)
0.0428952 + 0.999080i \(0.486342\pi\)
\(410\) −4.84203 + 12.5608i −0.239131 + 0.620332i
\(411\) 14.8027 19.7836i 0.730161 0.975854i
\(412\) −3.40159 + 3.75641i −0.167584 + 0.185065i
\(413\) 14.2016i 0.698815i
\(414\) −10.7676 0.883520i −0.529200 0.0434226i
\(415\) 0.226603i 0.0111235i
\(416\) 5.45361 + 1.50273i 0.267385 + 0.0736772i
\(417\) 14.6983 19.6441i 0.719778 0.961977i
\(418\) −12.4057 4.78224i −0.606780 0.233907i
\(419\) 32.7687 1.60085 0.800427 0.599430i \(-0.204606\pi\)
0.800427 + 0.599430i \(0.204606\pi\)
\(420\) 2.29360 + 11.7634i 0.111916 + 0.573994i
\(421\) −34.1733 −1.66551 −0.832753 0.553644i \(-0.813237\pi\)
−0.832753 + 0.553644i \(0.813237\pi\)
\(422\) −25.8916 9.98093i −1.26038 0.485864i
\(423\) −9.65676 32.8314i −0.469528 1.59632i
\(424\) −1.98843 3.94381i −0.0965666 0.191528i
\(425\) 1.21024i 0.0587054i
\(426\) 0.619295 0.388695i 0.0300050 0.0188323i
\(427\) 47.0278i 2.27583i
\(428\) −1.71045 1.54888i −0.0826776 0.0748680i
\(429\) 1.91995 + 1.43656i 0.0926960 + 0.0693578i
\(430\) 2.44589 6.34492i 0.117951 0.305979i
\(431\) 14.9069 0.718039 0.359020 0.933330i \(-0.383111\pi\)
0.359020 + 0.933330i \(0.383111\pi\)
\(432\) 20.1007 + 5.28791i 0.967095 + 0.254415i
\(433\) 31.9487 1.53535 0.767677 0.640837i \(-0.221413\pi\)
0.767677 + 0.640837i \(0.221413\pi\)
\(434\) −5.33292 + 13.8342i −0.255989 + 0.664063i
\(435\) −3.25182 2.43310i −0.155913 0.116658i
\(436\) −2.62967 2.38127i −0.125938 0.114042i
\(437\) 17.2926i 0.827218i
\(438\) 20.4115 12.8111i 0.975297 0.612136i
\(439\) 5.95393i 0.284166i −0.989855 0.142083i \(-0.954620\pi\)
0.989855 0.142083i \(-0.0453800\pi\)
\(440\) −1.76289 3.49647i −0.0840423 0.166688i
\(441\) −4.20712 14.3035i −0.200339 0.681120i
\(442\) 1.59699 + 0.615623i 0.0759612 + 0.0292822i
\(443\) 20.4178 0.970079 0.485039 0.874492i \(-0.338805\pi\)
0.485039 + 0.874492i \(0.338805\pi\)
\(444\) 0.987997 + 5.06723i 0.0468882 + 0.240480i
\(445\) 16.5358 0.783874
\(446\) −15.1454 5.83839i −0.717157 0.276456i
\(447\) −6.67991 + 8.92764i −0.315949 + 0.422263i
\(448\) 22.2530 + 16.4582i 1.05135 + 0.777577i
\(449\) 24.0219i 1.13366i −0.823833 0.566832i \(-0.808169\pi\)
0.823833 0.566832i \(-0.191831\pi\)
\(450\) −4.22843 0.346957i −0.199330 0.0163557i
\(451\) 13.1782i 0.620536i
\(452\) 22.5623 24.9157i 1.06124 1.17194i
\(453\) −11.8819 + 15.8800i −0.558259 + 0.746109i
\(454\) 3.08266 7.99676i 0.144676 0.375307i
\(455\) 3.45974 0.162195
\(456\) −5.80441 + 32.7576i −0.271816 + 1.53402i
\(457\) −10.5052 −0.491413 −0.245706 0.969344i \(-0.579020\pi\)
−0.245706 + 0.969344i \(0.579020\pi\)
\(458\) 4.07160 10.5622i 0.190253 0.493538i
\(459\) 5.89364 + 2.19353i 0.275092 + 0.102385i
\(460\) 3.41856 3.77516i 0.159391 0.176018i
\(461\) 18.4543i 0.859501i −0.902948 0.429750i \(-0.858602\pi\)
0.902948 0.429750i \(-0.141398\pi\)
\(462\) 6.23705 + 9.93729i 0.290174 + 0.462325i
\(463\) 10.1406i 0.471272i −0.971841 0.235636i \(-0.924283\pi\)
0.971841 0.235636i \(-0.0757173\pi\)
\(464\) −9.33323 + 0.927579i −0.433284 + 0.0430618i
\(465\) −4.20243 3.14437i −0.194883 0.145817i
\(466\) 13.1439 + 5.06683i 0.608880 + 0.234716i
\(467\) 22.5505 1.04351 0.521756 0.853094i \(-0.325277\pi\)
0.521756 + 0.853094i \(0.325277\pi\)
\(468\) 2.60873 5.40319i 0.120589 0.249763i
\(469\) 2.35577 0.108779
\(470\) 15.0528 + 5.80267i 0.694332 + 0.267657i
\(471\) 23.2135 + 17.3690i 1.06962 + 0.800319i
\(472\) −10.3670 + 5.22694i −0.477181 + 0.240589i
\(473\) 6.65680i 0.306080i
\(474\) −20.3328 32.3956i −0.933917 1.48798i
\(475\) 6.79078i 0.311582i
\(476\) 6.20740 + 5.62106i 0.284516 + 0.257641i
\(477\) −4.49427 + 1.32191i −0.205779 + 0.0605260i
\(478\) 1.62481 4.21493i 0.0743169 0.192786i
\(479\) −31.5977 −1.44374 −0.721868 0.692030i \(-0.756716\pi\)
−0.721868 + 0.692030i \(0.756716\pi\)
\(480\) −7.74298 + 6.00385i −0.353417 + 0.274037i
\(481\) 1.49033 0.0679531
\(482\) 2.60682 6.76237i 0.118737 0.308018i
