Properties

Label 780.2.cc.b.361.3
Level $780$
Weight $2$
Character 780.361
Analytic conductor $6.228$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [780,2,Mod(121,780)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(780, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("780.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 780.cc (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.22833135766\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.3
Root \(0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 780.361
Dual form 780.2.cc.b.121.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +1.00000i q^{5} +(-2.18034 - 1.25882i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(0.590770 - 0.341081i) q^{11} +(-3.08725 + 1.86250i) q^{13} +(0.866025 - 0.500000i) q^{15} +(-2.39778 + 4.15307i) q^{17} +(5.65099 + 3.26260i) q^{19} +2.51764i q^{21} +(3.68715 + 6.38633i) q^{23} -1.00000 q^{25} +1.00000 q^{27} +(-2.31431 - 4.00851i) q^{29} -0.600398i q^{31} +(-0.590770 - 0.341081i) q^{33} +(1.25882 - 2.18034i) q^{35} +(-8.85666 + 5.11339i) q^{37} +(3.15660 + 1.74238i) q^{39} +(-1.31431 + 0.758819i) q^{41} +(-3.47323 + 6.01581i) q^{43} +(-0.866025 - 0.500000i) q^{45} +4.73910i q^{47} +(-0.330749 - 0.572874i) q^{49} +4.79555 q^{51} +10.3631 q^{53} +(0.341081 + 0.590770i) q^{55} -6.52520i q^{57} +(8.19868 + 4.73351i) q^{59} +(-5.66158 + 9.80614i) q^{61} +(2.18034 - 1.25882i) q^{63} +(-1.86250 - 3.08725i) q^{65} +(-3.81225 + 2.20100i) q^{67} +(3.68715 - 6.38633i) q^{69} +(0.291069 + 0.168049i) q^{71} +4.50354i q^{73} +(0.500000 + 0.866025i) q^{75} -1.71744 q^{77} -9.19615 q^{79} +(-0.500000 - 0.866025i) q^{81} -10.0392i q^{83} +(-4.15307 - 2.39778i) q^{85} +(-2.31431 + 4.00851i) q^{87} +(11.2869 - 6.51652i) q^{89} +(9.07579 - 0.174599i) q^{91} +(-0.519960 + 0.300199i) q^{93} +(-3.26260 + 5.65099i) q^{95} +(7.97021 + 4.60160i) q^{97} +0.682163i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 4 q^{9} - 12 q^{11} + 4 q^{17} + 12 q^{19} + 4 q^{23} - 8 q^{25} + 8 q^{27} - 8 q^{29} + 12 q^{33} + 8 q^{35} - 24 q^{37} - 16 q^{43} - 4 q^{49} - 8 q^{51} + 16 q^{53} + 4 q^{55} + 24 q^{59}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/780\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(301\) \(391\) \(521\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) −2.18034 1.25882i −0.824091 0.475789i 0.0277345 0.999615i \(-0.491171\pi\)
−0.851825 + 0.523826i \(0.824504\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 0.590770 0.341081i 0.178124 0.102840i −0.408287 0.912854i \(-0.633874\pi\)
0.586411 + 0.810014i \(0.300540\pi\)
