Properties

Label 780.2.g.d.131.15
Level $780$
Weight $2$
Character 780.131
Analytic conductor $6.228$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [780,2,Mod(131,780)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(780, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("780.131"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 780.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.22833135766\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 131.15
Character \(\chi\) \(=\) 780.131
Dual form 780.2.g.d.131.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.508677 - 1.31956i) q^{2} +(1.38682 + 1.03766i) q^{3} +(-1.48250 + 1.34246i) q^{4} -1.00000i q^{5} +(0.663812 - 2.35783i) q^{6} -3.45974i q^{7} +(2.52558 + 1.27337i) q^{8} +(0.846536 + 2.87809i) q^{9} +(-1.31956 + 0.508677i) q^{10} +1.38443 q^{11} +(-3.44897 + 0.323431i) q^{12} +1.00000 q^{13} +(-4.56535 + 1.75989i) q^{14} +(1.03766 - 1.38682i) q^{15} +(0.395589 - 3.98039i) q^{16} +1.21024i q^{17} +(3.36720 - 2.58107i) q^{18} -6.79078i q^{19} +(1.34246 + 1.48250i) q^{20} +(3.59002 - 4.79804i) q^{21} +(-0.704225 - 1.82684i) q^{22} +2.54649 q^{23} +(2.18120 + 4.38661i) q^{24} -1.00000 q^{25} +(-0.508677 - 1.31956i) q^{26} +(-1.81247 + 4.86980i) q^{27} +(4.64457 + 5.12905i) q^{28} +2.34480i q^{29} +(-2.35783 - 0.663812i) q^{30} -3.03026i q^{31} +(-5.45361 + 1.50273i) q^{32} +(1.91995 + 1.43656i) q^{33} +(1.59699 - 0.615623i) q^{34} -3.45974 q^{35} +(-5.11871 - 3.13031i) q^{36} +1.49033 q^{37} +(-8.96086 + 3.45431i) q^{38} +(1.38682 + 1.03766i) q^{39} +(1.27337 - 2.52558i) q^{40} -9.51887i q^{41} +(-8.15747 - 2.29662i) q^{42} -4.80835i q^{43} +(-2.05241 + 1.85854i) q^{44} +(2.87809 - 0.846536i) q^{45} +(-1.29534 - 3.36025i) q^{46} +11.4074 q^{47} +(4.67889 - 5.10960i) q^{48} -4.96980 q^{49} +(0.508677 + 1.31956i) q^{50} +(-1.25582 + 1.67839i) q^{51} +(-1.48250 + 1.34246i) q^{52} +1.56155i q^{53} +(7.34797 - 0.0854803i) q^{54} -1.38443i q^{55} +(4.40552 - 8.73784i) q^{56} +(7.04650 - 9.41758i) q^{57} +(3.09412 - 1.19275i) q^{58} -4.10481 q^{59} +(0.323431 + 3.44897i) q^{60} +13.5929 q^{61} +(-3.99862 + 1.54142i) q^{62} +(9.95743 - 2.92880i) q^{63} +(4.75706 + 6.43198i) q^{64} -1.00000i q^{65} +(0.918998 - 3.26424i) q^{66} +0.680909i q^{67} +(-1.62471 - 1.79418i) q^{68} +(3.53152 + 2.64238i) q^{69} +(1.75989 + 4.56535i) q^{70} +0.298499 q^{71} +(-1.52687 + 8.34678i) q^{72} -9.83828 q^{73} +(-0.758095 - 1.96658i) q^{74} +(-1.38682 - 1.03766i) q^{75} +(9.11636 + 10.0673i) q^{76} -4.78976i q^{77} +(0.663812 - 2.35783i) q^{78} -15.6146i q^{79} +(-3.98039 - 0.395589i) q^{80} +(-7.56675 + 4.87281i) q^{81} +(-12.5608 + 4.84203i) q^{82} +0.226603 q^{83} +(1.11899 + 11.9325i) q^{84} +1.21024 q^{85} +(-6.34492 + 2.44589i) q^{86} +(-2.43310 + 3.25182i) q^{87} +(3.49647 + 1.76289i) q^{88} +16.5358i q^{89} +(-2.58107 - 3.36720i) q^{90} -3.45974i q^{91} +(-3.77516 + 3.41856i) q^{92} +(3.14437 - 4.20243i) q^{93} +(-5.80267 - 15.0528i) q^{94} -6.79078 q^{95} +(-9.12248 - 3.57496i) q^{96} -11.0094 q^{97} +(2.52802 + 6.55797i) q^{98} +(1.17197 + 3.98450i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 6 q^{4} + 10 q^{6} + 12 q^{9} + 6 q^{10} - 20 q^{12} + 32 q^{13} - 6 q^{16} + 4 q^{18} + 20 q^{21} + 16 q^{22} + 10 q^{24} - 32 q^{25} + 16 q^{28} + 16 q^{33} + 28 q^{34} + 30 q^{36} - 24 q^{37}+ \cdots + 112 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/780\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(301\) \(391\) \(521\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.508677 1.31956i −0.359689 0.933072i
\(3\) 1.38682 + 1.03766i 0.800681 + 0.599092i
\(4\) −1.48250 + 1.34246i −0.741248 + 0.671231i
\(5\) 1.00000i 0.447214i
\(6\) 0.663812 2.35783i 0.271000 0.962579i
\(7\) 3.45974i 1.30766i −0.756642 0.653829i \(-0.773161\pi\)
0.756642 0.653829i \(-0.226839\pi\)
\(8\) 2.52558 + 1.27337i 0.892926 + 0.450204i
\(9\) 0.846536 + 2.87809i 0.282179 + 0.959362i
\(10\) −1.31956 + 0.508677i −0.417283 + 0.160858i
\(11\) 1.38443 0.417420 0.208710 0.977978i \(-0.433073\pi\)
0.208710 + 0.977978i \(0.433073\pi\)
\(12\) −3.44897 + 0.323431i −0.995632 + 0.0933664i
\(13\) 1.00000 0.277350
\(14\) −4.56535 + 1.75989i −1.22014 + 0.470350i
\(15\) 1.03766 1.38682i 0.267922 0.358075i
\(16\) 0.395589 3.98039i 0.0988974 0.995098i
\(17\) 1.21024i 0.293527i 0.989172 + 0.146764i \(0.0468857\pi\)
−0.989172 + 0.146764i \(0.953114\pi\)
\(18\) 3.36720 2.58107i 0.793658 0.608365i
\(19\) 6.79078i 1.55791i −0.627079 0.778955i \(-0.715750\pi\)
0.627079 0.778955i \(-0.284250\pi\)
\(20\) 1.34246 + 1.48250i 0.300184 + 0.331496i
\(21\) 3.59002 4.79804i 0.783407 1.04702i
\(22\) −0.704225 1.82684i −0.150141 0.389483i
\(23\) 2.54649 0.530979 0.265489 0.964114i \(-0.414466\pi\)
0.265489 + 0.964114i \(0.414466\pi\)
\(24\) 2.18120 + 4.38661i 0.445235 + 0.895414i
\(25\) −1.00000 −0.200000
\(26\) −0.508677 1.31956i −0.0997597 0.258788i
\(27\) −1.81247 + 4.86980i −0.348811 + 0.937193i
\(28\) 4.64457 + 5.12905i 0.877741 + 0.969300i
\(29\) 2.34480i 0.435419i 0.976014 + 0.217709i \(0.0698585\pi\)
−0.976014 + 0.217709i \(0.930141\pi\)
\(30\) −2.35783 0.663812i −0.430479 0.121195i
\(31\) 3.03026i 0.544251i −0.962262 0.272125i \(-0.912273\pi\)
0.962262 0.272125i \(-0.0877266\pi\)
\(32\) −5.45361 + 1.50273i −0.964070 + 0.265647i
\(33\) 1.91995 + 1.43656i 0.334220 + 0.250073i
\(34\) 1.59699 0.615623i 0.273882 0.105578i
\(35\) −3.45974 −0.584803
\(36\) −5.11871 3.13031i −0.853118 0.521718i
\(37\) 1.49033 0.245008 0.122504 0.992468i \(-0.460907\pi\)
0.122504 + 0.992468i \(0.460907\pi\)
\(38\) −8.96086 + 3.45431i −1.45364 + 0.560363i
\(39\) 1.38682 + 1.03766i 0.222069 + 0.166158i
\(40\) 1.27337 2.52558i 0.201337 0.399329i
\(41\) 9.51887i 1.48660i −0.668959 0.743299i \(-0.733260\pi\)
0.668959 0.743299i \(-0.266740\pi\)
\(42\) −8.15747 2.29662i −1.25873 0.354376i
\(43\) 4.80835i 0.733266i −0.930366 0.366633i \(-0.880511\pi\)
0.930366 0.366633i \(-0.119489\pi\)
\(44\) −2.05241 + 1.85854i −0.309412 + 0.280186i
\(45\) 2.87809 0.846536i 0.429040 0.126194i
\(46\) −1.29534 3.36025i −0.190987 0.495442i
\(47\) 11.4074 1.66394 0.831969 0.554822i \(-0.187214\pi\)
0.831969 + 0.554822i \(0.187214\pi\)
\(48\) 4.67889 5.10960i 0.675340 0.737507i
\(49\) −4.96980 −0.709972
\(50\) 0.508677 + 1.31956i 0.0719377 + 0.186614i
\(51\) −1.25582 + 1.67839i −0.175850 + 0.235021i
\(52\) −1.48250 + 1.34246i −0.205585 + 0.186166i
\(53\) 1.56155i 0.214495i 0.994232 + 0.107248i \(0.0342038\pi\)
−0.994232 + 0.107248i \(0.965796\pi\)
\(54\) 7.34797 0.0854803i 0.999932 0.0116324i
\(55\) 1.38443i 0.186676i
\(56\) 4.40552 8.73784i 0.588713 1.16764i
\(57\) 7.04650 9.41758i 0.933331 1.24739i
\(58\) 3.09412 1.19275i 0.406277 0.156615i
\(59\) −4.10481 −0.534401 −0.267201 0.963641i \(-0.586099\pi\)
−0.267201 + 0.963641i \(0.586099\pi\)
\(60\) 0.323431 + 3.44897i 0.0417547 + 0.445260i
\(61\) 13.5929 1.74039 0.870194 0.492710i \(-0.163994\pi\)
0.870194 + 0.492710i \(0.163994\pi\)
\(62\) −3.99862 + 1.54142i −0.507826 + 0.195761i
\(63\) 9.95743 2.92880i 1.25452 0.368994i
\(64\) 4.75706 + 6.43198i 0.594633 + 0.803997i
\(65\) 1.00000i 0.124035i