\(483\) −9.14194 + 12.2181i −0.415973 + 0.555944i
\(484\) 13.4661 + 12.1941i 0.612093 + 0.554276i
\(485\) 11.0094i 0.499909i
\(486\) 9.35352 19.9628i 0.424284 0.905529i
\(487\) 6.55755i 0.297151i 0.988901 + 0.148576i \(0.0474688\pi\)
−0.988901 + 0.148576i \(0.952531\pi\)
\(488\) −34.3298 + 17.3087i −1.55404 + 0.783529i
\(489\) −20.4178 + 27.2882i −0.923326 + 1.23402i
\(490\) 6.55797 + 2.52802i 0.296259 + 0.114204i
\(491\) −34.3824 −1.55166 −0.775828 0.630944i \(-0.782668\pi\)
−0.775828 + 0.630944i \(0.782668\pi\)
\(492\) 32.3649 6.31043i 1.45912 0.284496i
\(493\) −2.83778 −0.127807
\(494\) 8.96086 + 3.45431i 0.403168 + 0.155417i
\(495\) −3.98450 + 1.17197i −0.179090 + 0.0526760i
\(496\) −12.0616 + 1.19874i −0.541583 + 0.0538250i
\(497\) 1.03273i 0.0463242i
\(498\) 0.470133 0.295075i 0.0210672 0.0132226i
\(499\) 26.6127i 1.19135i 0.803226 + 0.595674i \(0.203115\pi\)
−0.803226 + 0.595674i \(0.796885\pi\)
\(500\) 1.34246 1.48250i 0.0600367 0.0662992i
\(501\) −15.7947 11.8180i −0.705654 0.527990i
\(502\) 1.95675 5.07602i 0.0873339 0.226554i
\(503\) 41.1702 1.83569 0.917844 0.396942i \(-0.129929\pi\)
0.917844 + 0.396942i \(0.129929\pi\)
\(504\) 21.4188 20.0764i 0.954069 0.894273i
\(505\) 17.7812 0.791252
\(506\) 1.79330 4.65202i 0.0797219 0.206807i
\(507\) −1.38682 1.03766i −0.0615908 0.0460840i
\(508\) −26.8023 + 29.5980i −1.18916 + 1.31320i
\(509\) 12.3953i 0.549411i 0.961528 + 0.274706i \(0.0885804\pi\)
−0.961528 + 0.274706i \(0.911420\pi\)
\(510\) −2.51089 + 1.57594i −0.111184 + 0.0697836i
\(511\) 34.0379i 1.50575i
\(512\) −3.82405 + 22.3019i −0.169001 + 0.985616i
\(513\) 33.0697 + 12.3081i 1.46006 + 0.543416i
\(514\) 0.173126 + 0.0667379i 0.00763624 + 0.00294368i
\(515\) −2.53384 −0.111654
\(516\) −16.3487 + 3.18764i −0.719713 + 0.140328i
\(517\) 15.7927 0.694562
\(518\) 6.80387 + 2.62281i 0.298945 + 0.115240i
\(519\) −21.4006 + 28.6018i −0.939383 + 1.25548i
\(520\) 1.27337 + 2.52558i 0.0558409 + 0.110754i
\(521\) 21.1537i 0.926759i 0.886160 + 0.463379i \(0.153363\pi\)
−0.886160 + 0.463379i \(0.846637\pi\)
\(522\) −0.813545 + 9.91483i −0.0356079 + 0.433960i
\(523\) 8.16325i 0.356954i −0.983944 0.178477i \(-0.942883\pi\)
0.983944 0.178477i \(-0.0571170\pi\)
\(524\) −15.3949 13.9407i −0.672529 0.609004i
\(525\) −3.59002 + 4.79804i −0.156681 + 0.209403i
\(526\) 3.45304 8.95757i 0.150560 0.390569i
\(527\) −3.66735 −0.159752
\(528\) −4.95856 + 8.21044i −0.215794 + 0.357313i
\(529\) −16.5154 −0.718061
\(530\) 0.794323 2.06056i 0.0345032 0.0895051i
\(531\) 3.47487 + 11.8140i 0.150797 + 0.512684i
\(532\) 34.8302 + 31.5402i 1.51008 + 1.36744i
\(533\) 9.51887i 0.412308i
\(534\) −21.5324 34.3068i −0.931797 1.48460i
\(535\) 1.15376i 0.0498814i
\(536\) 0.867048 + 1.71969i 0.0374508 + 0.0742792i
\(537\) 13.4599 + 10.0711i 0.580837 + 0.434599i
\(538\) 6.33497 + 2.44206i 0.273120 + 0.105285i
\(539\) 6.88033 0.296357
\(540\) 4.78628 + 9.22451i 0.205969 + 0.396960i
\(541\) 13.0239 0.559940 0.279970 0.960009i \(-0.409676\pi\)
0.279970 + 0.960009i \(0.409676\pi\)
\(542\) −6.80409 2.62290i −0.292261 0.112663i
\(543\) −32.4755 24.2991i −1.39366 1.04277i
\(544\) −1.81866 + 6.60019i −0.0779746 + 0.282981i
\(545\) 1.77381i 0.0759817i
\(546\) −4.50515 7.17791i −0.192803 0.307186i
\(547\) 14.9421i 0.638879i −0.947607 0.319439i \(-0.896505\pi\)
0.947607 0.319439i \(-0.103495\pi\)
\(548\) 19.1508 21.1485i 0.818083 0.903419i
\(549\) 11.5068 + 39.1214i 0.491100 + 1.66966i
\(550\) 0.704225 1.82684i 0.0300283 0.0778967i
\(551\) −15.9230 −0.678344
\(552\) −12.2838 2.17661i −0.522835 0.0926425i
\(553\) −54.0225 −2.29727
\(554\) −7.73229 + 20.0584i −0.328514 + 0.852201i
\(555\) −1.54645 + 2.06682i −0.0656431 + 0.0877315i
\(556\) 19.0158 20.9994i 0.806450 0.890572i
\(557\) 0.583745i 0.0247341i 0.999924 + 0.0123670i \(0.00393665\pi\)
−0.999924 + 0.0123670i \(0.996063\pi\)
\(558\) −1.05137 + 12.8132i −0.0445080 + 0.542428i
