L(s) = 1 | + (0.508 − 1.31i)2-s + (−1.38 − 1.03i)3-s + (−1.48 − 1.34i)4-s − i·5-s + (−2.07 + 1.30i)6-s + 3.45i·7-s + (−2.52 + 1.27i)8-s + (0.846 + 2.87i)9-s + (−1.31 − 0.508i)10-s − 1.38·11-s + (0.662 + 3.40i)12-s + 13-s + (4.56 + 1.75i)14-s + (−1.03 + 1.38i)15-s + (0.395 + 3.98i)16-s + 1.21i·17-s + ⋯ |
L(s) = 1 | + (0.359 − 0.933i)2-s + (−0.800 − 0.599i)3-s + (−0.741 − 0.671i)4-s − 0.447i·5-s + (−0.846 + 0.531i)6-s + 1.30i·7-s + (−0.892 + 0.450i)8-s + (0.282 + 0.959i)9-s + (−0.417 − 0.160i)10-s − 0.417·11-s + (0.191 + 0.981i)12-s + 0.277·13-s + (1.22 + 0.470i)14-s + (−0.267 + 0.358i)15-s + (0.0988 + 0.995i)16-s + 0.293i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 - 0.191i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.981 - 0.191i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.782028 + 0.0755279i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.782028 + 0.0755279i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.508 + 1.31i)T \) |
| 3 | \( 1 + (1.38 + 1.03i)T \) |
| 5 | \( 1 + iT \) |
| 13 | \( 1 - T \) |
good | 7 | \( 1 - 3.45iT - 7T^{2} \) |
| 11 | \( 1 + 1.38T + 11T^{2} \) |
| 17 | \( 1 - 1.21iT - 17T^{2} \) |
| 19 | \( 1 - 6.79iT - 19T^{2} \) |
| 23 | \( 1 + 2.54T + 23T^{2} \) |
| 29 | \( 1 - 2.34iT - 29T^{2} \) |
| 31 | \( 1 - 3.03iT - 31T^{2} \) |
| 37 | \( 1 - 1.49T + 37T^{2} \) |
| 41 | \( 1 + 9.51iT - 41T^{2} \) |
| 43 | \( 1 - 4.80iT - 43T^{2} \) |
| 47 | \( 1 + 11.4T + 47T^{2} \) |
| 53 | \( 1 - 1.56iT - 53T^{2} \) |
| 59 | \( 1 - 4.10T + 59T^{2} \) |
| 61 | \( 1 - 13.5T + 61T^{2} \) |
| 67 | \( 1 + 0.680iT - 67T^{2} \) |
| 71 | \( 1 + 0.298T + 71T^{2} \) |
| 73 | \( 1 + 9.83T + 73T^{2} \) |
| 79 | \( 1 - 15.6iT - 79T^{2} \) |
| 83 | \( 1 + 0.226T + 83T^{2} \) |
| 89 | \( 1 - 16.5iT - 89T^{2} \) |
| 97 | \( 1 + 11.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48042838698146045214531274333, −9.729987943625788391307389225321, −8.622013061235794438391824025942, −8.025555053651034686064636449624, −6.45652260218284629365525359685, −5.61297842462726647160993598151, −5.17705210758845563939762487650, −3.86354857035947337521787200529, −2.41906197714663304723966206703, −1.45092366811990323761410993631,
0.40769667867546041842609522326, 3.15782328121344378877355170174, 4.19344214958577988827799217577, 4.83619431911081284074011707537, 5.92081907766294822230317872690, 6.77857887009343359897900955837, 7.34415686408093383280187933757, 8.406258949771179694400403682985, 9.593039781487614476037684766913, 10.16334735845571730669750172903