\(66\) 0.918998 3.26424i 0.113121 0.401800i
\(67\) 0.680909i 0.0831863i 0.999135 + 0.0415932i \(0.0132433\pi\)
−0.999135 + 0.0415932i \(0.986757\pi\)
\(68\) −1.62471 1.79418i −0.197025 0.217576i
\(69\) 3.53152 + 2.64238i 0.425145 + 0.318105i
\(70\) 1.75989 + 4.56535i 0.210347 + 0.545663i
\(71\) 0.298499 0.0354253 0.0177127 0.999843i \(-0.494362\pi\)
0.0177127 + 0.999843i \(0.494362\pi\)
\(72\) −1.52687 + 8.34678i −0.179944 + 0.983677i
\(73\) −9.83828 −1.15148 −0.575742 0.817632i \(-0.695287\pi\)
−0.575742 + 0.817632i \(0.695287\pi\)
\(74\) −0.758095 1.96658i −0.0881268 0.228611i
\(75\) −1.38682 1.03766i −0.160136 0.119818i
\(76\) 9.11636 + 10.0673i 1.04572 + 1.15480i
\(77\) 4.78976i 0.545843i
\(78\) 0.663812 2.35783i 0.0751619 0.266971i
\(79\) 15.6146i 1.75678i −0.477943 0.878391i \(-0.658617\pi\)
0.477943 0.878391i \(-0.341383\pi\)
\(80\) −3.98039 0.395589i −0.445021 0.0442282i
\(81\) −7.56675 + 4.87281i −0.840750 + 0.541423i
\(82\) −12.5608 + 4.84203i −1.38710 + 0.534713i
\(83\) 0.226603 0.0248729 0.0124365 0.999923i \(-0.496041\pi\)
0.0124365 + 0.999923i \(0.496041\pi\)
\(84\) 1.11899 + 11.9325i 0.122091 + 1.30195i
\(85\) 1.21024 0.131269
\(86\) −6.34492 + 2.44589i −0.684190 + 0.263747i
\(87\) −2.43310 + 3.25182i −0.260856 + 0.348631i
\(88\) 3.49647 + 1.76289i 0.372725 + 0.187924i
\(89\) 16.5358i 1.75279i 0.481589 + 0.876397i \(0.340060\pi\)
−0.481589 + 0.876397i \(0.659940\pi\)
\(90\) −2.58107 3.36720i −0.272069 0.354934i
\(91\) 3.45974i 0.362679i
\(92\) −3.77516 + 3.41856i −0.393587 + 0.356410i
\(93\) 3.14437 4.20243i 0.326056 0.435771i
\(94\) −5.80267 15.0528i −0.598500 1.55257i
\(95\) −6.79078 −0.696719
\(96\) −9.12248 3.57496i −0.931059 0.364868i
\(97\) −11.0094 −1.11783 −0.558916 0.829225i \(-0.688782\pi\)
−0.558916 + 0.829225i \(0.688782\pi\)
\(98\) 2.52802 + 6.55797i 0.255369 + 0.662455i
\(99\) 1.17197 + 3.98450i 0.117787 + 0.400457i
\(100\) 1.48250 1.34246i 0.148250 0.134246i
\(101\) 17.7812i 1.76929i 0.466262 + 0.884647i \(0.345601\pi\)
−0.466262 + 0.884647i \(0.654399\pi\)
\(102\) 2.85355 + 0.803374i 0.282543 + 0.0795458i
\(103\) 2.53384i 0.249667i 0.992178 + 0.124833i \(0.0398396\pi\)
−0.992178 + 0.124833i \(0.960160\pi\)
\(104\) 2.52558 + 1.27337i 0.247653 + 0.124864i
\(105\) −4.79804 3.59002i −0.468240 0.350350i
\(106\) 2.06056 0.794323i 0.200140 0.0771515i
\(107\) −1.15376 −0.111538 −0.0557692 0.998444i \(-0.517761\pi\)
−0.0557692 + 0.998444i \(0.517761\pi\)
\(108\) −3.85054 9.65263i −0.370518 0.928825i
\(109\) 1.77381 0.169900 0.0849501 0.996385i \(-0.472927\pi\)
0.0849501 + 0.996385i \(0.472927\pi\)
\(110\) −1.82684 + 0.704225i −0.174182 + 0.0671453i
\(111\) 2.06682 + 1.54645i 0.196174 + 0.146782i
\(112\) −13.7711 1.36864i −1.30125 0.129324i
\(113\) 16.8066i 1.58103i 0.612440 + 0.790517i \(0.290188\pi\)
−0.612440 + 0.790517i \(0.709812\pi\)
\(114\) −16.0115 4.50780i −1.49961 0.422194i
\(115\) 2.54649i 0.237461i
\(116\) −3.14781 3.47616i −0.292267 0.322753i
\(117\) 0.846536 + 2.87809i 0.0782623 + 0.266079i
\(118\) 2.08802 + 5.41656i 0.192218 + 0.498635i
\(119\) 4.18713 0.383833
\(120\) 4.38661 2.18120i 0.400441 0.199115i
\(121\) −9.08336 −0.825760
\(122\) −6.91437 17.9366i −0.625998 1.62391i
\(123\) 9.87732 13.2010i 0.890608 1.19029i
\(124\) 4.06801 + 4.49235i 0.365318 + 0.403425i
\(125\) 1.00000i 0.0894427i
\(126\) −8.92984 11.6497i −0.795534 1.03783i
\(127\) 19.9650i 1.77161i 0.464061 + 0.885803i \(0.346392\pi\)
−0.464061 + 0.885803i \(0.653608\pi\)
\(128\) 6.06760 9.54905i 0.536305 0.844024i
\(129\) 4.98941 6.66831i 0.439293 0.587112i
\(130\) −1.31956 + 0.508677i −0.115733 + 0.0446139i
\(131\) −10.3844 −0.907293 −0.453647 0.891182i \(-0.649877\pi\)
−0.453647 + 0.891182i \(0.649877\pi\)
\(132\) −4.77485 + 0.447766i −0.415597 + 0.0389730i
\(133\) −23.4943 −2.03722
\(134\) 0.898503 0.346363i 0.0776188 0.0299212i
\(135\) 4.86980 + 1.81247i 0.419126 + 0.155993i
\(136\) −1.54109 + 3.05656i −0.132147 + 0.262098i
\(137\) 14.2655i 1.21878i 0.792871 + 0.609390i \(0.208586\pi\)
−0.792871 + 0.609390i \(0.791414\pi\)
\(138\) 1.69039 6.00418i 0.143895 0.511109i
\(139\) 14.1649i 1.20145i −0.799456 0.600724i \(-0.794879\pi\)
0.799456 0.600724i \(-0.205121\pi\)
\(140\) 5.12905 4.64457i 0.433484 0.392538i
\(141\) 15.8200 + 11.8370i 1.33228 + 0.996851i
\(142\) −0.151840 0.393889i −0.0127421 0.0330544i
\(143\) 1.38443 0.115772
\(144\) 11.7908 2.23100i 0.982565 0.185917i
\(145\) 2.34480 0.194725
\(146\) 5.00450 + 12.9822i 0.414176 + 1.07442i
\(147\) −6.89222 5.15695i −0.568461 0.425338i
\(148\) −2.20941 + 2.00071i −0.181612 + 0.164457i
\(149\) 6.43749i 0.527380i −0.964607 0.263690i \(-0.915060\pi\)
0.964607 0.263690i \(-0.0849396\pi\)
\(150\) −0.663812 + 2.35783i −0.0542000 + 0.192516i
\(151\) 11.4507i 0.931843i 0.884826 + 0.465922i \(0.154277\pi\)
−0.884826 + 0.465922i \(0.845723\pi\)
\(152\) 8.64716 17.1506i 0.701377 1.39110i
\(153\) −3.48318 + 1.02451i −0.281599 + 0.0828271i
\(154\) −6.32039 + 2.43644i −0.509311 + 0.196334i
\(155\) −3.03026 −0.243396
\(156\) −3.44897 + 0.323431i −0.276139 + 0.0258952i
\(157\) −16.7386 −1.33589 −0.667944 0.744211i \(-0.732826\pi\)
−0.667944 + 0.744211i \(0.732826\pi\)
\(158\) −20.6045 + 7.94279i −1.63920 + 0.631895i
\(159\) −1.62035 + 2.16559i −0.128502 + 0.171742i
\(160\) 1.50273 + 5.45361i 0.118801 + 0.431145i
\(161\) 8.81018i 0.694339i
\(162\) 10.2790 + 7.50613i 0.807595 + 0.589737i
\(163\) 19.6769i 1.54121i 0.637313 + 0.770605i \(0.280046\pi\)
−0.637313 + 0.770605i \(0.719954\pi\)
\(164\) 12.7787 + 14.1117i 0.997851 + 1.10194i
\(165\) 1.43656 1.91995i 0.111836 0.149468i
\(166\) −0.115268 0.299017i −0.00894651 0.0232082i
\(167\) −11.3891 −0.881317 −0.440659 0.897675i \(-0.645255\pi\)
−0.440659 + 0.897675i \(0.645255\pi\)
\(168\) 15.1765 7.54638i 1.17090 0.582216i
\(169\) 1.00000 0.0769231
\(170\) −0.615623 1.59699i −0.0472161 0.122484i
\(171\) 19.5444 5.74864i 1.49460 0.439609i
\(172\) 6.45502 + 7.12835i 0.492191 + 0.543532i
\(173\) 20.6240i 1.56801i −0.620753 0.784007i \(-0.713173\pi\)
0.620753 0.784007i \(-0.286827\pi\)
\(174\) 5.52864 + 1.55651i 0.419125 + 0.117999i
\(175\) 3.45974i 0.261532i
\(176\) 0.547665 5.51056i 0.0412818 0.415374i
\(177\) −5.69264 4.25939i −0.427885 0.320155i
\(178\) 21.8201 8.41139i 1.63548 0.630460i
\(179\) 9.70558 0.725429 0.362715 0.931900i \(-0.381850\pi\)
0.362715 + 0.931900i \(0.381850\pi\)
\(180\) −3.13031 + 5.11871i −0.233319 + 0.381526i
\(181\) 23.4173 1.74059 0.870296 0.492530i \(-0.163928\pi\)
0.870296 + 0.492530i \(0.163928\pi\)
\(182\) −4.56535 + 1.75989i −0.338406 + 0.130452i
\(183\) 18.8508 + 14.1047i 1.39349 + 1.04265i
\(184\) 6.43134 + 3.24262i 0.474125 + 0.239049i
\(185\) 1.49033i 0.109571i
\(186\) −7.14484 2.01152i −0.523885 0.147492i
\(187\) 1.67549i 0.122524i
\(188\) −16.9114 + 15.3140i −1.23339 + 1.11689i
\(189\) 16.8482 + 6.27068i 1.22553 + 0.456125i
\(190\) 3.45431 + 8.96086i 0.250602 + 0.650089i
\(191\) 19.1176 1.38330 0.691651 0.722232i \(-0.256884\pi\)
0.691651 + 0.722232i \(0.256884\pi\)
\(192\) −0.0769961 + 13.8562i −0.00555671 + 0.999985i
\(193\) −10.3671 −0.746244 −0.373122 0.927782i \(-0.621713\pi\)