\(12\) 0 0
\(13\) −3.08725 + 1.86250i −0.856248 + 0.516565i
\(14\) 0 0
\(15\) 0.866025 0.500000i 0.223607 0.129099i
\(16\) 0 0
\(17\) −2.39778 + 4.15307i −0.581546 + 1.00727i 0.413750 + 0.910391i \(0.364219\pi\)
−0.995296 + 0.0968774i \(0.969115\pi\)
\(18\) 0 0
\(19\) 5.65099 + 3.26260i 1.29643 + 0.748492i 0.979785 0.200053i \(-0.0641116\pi\)
0.316641 + 0.948545i \(0.397445\pi\)
\(20\) 0 0
\(21\) 2.51764i 0.549394i
\(22\) 0 0
\(23\) 3.68715 + 6.38633i 0.768823 + 1.33164i 0.938201 + 0.346090i \(0.112491\pi\)
−0.169378 + 0.985551i \(0.554176\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −2.31431 4.00851i −0.429757 0.744361i 0.567094 0.823653i \(-0.308067\pi\)
−0.996851 + 0.0792916i \(0.974734\pi\)
\(30\) 0 0
\(31\) 0.600398i 0.107835i −0.998545 0.0539174i \(-0.982829\pi\)
0.998545 0.0539174i \(-0.0171708\pi\)
\(32\) 0 0
\(33\) −0.590770 0.341081i −0.102840 0.0593746i
\(34\) 0 0
\(35\) 1.25882 2.18034i 0.212779 0.368544i
\(36\) 0 0
\(37\) −8.85666 + 5.11339i −1.45603 + 0.840636i −0.998812 0.0487209i \(-0.984486\pi\)
−0.457213 + 0.889357i \(0.651152\pi\)
\(38\) 0 0
\(39\) 3.15660 + 1.74238i 0.505460 + 0.279005i
\(40\) 0 0
\(41\) −1.31431 + 0.758819i −0.205261 + 0.118508i −0.599107 0.800669i \(-0.704478\pi\)
0.393846 + 0.919176i \(0.371144\pi\)
\(42\) 0 0
\(43\) −3.47323 + 6.01581i −0.529663 + 0.917403i 0.469738 + 0.882806i \(0.344348\pi\)
−0.999401 + 0.0345974i \(0.988985\pi\)
\(44\) 0 0
\(45\) −0.866025 0.500000i −0.129099 0.0745356i
\(46\) 0 0
\(47\) 4.73910i 0.691269i 0.938369 + 0.345634i \(0.112336\pi\)
−0.938369 + 0.345634i \(0.887664\pi\)
\(48\) 0 0
\(49\) −0.330749 0.572874i −0.0472499 0.0818392i
\(50\) 0 0
\(51\) 4.79555 0.671512
\(52\) 0 0
\(53\) 10.3631 1.42348 0.711739 0.702444i \(-0.247908\pi\)
0.711739 + 0.702444i \(0.247908\pi\)
\(54\) 0 0
\(55\) 0.341081 + 0.590770i 0.0459914 + 0.0796594i
\(56\) 0 0
\(57\) 6.52520i 0.864284i
\(58\) 0 0
\(59\) 8.19868 + 4.73351i 1.06738 + 0.616251i 0.927464 0.373913i \(-0.121984\pi\)
0.139914 + 0.990164i \(0.455318\pi\)
\(60\) 0 0
\(61\) −5.66158 + 9.80614i −0.724891 + 1.25555i 0.234128 + 0.972206i \(0.424777\pi\)
−0.959019 + 0.283342i \(0.908557\pi\)
\(62\) 0 0
\(63\) 2.18034 1.25882i 0.274697 0.158596i
\(64\) 0 0
\(65\) −1.86250 3.08725i −0.231015 0.382926i
\(66\) 0 0
\(67\) −3.81225 + 2.20100i −0.465740 + 0.268895i −0.714455 0.699682i \(-0.753325\pi\)
0.248715 + 0.968577i \(0.419992\pi\)
\(68\) 0 0
\(69\) 3.68715 6.38633i 0.443880 0.768823i
\(70\) 0 0
\(71\) 0.291069 + 0.168049i 0.0345435 + 0.0199437i 0.517172 0.855881i \(-0.326985\pi\)
−0.482629 + 0.875825i \(0.660318\pi\)