\(559\) 4.80835i 0.203371i
\(560\) 1.36864 + 13.7711i 0.0578355 + 0.581936i
\(561\) −1.73859 + 2.32361i −0.0734032 + 0.0981027i
\(562\) −11.2808 4.34861i −0.475851 0.183435i
\(563\) −15.0216 −0.633083 −0.316542 0.948579i \(-0.602522\pi\)
−0.316542 + 0.948579i \(0.602522\pi\)
\(564\) −7.56240 38.7860i −0.318434 1.63318i
\(565\) 16.8066 0.707060
\(566\) 6.23572 + 2.40380i 0.262107 + 0.101039i
\(567\) −16.8586 26.1790i −0.707997 1.09941i
\(568\) 0.753882 0.380099i 0.0316322 0.0159486i
\(569\) 7.67267i 0.321655i −0.986983 0.160828i \(-0.948584\pi\)
0.986983 0.160828i \(-0.0514163\pi\)
\(570\) −14.0888 + 8.84271i −0.590115 + 0.370380i
\(571\) 1.58334i 0.0662608i 0.999451 + 0.0331304i \(0.0105477\pi\)
−0.999451 + 0.0331304i \(0.989452\pi\)
\(572\) 2.05241 + 1.85854i 0.0858154 + 0.0777095i
\(573\) 26.5127 + 19.8375i 1.10758 + 0.828724i
\(574\) 16.7522 43.4570i 0.699222 1.81386i
\(575\) 2.54649 0.106196
\(576\) 22.5388 + 8.24634i 0.939117 + 0.343597i
\(577\) 27.4884 1.14436 0.572178 0.820129i \(-0.306099\pi\)
0.572178 + 0.820129i \(0.306099\pi\)
\(578\) 7.90245 20.4998i 0.328699 0.852681i
\(579\) 14.3774 + 10.7575i 0.597503 + 0.447068i
\(580\) −3.47616 3.14781i −0.144340 0.130706i
\(581\) 0.783988i 0.0325253i
\(582\) 22.8411 14.3360i 0.946794 0.594246i
\(583\) 2.16185i 0.0895347i
\(584\) 24.8473 12.5278i 1.02819 0.518402i
\(585\) 2.87809 0.846536i 0.118994 0.0350000i
\(586\) −2.75967 1.06382i −0.114001 0.0439461i
\(587\) −0.657644 −0.0271439 −0.0135719 0.999908i \(-0.504320\pi\)
−0.0135719 + 0.999908i \(0.504320\pi\)
\(588\) −3.29468 16.8977i −0.135870 0.696850i
\(589\) −20.5778 −0.847895
\(590\) −5.41656 2.08802i −0.222996 0.0859625i
\(591\) 16.3504 21.8522i 0.672566 0.898878i
\(592\) 0.589558 + 5.93209i 0.0242307 + 0.243807i
\(593\) 20.3317i 0.834924i 0.908694 + 0.417462i \(0.137080\pi\)
−0.908694 + 0.417462i \(0.862920\pi\)
\(594\) 7.61995 + 6.74053i 0.312650 + 0.276567i
\(595\) 4.18713i 0.171656i
\(596\) −8.64209 + 9.54356i −0.353994 + 0.390919i
\(597\) 10.4393 13.9521i 0.427254 0.571021i
\(598\) −1.29534 + 3.36025i −0.0529703 + 0.137411i
\(599\) 39.1001 1.59759 0.798793 0.601606i \(-0.205472\pi\)
0.798793 + 0.601606i \(0.205472\pi\)
\(600\) −4.82384 0.854749i −0.196932 0.0348950i
\(601\) −13.8806 −0.566201 −0.283101 0.959090i \(-0.591363\pi\)
−0.283101 + 0.959090i \(0.591363\pi\)
\(602\) −8.46216 + 21.9518i −0.344892 + 0.894687i
\(603\) 1.95971 0.576414i 0.0798058 0.0234734i
\(604\) −15.3721 + 16.9756i −0.625482 + 0.690727i
\(605\) 9.08336i 0.369291i
\(606\) −23.1540 36.8906i −0.940568 1.49858i
\(607\) 4.70639i 0.191027i −0.995428 0.0955133i \(-0.969551\pi\)
0.995428 0.0955133i \(-0.0304493\pi\)
\(608\) −10.2047 + 37.0342i −0.413854 + 1.50194i
\(609\) 11.2504 + 8.41790i 0.455891 + 0.341110i
\(610\) −17.9366 6.91437i −0.726233 0.279955i
\(611\) −11.4074 −0.461493
\(612\) 6.53918 + 3.15720i 0.264331 + 0.127622i
\(613\) 2.92569 0.118168 0.0590838 0.998253i \(-0.481182\pi\)
0.0590838 + 0.998253i \(0.481182\pi\)
\(614\) 25.0861 + 9.67039i 1.01239 + 0.390265i
\(615\) 13.2010 + 9.87732i 0.532314 + 0.398292i
\(616\) 6.09913 + 12.0969i 0.245741 + 0.487398i
\(617\) 48.3497i 1.94648i 0.229782 + 0.973242i \(0.426199\pi\)
−0.229782 + 0.973242i \(0.573801\pi\)
\(618\) 3.29948 + 5.25695i 0.132724 + 0.211466i
\(619\) 47.6933i 1.91696i 0.285165 + 0.958478i \(0.407952\pi\)
−0.285165 + 0.958478i \(0.592048\pi\)
\(620\) −4.49235 4.06801i −0.180417 0.163375i
\(621\) −4.61544 + 12.4009i −0.185211 + 0.497630i
\(622\) 2.30376 5.97621i 0.0923724 0.239624i
\(623\) −57.2097 −2.29206
\(624\) 3.58167 5.93057i 0.143381 0.237413i
\(625\) 1.00000 0.0400000
\(626\) 1.93469 5.01880i 0.0773258 0.200592i
\(627\) −9.75536 + 13.0379i −0.389591 + 0.520686i
\(628\) 24.8150 + 22.4710i 0.990225 + 0.896690i
\(629\) 1.80366i 0.0719166i
\(630\) 14.6293 + 1.20038i 0.582844 + 0.0478243i
\(631\) 18.4310i 0.733725i −0.930275 0.366862i \(-0.880432\pi\)