−0.373122 + 0.927782i \(0.621713\pi\)
\(194\) 5.60020 + 14.5276i 0.402071 + 1.04302i
\(195\) 1.03766 1.38682i 0.0743082 0.0993122i
\(196\) 7.36771 6.67177i 0.526265 0.476555i
\(197\) 15.7570i 1.12264i 0.827598 + 0.561321i \(0.189707\pi\)
−0.827598 + 0.561321i \(0.810293\pi\)
\(198\) 4.66165 3.57331i 0.331289 0.253944i
\(199\) 10.0605i 0.713170i −0.934263 0.356585i \(-0.883941\pi\)
0.934263 0.356585i \(-0.116059\pi\)
\(200\) −2.52558 1.27337i −0.178585 0.0900408i
\(201\) −0.706550 + 0.944298i −0.0498362 + 0.0666057i
\(202\) 23.4634 9.04487i 1.65088 0.636395i
\(203\) 8.11241 0.569379
\(204\) −0.391430 4.17409i −0.0274056 0.292245i
\(205\) −9.51887 −0.664827
\(206\) 3.34357 1.28891i 0.232957 0.0898023i
\(207\) 2.15569 + 7.32900i 0.149831 + 0.509401i
\(208\) 0.395589 3.98039i 0.0274292 0.275990i
\(209\) 9.40133i 0.650304i
\(210\) −2.29662 + 8.15747i −0.158482 + 0.562919i
\(211\) 19.6214i 1.35079i 0.737456 + 0.675395i \(0.236027\pi\)
−0.737456 + 0.675395i \(0.763973\pi\)
\(212\) −2.09632 2.31499i −0.143976 0.158994i
\(213\) 0.413964 + 0.309740i 0.0283644 + 0.0212230i
\(214\) 0.586891 + 1.52246i 0.0401191 + 0.104073i
\(215\) −4.80835 −0.327926
\(216\) −10.7786 + 9.99110i −0.733390 + 0.679808i
\(217\) −10.4839 −0.711695
\(218\) −0.902296 2.34066i −0.0611112 0.158529i
\(219\) −13.6439 10.2088i −0.921971 0.689844i
\(220\) 1.85854 + 2.05241i 0.125303 + 0.138373i
\(221\) 1.21024i 0.0814098i
\(222\) 0.989297 3.51394i 0.0663973 0.235840i
\(223\) 11.4776i 0.768598i 0.923209 + 0.384299i \(0.125557\pi\)
−0.923209 + 0.384299i \(0.874443\pi\)
\(224\) 5.19904 + 18.8681i 0.347376 + 1.26068i
\(225\) −0.846536 2.87809i −0.0564357 0.191872i
\(226\) 22.1774 8.54913i 1.47522 0.568680i
\(227\) −6.06016 −0.402227 −0.201113 0.979568i \(-0.564456\pi\)
−0.201113 + 0.979568i \(0.564456\pi\)
\(228\) 2.19634 + 23.4212i 0.145456 + 1.55111i
\(229\) 8.00430 0.528939 0.264469 0.964394i \(-0.414803\pi\)
0.264469 + 0.964394i \(0.414803\pi\)
\(230\) −3.36025 + 1.29534i −0.221568 + 0.0854121i
\(231\) 4.97012 6.64253i 0.327010 0.437046i
\(232\) −2.98580 + 5.92198i −0.196027 + 0.388797i
\(233\) 9.96081i 0.652554i 0.945274 + 0.326277i \(0.105794\pi\)
−0.945274 + 0.326277i \(0.894206\pi\)
\(234\) 3.36720 2.58107i 0.220121 0.168730i
\(235\) 11.4074i 0.744136i
\(236\) 6.08537 5.51056i 0.396124 0.358707i
\(237\) 16.2026 21.6547i 1.05247 1.40662i
\(238\) −2.12989 5.52518i −0.138061 0.358144i
\(239\) −3.19418 −0.206614 −0.103307 0.994649i \(-0.532942\pi\)
−0.103307 + 0.994649i \(0.532942\pi\)
\(240\) −5.10960 4.67889i −0.329823 0.302021i
\(241\) 5.12470 0.330111 0.165056 0.986284i \(-0.447220\pi\)
0.165056 + 0.986284i \(0.447220\pi\)
\(242\) 4.62049 + 11.9861i 0.297017 + 0.770494i
\(243\) −15.5500 1.09399i −0.997534 0.0701795i
\(244\) −20.1514 + 18.2479i −1.29006 + 1.16820i
\(245\) 4.96980i 0.317509i
\(246\) −22.4439 6.31874i −1.43097 0.402868i
\(247\) 6.79078i 0.432087i
\(248\) 3.85864 7.65315i 0.245024 0.485976i
\(249\) 0.314258 + 0.235136i 0.0199153 + 0.0149012i
\(250\) 1.31956 0.508677i 0.0834565 0.0321715i
\(251\) −3.84674 −0.242804 −0.121402 0.992603i \(-0.538739\pi\)
−0.121402 + 0.992603i \(0.538739\pi\)
\(252\) −10.8301 + 17.7094i −0.682229 + 1.11559i
\(253\) 3.52542 0.221641
\(254\) 26.3451 10.1557i 1.65304 0.637227i
\(255\) 1.67839 + 1.25582i 0.105105 + 0.0786423i
\(256\) −15.6870 3.14920i −0.980439 0.196825i
\(257\) 0.131199i 0.00818398i 0.999992 + 0.00409199i \(0.00130252\pi\)
−0.999992 + 0.00409199i \(0.998697\pi\)
\(258\) −11.3373 3.19184i −0.705827 0.198715i
\(259\) 5.15615i 0.320387i
\(260\) 1.34246 + 1.48250i 0.0832560 + 0.0919405i
\(261\) −6.74854 + 1.98496i −0.417724 + 0.122866i
\(262\) 5.28233 + 13.7029i 0.326343 + 0.846570i
\(263\) −6.78828 −0.418583 −0.209292 0.977853i \(-0.567116\pi\)
−0.209292 + 0.977853i \(0.567116\pi\)
\(264\) 3.01971 + 6.07294i 0.185850 + 0.373764i
\(265\) 1.56155 0.0959252
\(266\) 11.9510 + 31.0023i 0.732764 + 1.90087i
\(267\) −17.1585 + 22.9322i −1.05008 + 1.40343i
\(268\) −0.914095 1.00945i −0.0558372 0.0616617i
\(269\) 4.80080i 0.292710i 0.989232 + 0.146355i \(0.0467542\pi\)
−0.989232 + 0.146355i \(0.953246\pi\)
\(270\) −0.0854803 7.34797i −0.00520217 0.447183i
\(271\) 5.15632i 0.313224i 0.987660 + 0.156612i \(0.0500572\pi\)
−0.987660 + 0.156612i \(0.949943\pi\)
\(272\) 4.81724 + 0.478760i 0.292088 + 0.0290291i
\(273\) 3.59002 4.79804i 0.217278 0.290390i
\(274\) 18.8242 7.25651i 1.13721 0.438382i
\(275\) −1.38443 −0.0834841
\(276\) −8.78275 + 0.823611i −0.528660 + 0.0495756i
\(277\) −15.2008 −0.913328 −0.456664 0.889639i \(-0.650956\pi\)
−0.456664 + 0.889639i \(0.650956\pi\)
\(278\) −18.6915 + 7.20534i −1.12104 + 0.432148i
\(279\) 8.72135 2.56523i 0.522134 0.153576i
\(280\) −8.73784 4.40552i −0.522186 0.263280i
\(281\) 8.54887i 0.509983i −0.966943 0.254991i \(-0.917927\pi\)
0.966943 0.254991i \(-0.0820726\pi\)
\(282\) 7.57235 26.8967i 0.450927 1.60167i
\(283\) 4.72559i 0.280907i −0.990087 0.140454i \(-0.955144\pi\)
0.990087 0.140454i \(-0.0448561\pi\)
\(284\) −0.442524 + 0.400724i −0.0262590 + 0.0237786i
\(285\) −9.41758 7.04650i −0.557849 0.417398i
\(286\) −0.704225 1.82684i −0.0416417 0.108023i
\(287\) −32.9328 −1.94396
\(288\) −8.94165 14.4238i −0.526892 0.849932i
\(289\) 15.5353 0.913842
\(290\) −1.19275 3.09412i −0.0700405 0.181693i
\(291\) −15.2680 11.4239i −0.895026 0.669683i
\(292\) 14.5852 13.2075i 0.853535 0.772912i
\(293\) 2.09135i 0.122178i −0.998132 0.0610890i \(-0.980543\pi\)
0.998132 0.0610890i \(-0.0194574\pi\)
\(294\) −3.29901 + 11.7179i −0.192402 + 0.683404i
\(295\) 4.10481i 0.238992i
\(296\) 3.76394 + 1.89774i 0.218774 + 0.110304i
\(297\) −2.50924 + 6.74188i −0.145601 + 0.391204i
\(298\) −8.49468 + 3.27460i −0.492084 + 0.189693i
\(299\) 2.54649 0.147267
\(300\) 3.44897 0.323431i 0.199126 0.0186733i
\(301\) −16.6356 −0.958862
\(302\) 15.1099 5.82469i 0.869477 0.335174i
\(303\) −18.4508 + 24.6593i −1.05997 + 1.41664i
\(304\) −27.0299 2.68636i −1.55027 0.154073i
\(305\) 13.5929i 0.778325i
\(306\) 3.12373 + 4.07514i 0.178572 + 0.232960i
\(307\) 19.0109i 1.08501i −0.840053 0.542504i \(-0.817476\pi\)
0.840053 0.542504i \(-0.182524\pi\)
\(308\) 6.43007 + 7.10080i 0.366387 + 0.404605i
\(309\) −2.62926 + 3.51398i −0.149573 + 0.199903i
\(310\) 1.54142 + 3.99862i 0.0875470 + 0.227106i
\(311\) −4.52893 −0.256812 −0.128406 0.991722i \(-0.540986\pi\)
−0.128406 + 0.991722i \(0.540986\pi\)
\(312\) 2.18120 + 4.38661i 0.123486 + 0.248343i
\(313\) 3.80338 0.214980 0.107490 0.994206i \(-0.465719\pi\)
0.107490 + 0.994206i \(0.465719\pi\)
\(314\) 8.51455 + 22.0877i 0.480504 + 1.24648i
\(315\) −2.92880 9.95743i −0.165019 0.561038i
\(316\) 20.9620 + 23.1486i 1.17921 + 1.30221i
\(317\) 21.6248i 1.21457i −0.794484 0.607285i \(-0.792259\pi\)
0.794484 0.607285i \(-0.207741\pi\)
\(318\) 3.68186 + 1.03657i 0.206469 + 0.0581282i
\(319\) 3.24621i 0.181753i
\(320\) 6.43198 4.75706i 0.359558 0.265928i
\(321\) −1.60006 1.19721i −0.0893066 0.0668217i
\(322\) −11.6256 + 4.48153i −0.647869 + 0.249746i
\(323\) 8.21849 0.457289
\(324\) 4.67612 17.3820i 0.259785 0.965667i
\(325\) −1.00000 −0.0554700
\(326\) 25.9649 10.0092i 1.43806 0.554356i