\(72\) 0 0
\(73\) 4.50354i 0.527100i 0.964646 + 0.263550i \(0.0848933\pi\)
−0.964646 + 0.263550i \(0.915107\pi\)
\(74\) 0 0
\(75\) 0.500000 + 0.866025i 0.0577350 + 0.100000i
\(76\) 0 0
\(77\) −1.71744 −0.195720
\(78\) 0 0
\(79\) −9.19615 −1.03465 −0.517324 0.855790i \(-0.673072\pi\)
−0.517324 + 0.855790i \(0.673072\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 10.0392i 1.10194i −0.834524 0.550972i \(-0.814257\pi\)
0.834524 0.550972i \(-0.185743\pi\)
\(84\) 0 0
\(85\) −4.15307 2.39778i −0.450464 0.260075i
\(86\) 0 0
\(87\) −2.31431 + 4.00851i −0.248120 + 0.429757i
\(88\) 0 0
\(89\) 11.2869 6.51652i 1.19641 0.690750i 0.236660 0.971593i \(-0.423947\pi\)
0.959754 + 0.280843i \(0.0906141\pi\)
\(90\) 0 0
\(91\) 9.07579 0.174599i 0.951402 0.0183030i
\(92\) 0 0
\(93\) −0.519960 + 0.300199i −0.0539174 + 0.0311292i
\(94\) 0 0
\(95\) −3.26260 + 5.65099i −0.334736 + 0.579779i
\(96\) 0 0
\(97\) 7.97021 + 4.60160i 0.809252 + 0.467222i 0.846696 0.532077i \(-0.178588\pi\)
−0.0374442 + 0.999299i \(0.511922\pi\)
\(98\) 0 0
\(99\) 0.682163i 0.0685599i
\(100\) 0 0
\(101\) −7.33279 12.7008i −0.729640 1.26377i −0.957036 0.289971i \(-0.906354\pi\)
0.227396 0.973802i \(-0.426979\pi\)
\(102\) 0 0
\(103\) 4.97569 0.490269 0.245135 0.969489i \(-0.421168\pi\)
0.245135 + 0.969489i \(0.421168\pi\)
\(104\) 0 0
\(105\) −2.51764 −0.245696
\(106\) 0 0
\(107\) −2.86394 4.96050i −0.276868 0.479549i 0.693737 0.720229i \(-0.255963\pi\)
−0.970605 + 0.240679i \(0.922630\pi\)
\(108\) 0 0
\(109\) 5.45465i 0.522461i 0.965276 + 0.261230i \(0.0841282\pi\)
−0.965276 + 0.261230i \(0.915872\pi\)
\(110\) 0 0
\(111\) 8.85666 + 5.11339i 0.840636 + 0.485342i
\(112\) 0 0
\(113\) −4.36773 + 7.56512i −0.410881 + 0.711667i −0.994986 0.100011i \(-0.968112\pi\)
0.584105 + 0.811678i \(0.301446\pi\)
\(114\) 0 0
\(115\) −6.38633 + 3.68715i −0.595528 + 0.343828i
\(116\) 0 0
\(117\) −0.0693504 3.60488i −0.00641144 0.333272i
\(118\) 0 0
\(119\) 10.4559 6.03674i 0.958494 0.553387i
\(120\) 0 0
\(121\) −5.26733 + 9.12328i −0.478848 + 0.829389i
\(122\) 0 0
\(123\) 1.31431 + 0.758819i 0.118508 + 0.0684204i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −11.0294 19.1035i −0.978704 1.69516i −0.667128 0.744943i \(-0.732477\pi\)
−0.311576 0.950221i \(-0.600857\pi\)
\(128\) 0 0
\(129\) 6.94646 0.611602
\(130\) 0 0
\(131\) −7.85666 −0.686439 −0.343220 0.939255i \(-0.611517\pi\)
−0.343220 + 0.939255i \(0.611517\pi\)
\(132\) 0 0
\(133\) −8.21405 14.2271i −0.712248 1.23365i
\(134\) 0 0
\(135\) 1.00000i 0.0860663i
\(136\) 0 0
\(137\) −13.1725 7.60514i −1.12540 0.649751i −0.182627 0.983182i \(-0.558460\pi\)