0.930275 0.366862i \(-0.119568\pi\)
\(632\) −19.8832 39.4359i −0.790910 1.56868i
\(633\) −20.3602 + 27.2113i −0.809247 + 1.08155i
\(634\) −28.5353 11.0000i −1.13328 0.436867i
\(635\) −19.9650 −0.792287
\(636\) −5.30938 + 1.03521i −0.210531 + 0.0410488i
\(637\) −4.96980 −0.196911
\(638\) −4.28358 1.65127i −0.169588 0.0653744i
\(639\) −0.252690 0.859106i −0.00999627 0.0339857i
\(640\) −9.54905 + 6.06760i −0.377459 + 0.239843i
\(641\) 15.4544i 0.610410i 0.952287 + 0.305205i \(0.0987250\pi\)
−0.952287 + 0.305205i \(0.901275\pi\)
\(642\) −2.39370 + 1.50239i −0.0944720 + 0.0592945i
\(643\) 13.3360i 0.525921i −0.964807 0.262961i \(-0.915301\pi\)
0.964807 0.262961i \(-0.0846990\pi\)
\(644\) −11.8273 + 13.0611i −0.466062 + 0.514678i
\(645\) −6.66831 4.98941i −0.262564 0.196458i
\(646\) −4.18056 + 10.8448i −0.164482 + 0.426684i
\(647\) −1.36586 −0.0536974 −0.0268487 0.999640i \(-0.508547\pi\)
−0.0268487 + 0.999640i \(0.508547\pi\)
\(648\) 12.9055 21.9419i 0.506977 0.861960i
\(649\) −5.68281 −0.223070
\(650\) −0.508677 + 1.31956i −0.0199519 + 0.0517575i
\(651\) 14.5393 + 10.8787i 0.569840 + 0.426370i
\(652\) −26.4154 + 29.1709i −1.03451 + 1.14242i
\(653\) 47.7854i 1.86999i −0.354662 0.934994i \(-0.615404\pi\)
0.354662 0.934994i \(-0.384596\pi\)
\(654\) −3.68012 + 2.30979i −0.143904 + 0.0903201i
\(655\) 10.3844i 0.405754i
\(656\) 37.8888 3.76557i 1.47931 0.147021i
\(657\) −8.32846 28.3154i −0.324924 1.10469i
\(658\) −52.0787 20.0757i −2.03024 0.782634i
\(659\) 10.6354 0.414296 0.207148 0.978310i \(-0.433582\pi\)
0.207148 + 0.978310i \(0.433582\pi\)
\(660\) −4.70715 + 0.917790i −0.183226 + 0.0357249i
\(661\) 41.2265 1.60353 0.801763 0.597642i \(-0.203896\pi\)
0.801763 + 0.597642i \(0.203896\pi\)
\(662\) −23.9337 9.22617i −0.930210 0.358585i
\(663\) 1.25582 1.67839i 0.0487719 0.0651832i
\(664\) 0.572303 0.288549i 0.0222097 0.0111979i
\(665\) 23.4943i 0.911071i
\(666\) 6.30175 + 0.517079i 0.244188 + 0.0200364i
\(667\) 5.97101i 0.231198i
\(668\) −16.8843 15.2895i −0.653275 0.591568i
\(669\) −11.9098 + 15.9174i −0.460460 + 0.615401i
\(670\) −0.346363 + 0.898503i −0.0133812 + 0.0347122i
\(671\) −18.8183 −0.726473
\(672\) 26.7887 20.7718i 1.03340 0.801288i
\(673\) 17.8034 0.686271 0.343136 0.939286i \(-0.388511\pi\)
0.343136 + 0.939286i \(0.388511\pi\)
\(674\) 12.6612 32.8446i 0.487691 1.26513i
\(675\) −1.81247 + 4.86980i −0.0697621 + 0.187439i
\(676\) −1.48250 1.34246i −0.0570191 0.0516332i
\(677\) 14.7237i 0.565879i 0.959138 + 0.282939i \(0.0913095\pi\)
−0.959138 + 0.282939i \(0.908690\pi\)
\(678\) −21.8850 34.8686i −0.840488 1.33912i
\(679\) 38.0895i 1.46174i
\(680\) −3.05656 + 1.54109i −0.117214 + 0.0590979i
\(681\) −8.40434 6.28836i −0.322055 0.240971i
\(682\) −5.53580 2.13399i −0.211977 0.0817146i
\(683\) 42.3586 1.62081 0.810403 0.585872i \(-0.199248\pi\)
0.810403 + 0.585872i \(0.199248\pi\)
\(684\) 36.6919 + 17.7153i 1.40295 + 0.677363i
\(685\) 14.2655 0.545055
\(686\) 9.26855 + 3.57292i 0.353875 + 0.136415i
\(687\) −11.1005 8.30572i −0.423511 0.316883i
\(688\) −19.1391 + 1.90213i −0.729671 + 0.0725181i
\(689\) 1.56155i 0.0594903i
\(690\) −3.31594 5.28319i −0.126236 0.201127i
\(691\) 0.957665i 0.0364313i 0.999834 + 0.0182157i \(0.00579854\pi\)
−0.999834 + 0.0182157i \(0.994201\pi\)
\(692\) −27.6869 + 30.5750i −1.05250 + 1.16229i
\(693\) 13.7853 4.05470i 0.523661 0.154025i
\(694\) −12.8748 + 33.3987i −0.488721 + 1.26780i
\(695\) 14.1649 0.537304
\(696\) −2.00422 + 11.3109i −0.0759697 + 0.428740i
\(697\) 11.5202 0.436357
\(698\) −2.92331 + 7.58340i −0.110649 + 0.287036i
\(699\) 10.3359 13.8138i 0.390940 0.522487i
\(700\) −4.64457 + 5.12905i −0.175548 + 0.193860i
\(701\) 40.9138i 1.54529i −0.634836 0.772647i \(-0.718932\pi\)
0.634836 0.772647i \(-0.281068\pi\)
\(702\) −5.50405 4.86883i −0.207737 0.183762i
\(703\) 10.1205i 0.381701i
\(704\) −6.58581 + 8.90460i −0.248212 + 0.335605i