\(327\) 2.45996 + 1.84061i 0.136036 + 0.101786i
\(328\) 12.1210 24.0406i 0.669272 1.32742i
\(329\) 39.4666i 2.17586i
\(330\) −3.26424 0.918998i −0.179691 0.0505892i
\(331\) 18.1376i 0.996933i 0.866909 + 0.498466i \(0.166103\pi\)
−0.866909 + 0.498466i \(0.833897\pi\)
\(332\) −0.335938 + 0.304206i −0.0184370 + 0.0166955i
\(333\) 1.26162 + 4.28929i 0.0691362 + 0.235052i
\(334\) 5.79338 + 15.0287i 0.317000 + 0.822333i
\(335\) 0.680909 0.0372020
\(336\) −17.6779 16.1877i −0.964407 0.883114i
\(337\) 24.8905 1.35587 0.677935 0.735122i \(-0.262875\pi\)
0.677935 + 0.735122i \(0.262875\pi\)
\(338\) −0.508677 1.31956i −0.0276684 0.0717748i
\(339\) −17.4395 + 23.3077i −0.947184 + 1.26590i
\(340\) −1.79418 + 1.62471i −0.0973031 + 0.0881121i
\(341\) 4.19517i 0.227181i
\(342\) −17.5275 22.8659i −0.947778 1.23645i
\(343\) 7.02395i 0.379258i
\(344\) 6.12280 12.1438i 0.330119 0.654752i
\(345\) 2.64238 3.53152i 0.142261 0.190130i
\(346\) −27.2147 + 10.4909i −1.46307 + 0.563997i
\(347\) 25.3104 1.35873 0.679367 0.733799i \(-0.262255\pi\)
0.679367 + 0.733799i \(0.262255\pi\)
\(348\) −0.758381 8.08715i −0.0406535 0.433517i
\(349\) −5.74690 −0.307625 −0.153812 0.988100i \(-0.549155\pi\)
−0.153812 + 0.988100i \(0.549155\pi\)
\(350\) 4.56535 1.75989i 0.244028 0.0940700i
\(351\) −1.81247 + 4.86980i −0.0967426 + 0.259931i
\(352\) −7.55012 + 2.08041i −0.402423 + 0.110886i
\(353\) 14.9735i 0.796957i 0.917178 + 0.398479i \(0.130462\pi\)
−0.917178 + 0.398479i \(0.869538\pi\)
\(354\) −2.72482 + 9.67845i −0.144823 + 0.514404i
\(355\) 0.298499i 0.0158427i
\(356\) −22.1987 24.5143i −1.17653 1.29926i
\(357\) 5.80679 + 4.34480i 0.307328 + 0.229951i
\(358\) −4.93700 12.8071i −0.260929 0.676878i
\(359\) −2.49644 −0.131757 −0.0658786 0.997828i \(-0.520985\pi\)
−0.0658786 + 0.997828i \(0.520985\pi\)
\(360\) 8.34678 + 1.52687i 0.439914 + 0.0804732i
\(361\) −27.1146 −1.42709
\(362\) −11.9118 30.9006i −0.626071 1.62410i
\(363\) −12.5970 9.42541i −0.661170 0.494706i
\(364\) 4.64457 + 5.12905i 0.243442 + 0.268835i
\(365\) 9.83828i 0.514959i
\(366\) 9.02310 32.0496i 0.471645 1.67526i
\(367\) 20.6629i 1.07859i 0.842116 + 0.539296i \(0.181310\pi\)
−0.842116 + 0.539296i \(0.818690\pi\)
\(368\) 1.00736 10.1360i 0.0525124 0.528376i
\(369\) 27.3961 8.05807i 1.42619 0.419486i
\(370\) −1.96658 + 0.758095i −0.102238 + 0.0394115i
\(371\) 5.40255 0.280487
\(372\) 0.980079 + 10.4513i 0.0508147 + 0.541874i
\(373\) 26.3144 1.36251 0.681254 0.732048i \(-0.261435\pi\)
0.681254 + 0.732048i \(0.261435\pi\)
\(374\) 2.21092 0.852284i 0.114324 0.0440706i
\(375\) −1.03766 + 1.38682i −0.0535844 + 0.0716150i
\(376\) 28.8102 + 14.5258i 1.48577 + 0.749111i
\(377\) 2.34480i 0.120763i
\(378\) −0.295740 25.4221i −0.0152112 1.30757i
\(379\) 5.38855i 0.276791i −0.990377 0.138396i \(-0.955805\pi\)
0.990377 0.138396i \(-0.0441946\pi\)
\(380\) 10.0673 9.11636i 0.516442 0.467660i
\(381\) −20.7168 + 27.6878i −1.06135 + 1.41849i
\(382\) −9.72468 25.2269i −0.497558 1.29072i
\(383\) 24.2343 1.23831 0.619156 0.785268i \(-0.287475\pi\)
0.619156 + 0.785268i \(0.287475\pi\)
\(384\) 18.3233 6.94672i 0.935057 0.354498i
\(385\) −4.78976 −0.244109
\(386\) 5.27353 + 13.6801i 0.268415 + 0.696299i
\(387\) 13.8388 4.07044i 0.703467 0.206912i
\(388\) 16.3213 14.7797i 0.828590 0.750323i
\(389\) 29.3011i 1.48562i −0.669500 0.742812i \(-0.733492\pi\)
0.669500 0.742812i \(-0.266508\pi\)
\(390\) −2.35783 0.663812i −0.119393 0.0336134i
\(391\) 3.08187i 0.155857i
\(392\) −12.5516 6.32839i −0.633952 0.319632i
\(393\) −14.4014 10.7755i −0.726452 0.543552i
\(394\) 20.7924 8.01524i 1.04751 0.403802i
\(395\) −15.6146 −0.785657
\(396\) −7.08648 4.33368i −0.356109 0.217776i
\(397\) −26.9542 −1.35279 −0.676395 0.736539i \(-0.736459\pi\)
−0.676395 + 0.736539i \(0.736459\pi\)
\(398\) −13.2755 + 5.11754i −0.665439 + 0.256519i
\(399\) −32.5824 24.3790i −1.63116 1.22048i
\(400\) −0.395589 + 3.98039i −0.0197795 + 0.199020i
\(401\) 7.92292i 0.395652i 0.980237 + 0.197826i \(0.0633880\pi\)
−0.980237 + 0.197826i \(0.936612\pi\)
\(402\) 1.60547 + 0.451995i 0.0800734 + 0.0225435i
\(403\) 3.03026i 0.150948i
\(404\) −23.8706 26.3605i −1.18761 1.31149i
\(405\) 4.87281 + 7.56675i 0.242132 + 0.375995i
\(406\) −4.12659 10.7048i −0.204799 0.531272i
\(407\) 2.06325 0.102272
\(408\) −5.30887 + 2.63978i −0.262828 + 0.130689i
\(409\) 1.73500 0.0857903 0.0428952 0.999080i \(-0.486342\pi\)
0.0428952 + 0.999080i \(0.486342\pi\)
\(410\) 4.84203 + 12.5608i 0.239131 + 0.620332i
\(411\) −14.8027 + 19.7836i −0.730161 + 0.975854i
\(412\) −3.40159 3.75641i −0.167584 0.185065i
\(413\) 14.2016i 0.698815i
\(414\) 8.57454 6.57267i 0.421415 0.323029i
\(415\) 0.226603i 0.0111235i
\(416\) −5.45361 + 1.50273i −0.267385 + 0.0736772i
\(417\) 14.6983 19.6441i 0.719778 0.961977i
\(418\) −12.4057 + 4.78224i −0.606780 + 0.233907i
\(419\) −32.7687 −1.60085 −0.800427 0.599430i \(-0.795394\pi\)
−0.800427 + 0.599430i \(0.795394\pi\)
\(420\) 11.9325 1.11899i 0.582248 0.0546009i
\(421\) −34.1733 −1.66551 −0.832753 0.553644i \(-0.813237\pi\)
−0.832753 + 0.553644i \(0.813237\pi\)
\(422\) 25.8916 9.98093i 1.26038 0.485864i
\(423\) 9.65676 + 32.8314i 0.469528 + 1.59632i
\(424\) −1.98843 + 3.94381i −0.0965666 + 0.191528i
\(425\) 1.21024i 0.0587054i
\(426\) 0.198147 0.703810i 0.00960026 0.0340997i
\(427\) 47.0278i 2.27583i
\(428\) 1.71045 1.54888i 0.0826776 0.0748680i
\(429\) 1.91995 + 1.43656i 0.0926960 + 0.0693578i
\(430\) 2.44589 + 6.34492i 0.117951 + 0.305979i
\(431\) −14.9069 −0.718039 −0.359020 0.933330i \(-0.616889\pi\)
−0.359020 + 0.933330i \(0.616889\pi\)
\(432\) 18.6667 + 9.14079i 0.898102 + 0.439786i
\(433\) 31.9487 1.53535 0.767677 0.640837i \(-0.221413\pi\)
0.767677 + 0.640837i \(0.221413\pi\)
\(434\) 5.33292 + 13.8342i 0.255989 + 0.664063i
\(435\) 3.25182 + 2.43310i 0.155913 + 0.116658i
\(436\) −2.62967 + 2.38127i −0.125938 + 0.114042i
\(437\) 17.2926i 0.827218i
\(438\) −6.53076 + 23.1970i −0.312052 + 1.10839i
\(439\) 5.95393i 0.284166i 0.989855 + 0.142083i \(0.0453800\pi\)
−0.989855 + 0.142083i \(0.954620\pi\)
\(440\) 1.76289 3.49647i 0.0840423 0.166688i
\(441\) −4.20712 14.3035i −0.200339 0.681120i
\(442\) 1.59699 0.615623i 0.0759612 0.0292822i
\(443\) −20.4178 −0.970079 −0.485039 0.874492i \(-0.661195\pi\)
−0.485039 + 0.874492i \(0.661195\pi\)
\(444\) −5.14010 + 0.482018i −0.243938 + 0.0228755i
\(445\) 16.5358 0.783874
\(446\) 15.1454 5.83839i 0.717157 0.276456i
\(447\) 6.67991 8.92764i 0.315949 0.422263i
\(448\) 22.2530 16.4582i 1.05135 0.777577i
\(449\) 24.0219i 1.13366i −0.823833 0.566832i \(-0.808169\pi\)
0.823833 0.566832i \(-0.191831\pi\)
\(450\) −3.36720 + 2.58107i −0.158732 + 0.121673i
\(451\) 13.1782i 0.620536i
\(452\) −22.5623 24.9157i −1.06124 1.17194i
\(453\) −11.8819 + 15.8800i −0.558259 + 0.746109i
\(454\) 3.08266 + 7.99676i 0.144676 + 0.375307i
\(455\) −3.45974 −0.162195
\(456\) 29.7885 14.8120i 1.39497 0.693637i
\(457\) −10.5052 −0.491413 −0.245706 0.969344i \(-0.579020\pi\)
−0.245706 + 0.969344i \(0.579020\pi\)
\(458\) −4.07160 10.5622i −0.190253 0.493538i
\(459\) −5.89364 2.19353i −0.275092 0.102385i
\(460\) 3.41856 + 3.77516i 0.159391 + 0.176018i
