sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(780, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([1,1,0,0]))
pari:[g,chi] = znchar(Mod(131,780))
\(\chi_{780}(131,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((391,521,157,301)\) → \((-1,-1,1,1)\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 780 }(131, a) \) |
\(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)