\(705\) 11.8370 15.8200i 0.445805 0.595815i
\(706\) 19.7584 + 7.61665i 0.743619 + 0.286657i
\(707\) −61.5183 −2.31363
\(708\) 2.72124 + 13.9567i 0.102271 + 0.524524i
\(709\) −51.6170 −1.93852 −0.969259 0.246041i \(-0.920870\pi\)
−0.969259 + 0.246041i \(0.920870\pi\)
\(710\) 0.393889 + 0.151840i 0.0147824 + 0.00569844i
\(711\) −44.9402 + 13.2183i −1.68539 + 0.495726i
\(712\) −21.0562 41.7625i −0.789115 1.56512i
\(713\) 7.71652i 0.288986i
\(714\) 8.68702 5.45233i 0.325104 0.204048i
\(715\) 1.38443i 0.0517746i
\(716\) 14.3885 + 13.0294i 0.537723 + 0.486931i
\(717\) −4.42975 3.31447i −0.165432 0.123781i
\(718\) 1.26988 3.29421i 0.0473916 0.122939i
\(719\) −32.5567 −1.21416 −0.607079 0.794641i \(-0.707659\pi\)
−0.607079 + 0.794641i \(0.707659\pi\)
\(720\) 4.50808 + 11.1210i 0.168006 + 0.414456i
\(721\) 8.76643 0.326479
\(722\) −13.7926 + 35.7795i −0.513307 + 1.33158i
\(723\) −7.10704 5.31768i −0.264314 0.197767i
\(724\) −34.7160 31.4368i −1.29021 1.16834i
\(725\) 2.34480i 0.0870838i
\(726\) 18.8452 11.8280i 0.699412 0.438979i
\(727\) 42.4585i 1.57470i 0.616508 + 0.787349i \(0.288547\pi\)
−0.616508 + 0.787349i \(0.711453\pi\)
\(728\) −4.40552 8.73784i −0.163280 0.323846i
\(729\) −20.4299 17.6528i −0.756662 0.653806i
\(730\) 12.9822 + 5.00450i 0.480494 + 0.185225i
\(731\) −5.81927 −0.215233
\(732\) 9.01124 + 46.2167i 0.333065 + 1.70822i
\(733\) −17.0969 −0.631490 −0.315745 0.948844i \(-0.602254\pi\)
−0.315745 + 0.948844i \(0.602254\pi\)
\(734\) −27.2660 10.5107i −1.00641 0.387958i
\(735\) 5.15695 6.89222i 0.190217 0.254223i
\(736\) −13.8875 3.82667i −0.511901 0.141053i
\(737\) 0.942669i 0.0347237i
\(738\) 3.30264 40.2499i 0.121572 1.48162i
\(739\) 20.0613i 0.737966i −0.929436 0.368983i \(-0.879706\pi\)
0.929436 0.368983i \(-0.120294\pi\)
\(740\) −2.00071 + 2.20941i −0.0735475 + 0.0812194i
\(741\) 7.04650 9.41758i 0.258860 0.345963i
\(742\) −2.74815 + 7.12901i −0.100888 + 0.261714i
\(743\) −46.9323 −1.72178 −0.860889 0.508792i \(-0.830092\pi\)
−0.860889 + 0.508792i \(0.830092\pi\)
\(744\) −2.59011 + 14.6175i −0.0949581 + 0.535903i
\(745\) −6.43749 −0.235851
\(746\) 13.3855 34.7235i 0.490078 1.27132i
\(747\) −0.191828 0.652183i −0.00701861 0.0238621i
\(748\) −2.24929 + 2.48391i −0.0822421 + 0.0908208i
\(749\) 3.99171i 0.145854i
\(750\) −1.30216 2.07470i −0.0475483 0.0757572i
\(751\) 48.2466i 1.76055i 0.474468 + 0.880273i \(0.342640\pi\)
−0.474468 + 0.880273i \(0.657360\pi\)
\(752\) −4.51264 45.4058i −0.164559 1.65578i
\(753\) −5.33473 3.99160i −0.194409 0.145462i
\(754\) 3.09412 + 1.19275i 0.112681 + 0.0434373i
\(755\) −11.4507 −0.416733
\(756\) −16.5593 31.9144i −0.602256 1.16072i
\(757\) 13.1637 0.478444 0.239222 0.970965i \(-0.423108\pi\)
0.239222 + 0.970965i \(0.423108\pi\)
\(758\) 7.11054 + 2.74103i 0.258266 + 0.0995588i
\(759\) −4.88912 3.65818i −0.177464 0.132783i
\(760\) −17.1506 + 8.64716i −0.622118 + 0.313666i
\(761\) 25.9221i 0.939674i −0.882753 0.469837i \(-0.844313\pi\)
0.882753 0.469837i \(-0.155687\pi\)
\(762\) 25.9977 + 41.4213i 0.941797 + 1.50054i
\(763\) 6.13693i 0.222172i
\(764\) 28.3418 + 25.6647i 1.02537 + 0.928515i
\(765\) 1.02451 + 3.48318i 0.0370414 + 0.125935i
\(766\) −12.3274 + 31.9786i −0.445407 + 1.15544i
\(767\) 4.10481 0.148216
\(768\) 25.0229 + 11.9104i 0.902934 + 0.429778i
\(769\) 34.1109 1.23007 0.615035 0.788500i \(-0.289142\pi\)
0.615035 + 0.788500i \(0.289142\pi\)
\(770\) −2.43644 + 6.32039i −0.0878031 + 0.227771i
\(771\) 0.136140 0.181950i 0.00490295 0.00655275i
\(772\) 15.3693 + 13.9175i 0.553152 + 0.500902i
\(773\) 1.46514i 0.0526974i −0.999653 0.0263487i \(-0.991612\pi\)
0.999653 0.0263487i \(-0.00838802\pi\)
\(774\) −1.66829 + 20.3318i −0.0599653 + 0.730810i
\(775\) 3.03026i 0.108850i
\(776\) 27.8050 14.0190i 0.998140 0.503252i
\(777\) 5.35031 7.15065i 0.191941 0.256528i
\(778\) −38.6646 14.9048i −1.38619 0.534362i
\(779\) 64.6405 2.31599