\(461\) 18.4543i 0.859501i −0.902948 0.429750i \(-0.858602\pi\)
0.902948 0.429750i \(-0.141398\pi\)
\(462\) −11.2934 3.17950i −0.525418 0.147924i
\(463\) 10.1406i 0.471272i 0.971841 + 0.235636i \(0.0757173\pi\)
−0.971841 + 0.235636i \(0.924283\pi\)
\(464\) 9.33323 + 0.927579i 0.433284 + 0.0430618i
\(465\) −4.20243 3.14437i −0.194883 0.145817i
\(466\) 13.1439 5.06683i 0.608880 0.234716i
\(467\) −22.5505 −1.04351 −0.521756 0.853094i \(-0.674723\pi\)
−0.521756 + 0.853094i \(0.674723\pi\)
\(468\) −5.11871 3.13031i −0.236612 0.144699i
\(469\) 2.35577 0.108779
\(470\) −15.0528 + 5.80267i −0.694332 + 0.267657i
\(471\) −23.2135 17.3690i −1.06962 0.800319i
\(472\) −10.3670 5.22694i −0.477181 0.240589i
\(473\) 6.65680i 0.306080i
\(474\) −36.8166 10.3652i −1.69104 0.476088i
\(475\) 6.79078i 0.311582i
\(476\) −6.20740 + 5.62106i −0.284516 + 0.257641i
\(477\) −4.49427 + 1.32191i −0.205779 + 0.0605260i
\(478\) 1.62481 + 4.21493i 0.0743169 + 0.192786i
\(479\) 31.5977 1.44374 0.721868 0.692030i \(-0.243284\pi\)
0.721868 + 0.692030i \(0.243284\pi\)
\(480\) −3.57496 + 9.12248i −0.163174 + 0.416382i
\(481\) 1.49033 0.0679531
\(482\) −2.60682 6.76237i −0.118737 0.308018i
\(483\) 9.14194 12.2181i 0.415973 0.555944i
\(484\) 13.4661 12.1941i 0.612093 0.554276i
\(485\) 11.0094i 0.499909i
\(486\) 6.46634 + 21.0757i 0.293319 + 0.956015i
\(487\) 6.55755i 0.297151i −0.988901 0.148576i \(-0.952531\pi\)
0.988901 0.148576i \(-0.0474688\pi\)
\(488\) 34.3298 + 17.3087i 1.55404 + 0.783529i
\(489\) −20.4178 + 27.2882i −0.923326 + 1.23402i
\(490\) 6.55797 2.52802i 0.296259 0.114204i
\(491\) 34.3824 1.55166 0.775828 0.630944i \(-0.217332\pi\)
0.775828 + 0.630944i \(0.217332\pi\)
\(492\) 3.07869 + 32.8303i 0.138798 + 1.48010i
\(493\) −2.83778 −0.127807
\(494\) −8.96086 + 3.45431i −0.403168 + 0.155417i
\(495\) 3.98450 1.17197i 0.179090 0.0526760i
\(496\) −12.0616 1.19874i −0.541583 0.0538250i
\(497\) 1.03273i 0.0463242i
\(498\) 0.150422 0.534291i 0.00674056 0.0239422i
\(499\) 26.6127i 1.19135i −0.803226 0.595674i \(-0.796885\pi\)
0.803226 0.595674i \(-0.203115\pi\)
\(500\) −1.34246 1.48250i −0.0600367 0.0662992i
\(501\) −15.7947 11.8180i −0.705654 0.527990i
\(502\) 1.95675 + 5.07602i 0.0873339 + 0.226554i
\(503\) −41.1702 −1.83569 −0.917844 0.396942i \(-0.870071\pi\)
−0.917844 + 0.396942i \(0.870071\pi\)
\(504\) 28.8777 + 5.28258i 1.28631 + 0.235305i
\(505\) 17.7812 0.791252
\(506\) −1.79330 4.65202i −0.0797219 0.206807i
\(507\) 1.38682 + 1.03766i 0.0615908 + 0.0460840i
\(508\) −26.8023 29.5980i −1.18916 1.31320i
\(509\) 12.3953i 0.549411i 0.961528 + 0.274706i \(0.0885804\pi\)
−0.961528 + 0.274706i \(0.911420\pi\)
\(510\) 0.803374 2.85355i 0.0355740 0.126357i
\(511\) 34.0379i 1.50575i
\(512\) 3.82405 + 22.3019i 0.169001 + 0.985616i
\(513\) 33.0697 + 12.3081i 1.46006 + 0.543416i
\(514\) 0.173126 0.0667379i 0.00763624 0.00294368i
\(515\) 2.53384 0.111654
\(516\) 1.55517 + 16.5838i 0.0684624 + 0.730063i
\(517\) 15.7927 0.694562
\(518\) −6.80387 + 2.62281i −0.298945 + 0.115240i
\(519\) 21.4006 28.6018i 0.939383 1.25548i
\(520\) 1.27337 2.52558i 0.0558409 0.110754i
\(521\) 21.1537i 0.926759i 0.886160 + 0.463379i \(0.153363\pi\)
−0.886160 + 0.463379i \(0.846637\pi\)
\(522\) 6.05211 + 7.89543i 0.264894 + 0.345573i
\(523\) 8.16325i 0.356954i 0.983944 + 0.178477i \(0.0571170\pi\)
−0.983944 + 0.178477i \(0.942883\pi\)
\(524\) 15.3949 13.9407i 0.672529 0.609004i
\(525\) −3.59002 + 4.79804i −0.156681 + 0.209403i
\(526\) 3.45304 + 8.95757i 0.150560 + 0.390569i
\(527\) 3.66735 0.159752
\(528\) 6.47758 7.07386i 0.281901 0.307850i
\(529\) −16.5154 −0.718061
\(530\) −0.794323 2.06056i −0.0345032 0.0895051i
\(531\) −3.47487 11.8140i −0.150797 0.512684i
\(532\) 34.8302 31.5402i 1.51008 1.36744i
\(533\) 9.51887i 0.412308i
\(534\) 38.9886 + 10.9767i 1.68720 + 0.475007i
\(535\) 1.15376i 0.0498814i
\(536\) −0.867048 + 1.71969i −0.0374508 + 0.0742792i
\(537\) 13.4599 + 10.0711i 0.580837 + 0.434599i
\(538\) 6.33497 2.44206i 0.273120 0.105285i
\(539\) −6.88033 −0.296357
\(540\) −9.65263 + 3.85054i −0.415383 + 0.165701i
\(541\) 13.0239 0.559940 0.279970 0.960009i \(-0.409676\pi\)
0.279970 + 0.960009i \(0.409676\pi\)
\(542\) 6.80409 2.62290i 0.292261 0.112663i
\(543\) 32.4755 + 24.2991i 1.39366 + 1.04277i
\(544\) −1.81866 6.60019i −0.0779746 0.282981i
\(545\) 1.77381i 0.0759817i
\(546\) −8.15747 2.29662i −0.349108 0.0982861i
\(547\) 14.9421i 0.638879i 0.947607 + 0.319439i \(0.103495\pi\)
−0.947607 + 0.319439i \(0.896505\pi\)
\(548\) −19.1508 21.1485i −0.818083 0.903419i
\(549\) 11.5068 + 39.1214i 0.491100 + 1.66966i
\(550\) 0.704225 + 1.82684i 0.0300283 + 0.0778967i
\(551\) 15.9230 0.678344
\(552\) 5.55439 + 11.1704i 0.236410 + 0.475446i
\(553\) −54.0225 −2.29727
\(554\) 7.73229 + 20.0584i 0.328514 + 0.852201i
\(555\) 1.54645 2.06682i 0.0656431 0.0877315i
\(556\) 19.0158 + 20.9994i 0.806450 + 0.890572i
\(557\) 0.583745i 0.0247341i 0.999924 + 0.0123670i \(0.00393665\pi\)
−0.999924 + 0.0123670i \(0.996063\pi\)
\(558\) −7.82133 10.2035i −0.331103 0.431949i
\(559\) 4.80835i 0.203371i
\(560\) −1.36864 + 13.7711i −0.0578355 + 0.581936i
\(561\) −1.73859 + 2.32361i −0.0734032 + 0.0981027i
\(562\) −11.2808 + 4.34861i −0.475851 + 0.183435i
\(563\) 15.0216 0.633083 0.316542 0.948579i \(-0.397478\pi\)
0.316542 + 0.948579i \(0.397478\pi\)
\(564\) −39.3437 + 3.68950i −1.65667 + 0.155356i
\(565\) 16.8066 0.707060
\(566\) −6.23572 + 2.40380i −0.262107 + 0.101039i
\(567\) 16.8586 + 26.1790i 0.707997 + 1.09941i
\(568\) 0.753882 + 0.380099i 0.0316322 + 0.0159486i
\(569\) 7.67267i 0.321655i −0.986983 0.160828i \(-0.948584\pi\)
0.986983 0.160828i \(-0.0514163\pi\)
\(570\) −4.50780 + 16.0115i −0.188811 + 0.670647i
\(571\) 1.58334i 0.0662608i −0.999451 0.0331304i \(-0.989452\pi\)
0.999451 0.0331304i \(-0.0105477\pi\)
\(572\) −2.05241 + 1.85854i −0.0858154 + 0.0777095i
\(573\) 26.5127 + 19.8375i 1.10758 + 0.828724i
\(574\) 16.7522 + 43.4570i 0.699222 + 1.81386i
\(575\) −2.54649 −0.106196
\(576\) −14.4848 + 19.1361i −0.603531 + 0.797339i
\(577\) 27.4884 1.14436 0.572178 0.820129i \(-0.306099\pi\)
0.572178 + 0.820129i \(0.306099\pi\)
\(578\) −7.90245 20.4998i −0.328699 0.852681i
\(579\) −14.3774 10.7575i −0.597503 0.447068i
\(580\) −3.47616 + 3.14781i −0.144340 + 0.130706i
\(581\) 0.783988i 0.0325253i
\(582\) −7.30814 + 25.9582i −0.302932 + 1.07600i
\(583\) 2.16185i 0.0895347i
\(584\) −24.8473 12.5278i −1.02819 0.518402i
\(585\) 2.87809 0.846536i 0.118994 0.0350000i
\(586\) −2.75967 + 1.06382i −0.114001 + 0.0439461i
\(587\) 0.657644 0.0271439 0.0135719 0.999908i \(-0.495680\pi\)
0.0135719 + 0.999908i \(0.495680\pi\)
\(588\) 17.1407 1.60739i 0.706871 0.0662875i
\(589\) −20.5778 −0.847895
\(590\) 5.41656 2.08802i 0.222996 0.0859625i
\(591\) −16.3504 + 21.8522i −0.672566 + 0.898878i
\(592\) 0.589558 5.93209i 0.0242307 0.243807i
\(593\) 20.3317i 0.834924i 0.908694 + 0.417462i \(0.137080\pi\)
−0.908694 + 0.417462i \(0.862920\pi\)
\(594\) 10.1727 0.118341i 0.417392 0.00485560i
\(595\) 4.18713i 0.171656i
\(596\) 8.64209 + 9.54356i 0.353994 + 0.390919i
\(597\) 10.4393 13.9521i 0.427254 0.571021i
\(598\) −1.29534 3.36025i −0.0529703 0.137411i
\(599\) −39.1001 −1.59759 −0.798793 0.601606i \(-0.794528\pi\)
−0.798793 + 0.601606i \(0.794528\pi\)
\(600\) −2.18120 4.38661i −0.0890470 0.179083i
\(601\) −13.8806 −0.566201 −0.283101 0.959090i \(-0.591363\pi\)
−0.283101 + 0.959090i \(0.591363\pi\)
\(602\) 8.46216 + 21.9518i 0.344892 + 0.894687i
\(603\) −1.95971 + 0.576414i −0.0798058 + 0.0234734i
\(604\) −15.3721 16.9756i −0.625482 0.690727i
\(605\) 9.08336i 0.369291i
\(606\) 41.9250 + 11.8034i 1.70309 + 0.479479i
\(607\) 4.70639i 0.191027i 0.995428 + 0.0955133i \(0.0304493\pi\)
−0.995428 + 0.0955133i \(0.969551\pi\)
\(608\) 10.2047 + 37.0342i 0.413854 + 1.50194i
\(609\) 11.2504 + 8.41790i 0.455891 + 0.341110i
\(610\) −17.9366 + 6.91437i −0.726233 + 0.279955i
\(611\) 11.4074 0.461493
\(612\) 3.78843 6.19488i 0.153138 0.250413i
\(613\) 2.92569 0.118168 0.0590838 0.998253i \(-0.481182\pi\)
0.0590838 + 0.998253i \(0.481182\pi\)
\(614\) −25.0861 + 9.67039i −1.01239 + 0.390265i
\(615\) −13.2010 9.87732i −0.532314 0.398292i
\(616\) 6.09913 12.0969i 0.245741 0.487398i
\(617\) 48.3497i 1.94648i 0.229782 + 0.973242i \(0.426199\pi\)
−0.229782 + 0.973242i \(0.573801\pi\)
\(618\) 5.97436 + 1.68199i 0.240324 + 0.0676597i
\(619\) 47.6933i 1.91696i −0.285165 0.958478i \(-0.592048\pi\)
0.285165 0.958478i \(-0.407952\pi\)
\(620\) 4.49235 4.06801i 0.180417 0.163375i
\(621\) −4.61544 + 12.4009i −0.185211 + 0.497630i
\(622\) 2.30376 + 5.97621i 0.0923724 + 0.239624i
\(623\) 57.2097 2.29206
\(624\) 4.67889 5.10960i 0.187306 0.204548i
\(625\) 1.00000 0.0400000
\(626\) −1.93469 5.01880i −0.0773258 0.200592i
\(627\) 9.75536 13.0379i 0.389591 0.520686i
\(628\) 24.8150 22.4710i 0.990225 0.896690i
\(629\) 1.80366i 0.0719166i
\(630\) −11.6497 + 8.92984i −0.464133 + 0.355773i
\(631\) 18.4310i 0.733725i 0.930275 + 0.366862i \(0.119568\pi\)
−0.930275 + 0.366862i \(0.880432\pi\)
\(632\) 19.8832 39.4359i 0.790910 1.56868i
\(633\) −20.3602 + 27.2113i −0.809247 + 1.08155i
\(634\) −28.5353 + 11.0000i −1.13328 + 0.436867i
\(635\) 19.9650 0.792287
\(636\) −0.505053 5.38573i −0.0200266 0.213558i
\(637\) −4.96980 −0.196911
\(638\) 4.28358 1.65127i 0.169588 0.0653744i
\(639\) 0.252690 + 0.859106i 0.00999627 + 0.0339857i
\(640\) −9.54905 6.06760i −0.377459 0.239843i
\(641\) 15.4544i 0.610410i 0.952287 + 0.305205i \(0.0987250\pi\)
−0.952287 + 0.305205i \(0.901275\pi\)
\(642\) −0.765880 + 2.72037i −0.0302269 + 0.107364i
\(643\) 13.3360i 0.525921i 0.964807 + 0.262961i \(0.0846990\pi\)
−0.964807 + 0.262961i \(0.915301\pi\)
\(644\) 11.8273 + 13.0611i 0.466062 + 0.514678i
\(645\) −6.66831 4.98941i −0.262564 0.196458i
\(646\) −4.18056 10.8448i −0.164482 0.426684i
\(647\) 1.36586 0.0536974 0.0268487 0.999640i \(-0.491453\pi\)
0.0268487 + 0.999640i \(0.491453\pi\)
\(648\) −25.3153 + 2.67138i −0.994478 + 0.104942i
\(649\) −5.68281 −0.223070
\(650\) 0.508677 + 1.31956i 0.0199519 + 0.0517575i
\(651\) −14.5393 10.8787i −0.569840 0.426370i
\(652\) −26.4154 29.1709i −1.03451 1.14242i
\(653\) 47.7854i 1.86999i −0.354662 0.934994i \(-0.615404\pi\)
0.354662 0.934994i \(-0.384596\pi\)
\(654\) 1.17748 4.18234i 0.0460430 0.163542i
\(655\) 10.3844i 0.405754i
\(656\) −37.8888 3.76557i −1.47931 0.147021i
\(657\) −8.32846 28.3154i −0.324924 1.10469i
\(658\) −52.0787 + 20.0757i −2.03024 + 0.782634i
\(659\) −10.6354 −0.414296 −0.207148 0.978310i \(-0.566418\pi\)
−0.207148 + 0.978310i \(0.566418\pi\)
\(660\) 0.447766 + 4.77485i 0.0174293 + 0.185861i
\(661\) 41.2265 1.60353 0.801763 0.597642i \(-0.203896\pi\)
0.801763 + 0.597642i \(0.203896\pi\)
\(662\) 23.9337 9.22617i 0.930210 0.358585i
\(663\) −1.25582 + 1.67839i −0.0487719 + 0.0651832i
\(664\) 0.572303 + 0.288549i 0.0222097 + 0.0111979i
\(665\) 23.4943i 0.911071i
\(666\) 5.01824 3.84665i 0.194453 0.149055i
\(667\) 5.97101i 0.231198i
\(668\) 16.8843 15.2895i 0.653275 0.591568i
\(669\) −11.9098 + 15.9174i −0.460460 + 0.615401i
\(670\) −0.346363 0.898503i −0.0133812 0.0347122i
\(671\) 18.8183 0.726473
\(672\) −12.3684 + 31.5614i −0.477123 + 1.21751i
\(673\) 17.8034 0.686271 0.343136 0.939286i \(-0.388511\pi\)
0.343136 + 0.939286i \(0.388511\pi\)
\(674\) −12.6612 32.8446i −0.487691 1.26513i
\(675\) 1.81247 4.86980i 0.0697621 0.187439i
\(676\) −1.48250 + 1.34246i −0.0570191 + 0.0516332i
\(677\) 14.7237i 0.565879i 0.959138 + 0.282939i \(0.0913095\pi\)
−0.959138 + 0.282939i \(0.908690\pi\)
\(678\) 39.6271 + 11.1564i 1.52187 + 0.428460i
\(679\) 38.0895i 1.46174i
\(680\) 3.05656 + 1.54109i 0.117214 + 0.0590979i
\(681\) −8.40434 6.28836i −0.322055 0.240971i
\(682\) −5.53580 + 2.13399i −0.211977 + 0.0817146i
\(683\) −42.3586 −1.62081 −0.810403 0.585872i \(-0.800752\pi\)
−0.810403 + 0.585872i \(0.800752\pi\)
\(684\) −21.2572 + 34.7600i −0.812790 + 1.32908i
\(685\) 14.2655 0.545055
\(686\) −9.26855 + 3.57292i −0.353875 + 0.136415i
\(687\) 11.1005 + 8.30572i 0.423511 + 0.316883i
\(688\) −19.1391 1.90213i −0.729671 0.0725181i
\(689\) 1.56155i 0.0594903i
\(690\) −6.00418 1.69039i −0.228575 0.0643519i
\(691\) 0.957665i 0.0364313i −0.999834 0.0182157i \(-0.994201\pi\)
0.999834 0.0182157i \(-0.00579854\pi\)
\(692\) 27.6869 + 30.5750i 1.05250 + 1.16229i
\(693\) 13.7853 4.05470i 0.523661 0.154025i
\(694\) −12.8748 33.3987i −0.488721 1.26780i
\(695\) −14.1649 −0.537304
\(696\) −10.2857 + 5.11448i −0.389880 + 0.193864i
\(697\) 11.5202 0.436357
\(698\) 2.92331 + 7.58340i 0.110649 + 0.287036i
\(699\) −10.3359 + 13.8138i −0.390940 + 0.522487i
\(700\) −4.64457 5.12905i −0.175548 0.193860i
\(701\) 40.9138i 1.54529i −0.634836 0.772647i \(-0.718932\pi\)
0.634836 0.772647i \(-0.281068\pi\)
\(702\) 7.34797 0.0854803i 0.277331 0.00322625i
\(703\) 10.1205i 0.381701i
\(704\) 6.58581 + 8.90460i 0.248212 + 0.335605i
\(705\) 11.8370 15.8200i 0.445805 0.595815i
\(706\) 19.7584 7.61665i 0.743619 0.286657i
\(707\) 61.5183 2.31363
\(708\) 14.1574 1.32762i 0.532067 0.0498951i
\(709\) −51.6170 −1.93852 −0.969259 0.246041i \(-0.920870\pi\)
−0.969259 + 0.246041i \(0.920870\pi\)
\(710\) −0.393889 + 0.151840i −0.0147824 + 0.00569844i
\(711\) 44.9402 13.2183i 1.68539 0.495726i
\(712\) −21.0562 + 41.7625i −0.789115 + 1.56512i
\(713\) 7.71652i 0.288986i
\(714\) 2.77946 9.87253i 0.104019 0.369470i
\(715\) 1.38443i 0.0517746i
\(716\) −14.3885 + 13.0294i −0.537723 + 0.486931i
\(717\) −4.42975 3.31447i −0.165432 0.123781i
\(718\) 1.26988 + 3.29421i 0.0473916 + 0.122939i
\(719\) 32.5567 1.21416 0.607079 0.794641i \(-0.292341\pi\)
0.607079 + 0.794641i \(0.292341\pi\)
\(720\) −2.23100 11.7908i −0.0831446 0.439417i
\(721\) 8.76643 0.326479
\(722\) 13.7926 + 35.7795i 0.513307 + 1.33158i
\(723\) 7.10704 + 5.31768i 0.264314 + 0.197767i
\(724\) −34.7160 + 31.4368i −1.29021 + 1.16834i
\(725\) 2.34480i 0.0870838i
\(726\) −6.02964 + 21.4170i −0.223781 + 0.794860i
\(727\) 42.4585i 1.57470i −0.616508 0.787349i \(-0.711453\pi\)
0.616508 0.787349i \(-0.288547\pi\)
\(728\) 4.40552 8.73784i 0.163280 0.323846i
\(729\) −20.4299 17.6528i −0.756662 0.653806i
\(730\) 12.9822 5.00450i 0.480494 0.185225i
\(731\) 5.81927 0.215233
\(732\) −46.8814 + 4.39635i −1.73279 + 0.162494i