\(780\) 3.40008 0.662939i 0.121742 0.0237370i
\(781\) 0.413250 0.0147873
\(782\) −4.06672 1.56767i −0.145426 0.0560599i
\(783\) 11.4187 + 4.24989i 0.408072 + 0.151879i
\(784\) −1.96600 19.7818i −0.0702144 0.706491i
\(785\) 16.7386i 0.597427i
\(786\) −21.5446 + 13.5223i −0.768470 + 0.482323i
\(787\) 23.5966i 0.841130i 0.907262 + 0.420565i \(0.138168\pi\)
−0.907262 + 0.420565i \(0.861832\pi\)
\(788\) 21.1532 23.3597i 0.753553 0.832157i
\(789\) −9.41412 7.04391i −0.335152 0.250770i
\(790\) 7.94279 20.6045i 0.282592 0.733075i
\(791\) −58.1465 −2.06745
\(792\) 8.03363 + 8.57081i 0.285462 + 0.304550i
\(793\) 13.5929 0.482697
\(794\) −13.7109 + 35.5677i −0.486583 + 1.26225i
\(795\) −2.16559 1.62035i −0.0768054 0.0574680i
\(796\) 13.5058 14.9147i 0.478702 0.528636i
\(797\) 0.986693i 0.0349505i −0.999847 0.0174752i \(-0.994437\pi\)
0.999847 0.0174752i \(-0.00556282\pi\)
\(798\) 48.7436 30.5935i 1.72550 1.08300i
\(799\) 13.8057i 0.488411i
\(800\) −5.45361 1.50273i −0.192814 0.0531294i
\(801\) −47.5915 + 13.9982i −1.68156 + 0.494601i
\(802\) 10.4548 + 4.03020i 0.369172 + 0.142311i
\(803\) 13.6204 0.480653
\(804\) 2.31514 0.451401i 0.0816488 0.0159197i
\(805\) −8.81018 −0.310518
\(806\) 3.99862 + 1.54142i 0.140845 + 0.0542943i
\(807\) 4.98159 6.65785i 0.175360 0.234367i
\(808\) −22.6420 44.9077i −0.796543 1.57985i
\(809\) 17.7059i 0.622505i 0.950327 + 0.311253i \(0.100749\pi\)
−0.950327 + 0.311253i \(0.899251\pi\)
\(810\) 12.4635 2.58095i 0.437923 0.0906853i
\(811\) 40.4250i 1.41951i 0.704447 + 0.709756i \(0.251195\pi\)
−0.704447 + 0.709756i \(0.748805\pi\)
\(812\) 12.0266 + 10.8906i 0.422051 + 0.382185i
\(813\) −5.35049 + 7.15088i −0.187650 + 0.250792i
\(814\) −1.04953 + 2.72259i −0.0367859 + 0.0954267i
\(815\) −19.6769 −0.689250
\(816\) 7.17743 + 4.33469i 0.251260 + 0.151745i
\(817\) −32.6524 −1.14236
\(818\) 0.882555 2.28945i 0.0308578 0.0800486i
\(819\) −9.95743 + 2.92880i −0.347941 + 0.102340i
\(820\) 14.1117 + 12.7787i 0.492802 + 0.446253i
\(821\) 5.04075i 0.175924i −0.996124 0.0879618i \(-0.971965\pi\)
0.996124 0.0879618i \(-0.0280353\pi\)
\(822\) −18.5760 29.5965i −0.647911 1.03230i
\(823\) 3.19720i 0.111447i −0.998446 0.0557237i \(-0.982253\pi\)
0.998446 0.0557237i \(-0.0177466\pi\)
\(824\) 3.22651 + 6.39941i 0.112401 + 0.222934i
\(825\) −1.91995 1.43656i −0.0668441 0.0500146i
\(826\) 18.7399 + 7.22402i 0.652045 + 0.251356i
\(827\) −40.1178 −1.39503 −0.697516 0.716569i \(-0.745711\pi\)
−0.697516 + 0.716569i \(0.745711\pi\)
\(828\) −6.64311 + 13.7592i −0.230864 + 0.478164i
\(829\) −5.12888 −0.178133 −0.0890667 0.996026i \(-0.528388\pi\)
−0.0890667 + 0.996026i \(0.528388\pi\)
\(830\) 0.299017 + 0.115268i 0.0103790 + 0.00400100i
\(831\) 21.0808 + 15.7732i 0.731284 + 0.547167i
\(832\) 4.75706 6.43198i 0.164922 0.222989i
\(833\) 6.01467i 0.208396i
\(834\) −18.4450 29.3878i −0.638698 1.01762i
\(835\) 11.3891i 0.394137i
\(836\) −12.6209 + 13.9374i −0.436504 + 0.482036i
\(837\) 14.7568 + 5.49227i 0.510068 + 0.189840i
\(838\) 16.6687 43.2403i 0.575809 1.49371i
\(839\) −14.8385 −0.512283 −0.256142 0.966639i \(-0.582451\pi\)
−0.256142 + 0.966639i \(0.582451\pi\)
\(840\) 16.6892 + 2.95721i 0.575833 + 0.102033i
\(841\) 23.5019 0.810410
\(842\) −17.3832 + 45.0939i −0.599064 + 1.55404i
\(843\) −8.87079 + 11.8557i −0.305526 + 0.408333i
\(844\) −26.3409 + 29.0886i −0.906692 + 1.00127i
\(845\) 1.00000i 0.0344010i
\(846\) −48.2353 3.95787i −1.65836 0.136074i
\(847\) 31.4261i 1.07981i
\(848\) −6.21557 + 0.617732i −0.213444 + 0.0212130i
\(849\) 4.90354 6.55354i 0.168289 0.224917i
\(850\) −1.59699 0.615623i −0.0547764 0.0211157i
\(851\) −3.79510 −0.130094
\(852\) −0.197887 1.01492i −0.00677949 0.0347706i
\(853\) 56.1528 1.92263 0.961317 0.275443i \(-0.0888247\pi\)
0.961317 + 0.275443i \(0.0888247\pi\)
\(854\) 62.0561 + 23.9219i 2.12352 + 0.818592i
\(855\) 5.74864 + 19.5444i 0.196599 + 0.668406i
\(856\) −2.91391 + 1.46916i −0.0995954 + 0.0502150i