\(733\) −17.0969 −0.631490 −0.315745 0.948844i \(-0.602254\pi\)
−0.315745 + 0.948844i \(0.602254\pi\)
\(734\) 27.2660 10.5107i 1.00641 0.387958i
\(735\) −5.15695 + 6.89222i −0.190217 + 0.254223i
\(736\) −13.8875 + 3.82667i −0.511901 + 0.141053i
\(737\) 0.942669i 0.0347237i
\(738\) −24.5689 32.0520i −0.904394 1.17985i
\(739\) 20.0613i 0.737966i 0.929436 + 0.368983i \(0.120294\pi\)
−0.929436 + 0.368983i \(0.879706\pi\)
\(740\) 2.00071 + 2.20941i 0.0735475 + 0.0812194i
\(741\) 7.04650 9.41758i 0.258860 0.345963i
\(742\) −2.74815 7.12901i −0.100888 0.261714i
\(743\) 46.9323 1.72178 0.860889 0.508792i \(-0.169908\pi\)
0.860889 + 0.508792i \(0.169908\pi\)
\(744\) 13.2926 6.60960i 0.487330 0.242320i
\(745\) −6.43749 −0.235851
\(746\) −13.3855 34.7235i −0.490078 1.27132i
\(747\) 0.191828 + 0.652183i 0.00701861 + 0.0238621i
\(748\) −2.24929 2.48391i −0.0822421 0.0908208i
\(749\) 3.99171i 0.145854i
\(750\) 2.35783 + 0.663812i 0.0860957 + 0.0242390i
\(751\) 48.2466i 1.76055i −0.474468 0.880273i \(-0.657360\pi\)
0.474468 0.880273i \(-0.342640\pi\)
\(752\) 4.51264 45.4058i 0.164559 1.65578i
\(753\) −5.33473 3.99160i −0.194409 0.145462i
\(754\) 3.09412 1.19275i 0.112681 0.0434373i
\(755\) 11.4507 0.416733
\(756\) −33.3956 + 13.3219i −1.21459 + 0.484512i
\(757\) 13.1637 0.478444 0.239222 0.970965i \(-0.423108\pi\)
0.239222 + 0.970965i \(0.423108\pi\)
\(758\) −7.11054 + 2.74103i −0.258266 + 0.0995588i
\(759\) 4.88912 + 3.65818i 0.177464 + 0.132783i
\(760\) −17.1506 8.64716i −0.622118 0.313666i
\(761\) 25.9221i 0.939674i −0.882753 0.469837i \(-0.844313\pi\)
0.882753 0.469837i \(-0.155687\pi\)
\(762\) 47.0740 + 13.2530i 1.70531 + 0.480105i
\(763\) 6.13693i 0.222172i
\(764\) −28.3418 + 25.6647i −1.02537 + 0.928515i
\(765\) 1.02451 + 3.48318i 0.0370414 + 0.125935i
\(766\) −12.3274 31.9786i −0.445407 1.15544i
\(767\) −4.10481 −0.148216
\(768\) −18.4873 20.6451i −0.667102 0.744966i
\(769\) 34.1109 1.23007 0.615035 0.788500i \(-0.289142\pi\)
0.615035 + 0.788500i \(0.289142\pi\)
\(770\) 2.43644 + 6.32039i 0.0878031 + 0.227771i
\(771\) −0.136140 + 0.181950i −0.00490295 + 0.00655275i
\(772\) 15.3693 13.9175i 0.553152 0.500902i
\(773\) 1.46514i 0.0526974i −0.999653 0.0263487i \(-0.991612\pi\)
0.999653 0.0263487i \(-0.00838802\pi\)
\(774\) −12.4107 16.1907i −0.446093 0.581962i
\(775\) 3.03026i 0.108850i
\(776\) −27.8050 14.0190i −0.998140 0.503252i
\(777\) 5.35031 7.15065i 0.191941 0.256528i
\(778\) −38.6646 + 14.9048i −1.38619 + 0.534362i
\(779\) −64.6405 −2.31599
\(780\) 0.323431 + 3.44897i 0.0115807 + 0.123493i
\(781\) 0.413250 0.0147873
\(782\) 4.06672 1.56767i 0.145426 0.0560599i
\(783\) −11.4187 4.24989i −0.408072 0.151879i
\(784\) −1.96600 + 19.7818i −0.0702144 + 0.706491i
\(785\) 16.7386i 0.597427i
\(786\) −6.89332 + 24.4847i −0.245876 + 0.873342i
\(787\) 23.5966i 0.841130i −0.907262 0.420565i \(-0.861832\pi\)
0.907262 0.420565i \(-0.138168\pi\)
\(788\) −21.1532 23.3597i −0.753553 0.832157i
\(789\) −9.41412 7.04391i −0.335152 0.250770i
\(790\) 7.94279 + 20.6045i 0.282592 + 0.733075i
\(791\) 58.1465 2.06745
\(792\) −2.11384 + 11.5555i −0.0751121 + 0.410607i
\(793\) 13.5929 0.482697
\(794\) 13.7109 + 35.5677i 0.486583 + 1.26225i
\(795\) 2.16559 + 1.62035i 0.0768054 + 0.0574680i
\(796\) 13.5058 + 14.9147i 0.478702 + 0.528636i
\(797\) 0.986693i 0.0349505i −0.999847 0.0174752i \(-0.994437\pi\)
0.999847 0.0174752i \(-0.00556282\pi\)
\(798\) −15.5958 + 55.3956i −0.552086 + 1.96098i
\(799\) 13.8057i 0.488411i
\(800\) 5.45361 1.50273i 0.192814 0.0531294i
\(801\) −47.5915 + 13.9982i −1.68156 + 0.494601i
\(802\) 10.4548 4.03020i 0.369172 0.142311i
\(803\) −13.6204 −0.480653
\(804\) −0.220227 2.34844i −0.00776680 0.0828229i
\(805\) −8.81018 −0.310518
\(806\) −3.99862 + 1.54142i −0.140845 + 0.0542943i
\(807\) −4.98159 + 6.65785i −0.175360 + 0.234367i
\(808\) −22.6420 + 44.9077i −0.796543 + 1.57985i
\(809\) 17.7059i 0.622505i 0.950327 + 0.311253i \(0.100749\pi\)
−0.950327 + 0.311253i \(0.899251\pi\)
\(810\) 7.50613 10.2790i 0.263738 0.361168i
\(811\) 40.4250i 1.41951i −0.704447 0.709756i \(-0.748805\pi\)
0.704447 0.709756i \(-0.251195\pi\)
\(812\) −12.0266 + 10.8906i −0.422051 + 0.382185i
\(813\) −5.35049 + 7.15088i −0.187650 + 0.250792i
\(814\) −1.04953 2.72259i −0.0367859 0.0954267i
\(815\) 19.6769 0.689250
\(816\) 6.18386 + 5.66260i 0.216478 + 0.198231i
\(817\) −32.6524 −1.14236
\(818\) −0.882555 2.28945i −0.0308578 0.0800486i
\(819\) 9.95743 2.92880i 0.347941 0.102340i
\(820\) 14.1117 12.7787i 0.492802 0.446253i
\(821\) 5.04075i 0.175924i −0.996124 0.0879618i \(-0.971965\pi\)
0.996124 0.0879618i \(-0.0280353\pi\)
\(822\) 33.6355 + 9.46958i 1.17317 + 0.330289i
\(823\) 3.19720i 0.111447i 0.998446 + 0.0557237i \(0.0177466\pi\)
−0.998446 + 0.0557237i \(0.982253\pi\)
\(824\) −3.22651 + 6.39941i −0.112401 + 0.222934i
\(825\) −1.91995 1.43656i −0.0668441 0.0500146i
\(826\) 18.7399 7.22402i 0.652045 0.251356i
\(827\) 40.1178 1.39503 0.697516 0.716569i \(-0.254289\pi\)
0.697516 + 0.716569i \(0.254289\pi\)
\(828\) −13.0347 7.97128i −0.452988 0.277021i
\(829\) −5.12888 −0.178133 −0.0890667 0.996026i \(-0.528388\pi\)
−0.0890667 + 0.996026i \(0.528388\pi\)
\(830\) −0.299017 + 0.115268i −0.0103790 + 0.00400100i
\(831\) −21.0808 15.7732i −0.731284 0.547167i
\(832\) 4.75706 + 6.43198i 0.164922 + 0.222989i
\(833\) 6.01467i 0.208396i
\(834\) −33.3983 9.40281i −1.15649 0.325593i
\(835\) 11.3891i 0.394137i
\(836\) 12.6209 + 13.9374i 0.436504 + 0.482036i
\(837\) 14.7568 + 5.49227i 0.510068 + 0.189840i
\(838\) 16.6687 + 43.2403i 0.575809 + 1.49371i
\(839\) 14.8385 0.512283 0.256142 0.966639i \(-0.417549\pi\)
0.256142 + 0.966639i \(0.417549\pi\)
\(840\) −7.54638 15.1765i −0.260375 0.523641i
\(841\) 23.5019 0.810410
\(842\) 17.3832 + 45.0939i 0.599064 + 1.55404i
\(843\) 8.87079 11.8557i 0.305526 0.408333i
\(844\) −26.3409 29.0886i −0.906692 1.00127i
\(845\) 1.00000i 0.0344010i
\(846\) 38.4110 29.4433i 1.32060 1.01228i
\(847\) 31.4261i 1.07981i
\(848\) 6.21557 + 0.617732i 0.213444 + 0.0212130i
\(849\) 4.90354 6.55354i 0.168289 0.224917i
\(850\) −1.59699 + 0.615623i −0.0547764 + 0.0211157i
\(851\) 3.79510 0.130094
\(852\) −1.02951 + 0.0965437i −0.0352706 + 0.00330753i
\(853\) 56.1528 1.92263 0.961317 0.275443i \(-0.0888247\pi\)
0.961317 + 0.275443i \(0.0888247\pi\)
\(854\) −62.0561 + 23.9219i −2.12352 + 0.818592i
\(855\) −5.74864 19.5444i −0.196599 0.668406i
\(856\) −2.91391 1.46916i −0.0995954 0.0502150i
\(857\) 31.3063i 1.06940i 0.845041 + 0.534702i \(0.179576\pi\)
−0.845041 + 0.534702i \(0.820424\pi\)
\(858\) 0.918998 3.26424i 0.0313741 0.111439i
\(859\) 3.94314i 0.134538i −0.997735 0.0672691i \(-0.978571\pi\)
0.997735 0.0672691i \(-0.0214286\pi\)
\(860\) 7.12835 6.45502i 0.243075 0.220114i
\(861\) −45.6719 34.1730i −1.55649 1.16461i
\(862\) 7.58278 + 19.6706i 0.258271 + 0.669983i
\(863\) 15.9367 0.542490 0.271245 0.962510i \(-0.412565\pi\)
0.271245 + 0.962510i \(0.412565\pi\)
\(864\) 2.56653 29.2816i 0.0873153 0.996181i
\(865\) −20.6240 −0.701237
\(866\) −16.2515 42.1583i −0.552250 1.43260i
\(867\) 21.5447 + 16.1203i 0.731695 + 0.547475i
\(868\) 15.5424 14.0743i 0.527542 0.477712i