\(857\) 31.3063i 1.06940i 0.845041 + 0.534702i \(0.179576\pi\)
−0.845041 + 0.534702i \(0.820424\pi\)
\(858\) 2.87227 1.80275i 0.0980575 0.0615449i
\(859\) 3.94314i 0.134538i 0.997735 + 0.0672691i \(0.0214286\pi\)
−0.997735 + 0.0672691i \(0.978571\pi\)
\(860\) −7.12835 6.45502i −0.243075 0.220114i
\(861\) −45.6719 34.1730i −1.55649 1.16461i
\(862\) 7.58278 19.6706i 0.258271 0.669983i
\(863\) −15.9367 −0.542490 −0.271245 0.962510i \(-0.587435\pi\)
−0.271245 + 0.962510i \(0.587435\pi\)
\(864\) 17.2025 23.8343i 0.585240 0.810860i
\(865\) −20.6240 −0.701237
\(866\) 16.2515 42.1583i 0.552250 1.43260i
\(867\) −21.5447 16.1203i −0.731695 0.547475i
\(868\) 15.5424 + 14.0743i 0.527542 + 0.477712i
\(869\) 21.6173i 0.733316i
\(870\) −4.86475 + 3.05332i −0.164931 + 0.103517i
\(871\) 0.680909i 0.0230717i
\(872\) −4.47989 + 2.25872i −0.151708 + 0.0764897i
\(873\) −9.31982 31.6859i −0.315428 1.07240i
\(874\) −22.8187 8.79635i −0.771854 0.297541i
\(875\) −3.45974 −0.116961
\(876\) −6.52218 33.4509i −0.220364 1.13020i
\(877\) −37.8557 −1.27830 −0.639148 0.769083i \(-0.720713\pi\)
−0.639148 + 0.769083i \(0.720713\pi\)
\(878\) −7.85659 3.02863i −0.265147 0.102211i
\(879\) −2.17011 + 2.90033i −0.0731958 + 0.0978256i
\(880\) −5.51056 + 0.547665i −0.185761 + 0.0184618i
\(881\) 53.8762i 1.81513i 0.419907 + 0.907567i \(0.362063\pi\)
−0.419907 + 0.907567i \(0.637937\pi\)
\(882\) −21.0145 1.72431i −0.707594 0.0580604i
\(883\) 54.6628i 1.83955i −0.392447 0.919774i \(-0.628372\pi\)
0.392447 0.919774i \(-0.371628\pi\)
\(884\) 1.62471 1.79418i 0.0546448 0.0603448i
\(885\) −4.25939 + 5.69264i −0.143178 + 0.191356i
\(886\) 10.3861 26.9426i 0.348926 0.905153i
\(887\) 50.1663 1.68442 0.842209 0.539150i \(-0.181255\pi\)
0.842209 + 0.539150i \(0.181255\pi\)
\(888\) 7.18910 + 1.27386i 0.241250 + 0.0427478i
\(889\) 69.0737 2.31666
\(890\) 8.41139 21.8201i 0.281950 0.731411i
\(891\) 10.4756 6.74604i 0.350946 0.226001i
\(892\) −15.4083 + 17.0155i −0.515907 + 0.569722i
\(893\) 77.4650i 2.59227i
\(894\) 8.38267 + 13.3558i 0.280359 + 0.446686i
\(895\) 9.70558i 0.324422i
\(896\) 33.0372 20.9923i 1.10370 0.701304i
\(897\) 3.53152 + 2.64238i 0.117914 + 0.0882265i
\(898\) −31.6985 12.2194i −1.05779 0.407766i
\(899\) −7.10536 −0.236977
\(900\) −2.60873 + 5.40319i −0.0869578 + 0.180106i
\(901\) −1.88985 −0.0629602
\(902\) 17.3894 + 6.70343i 0.579005 + 0.223200i
\(903\) 23.0706 + 17.2621i 0.767742 + 0.574446i
\(904\) −21.4010 42.4464i −0.711787 1.41175i
\(905\) 23.4173i 0.778416i
\(906\) 14.9107 + 23.7567i 0.495374 + 0.789263i
\(907\) 27.5763i 0.915657i 0.889040 + 0.457829i \(0.151373\pi\)
−0.889040 + 0.457829i \(0.848627\pi\)
\(908\) −8.98416 8.13553i −0.298150 0.269987i
\(909\) −51.1758 + 15.0524i −1.69739 + 0.499257i
\(910\) 1.75989 4.56535i 0.0583398 0.151340i
\(911\) 0.664100 0.0220026 0.0110013 0.999939i \(-0.496498\pi\)
0.0110013 + 0.999939i \(0.496498\pi\)
\(912\) 40.2732 + 24.3223i 1.33358 + 0.805392i
\(913\) 0.313715 0.0103825
\(914\) −5.34375 + 13.8623i −0.176756 + 0.458523i
\(915\) −14.1047 + 18.8508i −0.466288 + 0.623190i
\(916\) −11.8663 10.7455i −0.392075 0.355040i
\(917\) 35.9275i 1.18643i
\(918\) 5.89246 6.66124i 0.194480 0.219854i
\(919\) 36.8995i 1.21720i −0.793476 0.608602i \(-0.791731\pi\)
0.793476 0.608602i \(-0.208269\pi\)
\(920\) −3.24262 6.43134i −0.106906 0.212035i
\(921\) 19.7268 26.3646i 0.650019 0.868745i
\(922\) −24.3516 9.38725i −0.801976 0.309153i
\(923\) −0.298499 −0.00982522
\(924\) 16.2855 3.17532i 0.535755 0.104460i
\(925\) −1.49033 −0.0490017
\(926\) −13.3811 5.15827i −0.439731 0.169511i
\(927\) 7.29261 2.14499i 0.239521 0.0704507i
\(928\) −3.52360 + 12.7876i −0.115668 + 0.419774i
\(929\) 42.2152i 1.38503i −0.721401 0.692517i \(-0.756502\pi\)
0.721401 0.692517i \(-0.243498\pi\)
\(930\) −6.28687 + 3.94590i −0.206155 + 0.129391i
\(931\) 33.7488i 1.10607i
\(932\) 13.3720 14.7669i 0.438015 0.483704i