\(869\) 21.6173i 0.733316i
\(870\) 1.55651 5.52864i 0.0527705 0.187439i
\(871\) 0.680909i 0.0230717i
\(872\) 4.47989 + 2.25872i 0.151708 + 0.0764897i
\(873\) −9.31982 31.6859i −0.315428 1.07240i
\(874\) −22.8187 + 8.79635i −0.771854 + 0.297541i
\(875\) 3.45974 0.116961
\(876\) 33.9319 3.18200i 1.14645 0.107510i
\(877\) −37.8557 −1.27830 −0.639148 0.769083i \(-0.720713\pi\)
−0.639148 + 0.769083i \(0.720713\pi\)
\(878\) 7.85659 3.02863i 0.265147 0.102211i
\(879\) 2.17011 2.90033i 0.0731958 0.0978256i
\(880\) −5.51056 0.547665i −0.185761 0.0184618i
\(881\) 53.8762i 1.81513i 0.419907 + 0.907567i \(0.362063\pi\)
−0.419907 + 0.907567i \(0.637937\pi\)
\(882\) −16.7343 + 12.8274i −0.563475 + 0.431922i
\(883\) 54.6628i 1.83955i 0.392447 + 0.919774i \(0.371628\pi\)
−0.392447 + 0.919774i \(0.628372\pi\)
\(884\) −1.62471 1.79418i −0.0546448 0.0603448i
\(885\) −4.25939 + 5.69264i −0.143178 + 0.191356i
\(886\) 10.3861 + 26.9426i 0.348926 + 0.905153i
\(887\) −50.1663 −1.68442 −0.842209 0.539150i \(-0.818745\pi\)
−0.842209 + 0.539150i \(0.818745\pi\)
\(888\) 3.25070 + 6.53749i 0.109086 + 0.219384i
\(889\) 69.0737 2.31666
\(890\) −8.41139 21.8201i −0.281950 0.731411i
\(891\) −10.4756 + 6.74604i −0.350946 + 0.226001i
\(892\) −15.4083 17.0155i −0.515907 0.569722i
\(893\) 77.4650i 2.59227i
\(894\) −15.1785 4.27328i −0.507645 0.142920i
\(895\) 9.70558i 0.324422i
\(896\) −33.0372 20.9923i −1.10370 0.701304i
\(897\) 3.53152 + 2.64238i 0.117914 + 0.0882265i
\(898\) −31.6985 + 12.2194i −1.05779 + 0.407766i
\(899\) 7.10536 0.236977
\(900\) 5.11871 + 3.13031i 0.170624 + 0.104344i
\(901\) −1.88985 −0.0629602
\(902\) −17.3894 + 6.70343i −0.579005 + 0.223200i
\(903\) −23.0706 17.2621i −0.767742 0.574446i
\(904\) −21.4010 + 42.4464i −0.711787 + 1.41175i
\(905\) 23.4173i 0.778416i
\(906\) 26.9987 + 7.60110i 0.896973 + 0.252530i
\(907\) 27.5763i 0.915657i −0.889040 0.457829i \(-0.848627\pi\)
0.889040 0.457829i \(-0.151373\pi\)
\(908\) 8.98416 8.13553i 0.298150 0.269987i
\(909\) −51.1758 + 15.0524i −1.69739 + 0.499257i
\(910\) 1.75989 + 4.56535i 0.0583398 + 0.151340i
\(911\) −0.664100 −0.0220026 −0.0110013 0.999939i \(-0.503502\pi\)
−0.0110013 + 0.999939i \(0.503502\pi\)
\(912\) −34.6981 31.7733i −1.14897 1.05212i
\(913\) 0.313715 0.0103825
\(914\) 5.34375 + 13.8623i 0.176756 + 0.458523i
\(915\) 14.1047 18.8508i 0.466288 0.623190i
\(916\) −11.8663 + 10.7455i −0.392075 + 0.355040i
\(917\) 35.9275i 1.18643i
\(918\) 0.103452 + 8.89283i 0.00341443 + 0.293507i
\(919\) 36.8995i 1.21720i 0.793476 + 0.608602i \(0.208269\pi\)
−0.793476 + 0.608602i \(0.791731\pi\)
\(920\) 3.24262 6.43134i 0.106906 0.212035i
\(921\) 19.7268 26.3646i 0.650019 0.868745i
\(922\) −24.3516 + 9.38725i −0.801976 + 0.309153i
\(923\) 0.298499 0.00982522
\(924\) 1.54915 + 16.5197i 0.0509634 + 0.543459i
\(925\) −1.49033 −0.0490017
\(926\) 13.3811 5.15827i 0.439731 0.169511i
\(927\) −7.29261 + 2.14499i −0.239521 + 0.0704507i
\(928\) −3.52360 12.7876i −0.115668 0.419774i
\(929\) 42.2152i 1.38503i −0.721401 0.692517i \(-0.756502\pi\)
0.721401 0.692517i \(-0.243498\pi\)
\(930\) −2.01152 + 7.14484i −0.0659604 + 0.234288i
\(931\) 33.7488i 1.10607i
\(932\) −13.3720 14.7669i −0.438015 0.483704i
\(933\) −6.28081 4.69948i −0.205624 0.153854i
\(934\) 11.4709 + 29.7568i 0.375340 + 0.973673i
\(935\) 1.67549 0.0547945
\(936\) −1.52687 + 8.34678i −0.0499074 + 0.272823i
\(937\) 28.4325 0.928850 0.464425 0.885612i \(-0.346261\pi\)
0.464425 + 0.885612i \(0.346261\pi\)
\(938\) −1.19832 3.10859i −0.0391267 0.101499i
\(939\) 5.27460 + 3.94660i 0.172130 + 0.128793i
\(940\) 15.3140 + 16.9114i 0.499487 + 0.551589i
\(941\) 37.5619i 1.22448i 0.790671 + 0.612241i \(0.209732\pi\)
−0.790671 + 0.612241i \(0.790268\pi\)
\(942\) −11.1113 + 39.4668i −0.362026 + 1.28590i
\(943\) 24.2397i 0.789352i
\(944\) −1.62382 + 16.3388i −0.0528509 + 0.531781i
\(945\) 6.27068 16.8482i 0.203985 0.548073i
\(946\) −8.78407 + 3.38616i −0.285595 + 0.110094i
\(947\) −34.0041 −1.10499 −0.552493 0.833518i \(-0.686323\pi\)
−0.552493 + 0.833518i \(0.686323\pi\)
\(948\) 5.05024 + 53.8543i 0.164024 + 1.74911i
\(949\) −9.83828 −0.319364
\(950\) 8.96086 3.45431i 0.290729 0.112073i
\(951\) 22.4391 29.9897i 0.727639 0.972483i
\(952\) 10.5749 + 5.33176i 0.342735 + 0.172803i
\(953\) 20.7594i 0.672463i −0.941779 0.336231i \(-0.890848\pi\)
0.941779 0.336231i \(-0.109152\pi\)
\(954\) 4.03047 + 5.25805i 0.130491 + 0.170236i
\(955\) 19.1176i 0.618631i
\(956\) 4.73536 4.28807i 0.153153 0.138686i
\(957\) −3.36845 + 4.50190i −0.108886 + 0.145526i
\(958\) −16.0730 41.6952i −0.519296 1.34711i
\(959\) 49.3548 1.59375
\(960\) 13.8562 + 0.0769961i 0.447207 + 0.00248504i
\(961\) 21.8175 0.703791
\(962\) −0.758095 1.96658i −0.0244420 0.0634052i
\(963\) −0.976701 3.32062i −0.0314737 0.107006i
\(964\) −7.59735 + 6.87972i −0.244694 + 0.221581i
\(965\) 10.3671i 0.333730i
\(966\) −20.7729 5.84830i −0.668357 0.188166i
\(967\) 1.11319i 0.0357979i 0.999840 + 0.0178990i \(0.00569772\pi\)
−0.999840 + 0.0178990i \(0.994302\pi\)
\(968\) −22.9407 11.5665i −0.737343 0.371760i
\(969\) 11.3976 + 8.52798i 0.366143 + 0.273958i
\(970\) 14.5276 5.60020i 0.466452 0.179812i
\(971\) −32.1217 −1.03084 −0.515418 0.856939i \(-0.672363\pi\)
−0.515418 + 0.856939i \(0.672363\pi\)
\(972\) 24.5215 19.2535i 0.786527 0.617556i
\(973\) −49.0068 −1.57109
\(974\) −8.65311 + 3.33567i −0.277263 + 0.106882i
\(975\) −1.38682 1.03766i −0.0444138 0.0332316i
\(976\) 5.37719 54.1049i 0.172120 1.73186i
\(977\) 44.0839i 1.41037i 0.709024 + 0.705185i \(0.249136\pi\)
−0.709024 + 0.705185i \(0.750864\pi\)
\(978\) 46.3946 + 13.0617i 1.48354 + 0.417668i
\(979\) 22.8926i 0.731652i
\(980\) −6.67177 7.36771i −0.213122 0.235353i
\(981\) 1.50160 + 5.10518i 0.0479422 + 0.162996i
\(982\) −17.4895 45.3698i −0.558113 1.44781i
\(983\) −6.84273 −0.218249 −0.109125 0.994028i \(-0.534805\pi\)
−0.109125 + 0.994028i \(0.534805\pi\)
\(984\) 41.7556 20.7625i 1.33112 0.661886i
\(985\) 15.7570 0.502061
\(986\) 1.44351 + 3.74463i 0.0459708 + 0.119253i
\(987\) 40.9528 54.7330i 1.30354 1.74217i
\(988\) 9.11636 + 10.0673i 0.290030 + 0.320283i
\(989\) 12.2444i 0.389349i
\(990\) −3.57331 4.66165i −0.113567 0.148157i
\(991\) 31.4987i 1.00059i 0.865856 + 0.500294i \(0.166775\pi\)
−0.865856 + 0.500294i \(0.833225\pi\)
\(992\) 4.55365 + 16.5258i 0.144579 + 0.524696i
\(993\) −18.8206 + 25.1536i −0.597254 + 0.798225i
\(994\) −1.36275 + 0.525325i −0.0432239 + 0.0166623i
\(995\) −10.0605 −0.318939
\(996\) −0.781547 + 0.0732904i −0.0247643 + 0.00232229i
\(997\) −19.6242 −0.621505 −0.310752 0.950491i \(-0.600581\pi\)
−0.310752 + 0.950491i \(0.600581\pi\)
\(998\) −35.1172 + 13.5373i −1.11161 + 0.428515i
\(999\) −2.70118 + 7.25760i −0.0854615 + 0.229620i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 780.2.g.d.131.15 32
3.2 odd 2 inner 780.2.g.d.131.18 yes 32
4.3 odd 2 inner 780.2.g.d.131.17 yes 32
12.11 even 2 inner 780.2.g.d.131.16 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.g.d.131.15 32 1.1 even 1 trivial
780.2.g.d.131.16 yes 32 12.11 even 2 inner
780.2.g.d.131.17 yes 32 4.3 odd 2 inner
780.2.g.d.131.18 yes 32 3.2 odd 2 inner