\(933\) −6.28081 4.69948i −0.205624 0.153854i
\(934\) 11.4709 29.7568i 0.375340 0.973673i
\(935\) −1.67549 −0.0547945
\(936\) −5.80286 6.19087i −0.189672 0.202355i
\(937\) 28.4325 0.928850 0.464425 0.885612i \(-0.346261\pi\)
0.464425 + 0.885612i \(0.346261\pi\)
\(938\) 1.19832 3.10859i 0.0391267 0.101499i
\(939\) −5.27460 3.94660i −0.172130 0.128793i
\(940\) 15.3140 16.9114i 0.499487 0.551589i
\(941\) 37.5619i 1.22448i 0.790671 + 0.612241i \(0.209732\pi\)
−0.790671 + 0.612241i \(0.790268\pi\)
\(942\) 34.7276 21.7965i 1.13149 0.710167i
\(943\) 24.2397i 0.789352i
\(944\) 1.62382 + 16.3388i 0.0528509 + 0.531781i
\(945\) 6.27068 16.8482i 0.203985 0.548073i
\(946\) −8.78407 3.38616i −0.285595 0.110094i
\(947\) 34.0041 1.10499 0.552493 0.833518i \(-0.313677\pi\)
0.552493 + 0.833518i \(0.313677\pi\)
\(948\) −53.0909 + 10.3515i −1.72431 + 0.336202i
\(949\) −9.83828 −0.319364
\(950\) −8.96086 3.45431i −0.290729 0.112073i
\(951\) −22.4391 + 29.9897i −0.727639 + 0.972483i
\(952\) 10.5749 5.33176i 0.342735 0.172803i
\(953\) 20.7594i 0.672463i −0.941779 0.336231i \(-0.890848\pi\)
0.941779 0.336231i \(-0.109152\pi\)
\(954\) −0.541790 + 6.60290i −0.0175411 + 0.213777i
\(955\) 19.1176i 0.618631i
\(956\) −4.73536 4.28807i −0.153153 0.138686i
\(957\) −3.36845 + 4.50190i −0.108886 + 0.145526i
\(958\) −16.0730 + 41.6952i −0.519296 + 1.34711i
\(959\) −49.3548 −1.59375
\(960\) 3.98379 + 13.2714i 0.128576 + 0.428332i
\(961\) 21.8175 0.703791
\(962\) 0.758095 1.96658i 0.0244420 0.0634052i
\(963\) 0.976701 + 3.32062i 0.0314737 + 0.107006i
\(964\) −7.59735 6.87972i −0.244694 0.221581i
\(965\) 10.3671i 0.333730i
\(966\) 11.4723 + 18.2785i 0.369115 + 0.588100i
\(967\) 1.11319i 0.0357979i −0.999840 0.0178990i \(-0.994302\pi\)
0.999840 0.0178990i \(-0.00569772\pi\)
\(968\) 22.9407 11.5665i 0.737343 0.371760i
\(969\) 11.3976 + 8.52798i 0.366143 + 0.273958i
\(970\) 14.5276 + 5.60020i 0.466452 + 0.179812i
\(971\) 32.1217 1.03084 0.515418 0.856939i \(-0.327637\pi\)
0.515418 + 0.856939i \(0.327637\pi\)
\(972\) −21.5842 22.4972i −0.692314 0.721597i
\(973\) −49.0068 −1.57109
\(974\) 8.65311 + 3.33567i 0.277263 + 0.106882i
\(975\) 1.38682 + 1.03766i 0.0444138 + 0.0332316i
\(976\) 5.37719 + 54.1049i 0.172120 + 1.73186i
\(977\) 44.0839i 1.41037i 0.709024 + 0.705185i \(0.249136\pi\)
−0.709024 + 0.705185i \(0.750864\pi\)
\(978\) 25.6225 + 40.8235i 0.819317 + 1.30539i
\(979\) 22.8926i 0.731652i
\(980\) 6.67177 7.36771i 0.213122 0.235353i
\(981\) 1.50160 + 5.10518i 0.0479422 + 0.162996i
\(982\) −17.4895 + 45.3698i −0.558113 + 1.44781i
\(983\) 6.84273 0.218249 0.109125 0.994028i \(-0.465195\pi\)
0.109125 + 0.994028i \(0.465195\pi\)
\(984\) 8.13625 45.9175i 0.259374 1.46380i
\(985\) 15.7570 0.502061
\(986\) −1.44351 + 3.74463i −0.0459708 + 0.119253i
\(987\) −40.9528 + 54.7330i −1.30354 + 1.74217i
\(988\) 9.11636 10.0673i 0.290030 0.320283i
\(989\) 12.2444i 0.389349i
\(990\) −0.480336 + 5.85395i −0.0152661 + 0.186051i
\(991\) 31.4987i 1.00059i −0.865856 0.500294i \(-0.833225\pi\)
0.865856 0.500294i \(-0.166775\pi\)
\(992\) −4.55365 + 16.5258i −0.144579 + 0.524696i
\(993\) −18.8206 + 25.1536i −0.597254 + 0.798225i
\(994\) −1.36275 0.525325i −0.0432239 0.0166623i
\(995\) 10.0605 0.318939
\(996\) −0.150224 0.770468i −0.00476003 0.0244132i
\(997\) −19.6242 −0.621505 −0.310752 0.950491i \(-0.600581\pi\)
−0.310752 + 0.950491i \(0.600581\pi\)
\(998\) 35.1172 + 13.5373i 1.11161 + 0.428515i
\(999\) 2.70118 7.25760i 0.0854615 0.229620i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 780.2.g.d.131.17 yes 32
3.2 odd 2 inner 780.2.g.d.131.16 yes 32
4.3 odd 2 inner 780.2.g.d.131.15 32
12.11 even 2 inner 780.2.g.d.131.18 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.g.d.131.15 32 4.3 odd 2 inner
780.2.g.d.131.16 yes 32 3.2 odd 2 inner
780.2.g.d.131.17 yes 32 1.1 even 1 trivial
780.2.g.d.131.18 yes 32 12.11 even 2 inner