−0.942774 + 0.333431i \(0.891794\pi\)
\(138\) 0 0
\(139\) 6.77792 11.7397i 0.574895 0.995748i −0.421158 0.906987i \(-0.638376\pi\)
0.996053 0.0887606i \(-0.0282906\pi\)
\(140\) 0 0
\(141\) 4.10418 2.36955i 0.345634 0.199552i
\(142\) 0 0
\(143\) −1.18859 + 2.15331i −0.0993948 + 0.180069i
\(144\) 0 0
\(145\) 4.00851 2.31431i 0.332888 0.192193i
\(146\) 0 0
\(147\) −0.330749 + 0.572874i −0.0272797 + 0.0472499i
\(148\) 0 0
\(149\) 7.14760 + 4.12667i 0.585554 + 0.338070i 0.763338 0.646000i \(-0.223559\pi\)
−0.177783 + 0.984070i \(0.556893\pi\)
\(150\) 0 0
\(151\) 3.83307i 0.311931i 0.987763 + 0.155965i \(0.0498489\pi\)
−0.987763 + 0.155965i \(0.950151\pi\)
\(152\) 0 0
\(153\) −2.39778 4.15307i −0.193849 0.335756i
\(154\) 0 0
\(155\) 0.600398 0.0482252
\(156\) 0 0
\(157\) −21.8654 −1.74505 −0.872524 0.488572i \(-0.837518\pi\)
−0.872524 + 0.488572i \(0.837518\pi\)
\(158\) 0 0
\(159\) −5.18154 8.97469i −0.410923 0.711739i
\(160\) 0 0
\(161\) 18.5658i 1.46319i
\(162\) 0 0
\(163\) −6.94402 4.00913i −0.543897 0.314019i 0.202760 0.979229i \(-0.435009\pi\)
−0.746657 + 0.665209i \(0.768342\pi\)
\(164\) 0 0
\(165\) 0.341081 0.590770i 0.0265531 0.0459914i
\(166\) 0 0
\(167\) 7.76368 4.48236i 0.600771 0.346856i −0.168574 0.985689i \(-0.553916\pi\)
0.769345 + 0.638834i \(0.220583\pi\)
\(168\) 0 0
\(169\) 6.06218 11.5000i 0.466321 0.884615i
\(170\) 0 0
\(171\) −5.65099 + 3.26260i −0.432142 + 0.249497i
\(172\) 0 0
\(173\) 5.97652 10.3516i 0.454386 0.787020i −0.544267 0.838912i \(-0.683192\pi\)
0.998653 + 0.0518925i \(0.0165253\pi\)
\(174\) 0 0
\(175\) 2.18034 + 1.25882i 0.164818 + 0.0951578i
\(176\) 0 0
\(177\) 9.46702i 0.711585i
\(178\) 0 0
\(179\) 9.60426 + 16.6351i 0.717856 + 1.24336i 0.961848 + 0.273586i \(0.0882098\pi\)
−0.243991 + 0.969777i \(0.578457\pi\)
\(180\) 0 0
\(181\) −14.2526 −1.05939 −0.529694 0.848189i \(-0.677693\pi\)
−0.529694 + 0.848189i \(0.677693\pi\)
\(182\) 0 0
\(183\) 11.3232 0.837032
\(184\) 0 0
\(185\) −5.11339 8.85666i −0.375944 0.651154i
\(186\) 0 0
\(187\) 3.27135i 0.239225i
\(188\) 0 0
\(189\) −2.18034 1.25882i −0.158596 0.0915656i
\(190\) 0 0
\(191\) 4.84058 8.38414i 0.350252 0.606655i −0.636041 0.771655i \(-0.719429\pi\)
0.986294 + 0.165000i \(0.0527625\pi\)
\(192\) 0 0
\(193\) 11.1428 6.43331i 0.802078 0.463080i −0.0421193 0.999113i \(-0.513411\pi\)
0.844197 + 0.536033i \(0.180078\pi\)
\(194\) 0 0
\(195\) −1.74238 + 3.15660i −0.124775 + 0.226049i
\(196\) 0 0
\(197\) −14.6883 + 8.48030i −1.04650 + 0.604196i −0.921667 0.387982i \(-0.873172\pi\)
−0.124831 + 0.992178i \(0.539839\pi\)
\(198\) 0 0
\(199\) −1.30260 + 2.25617i −0.0923391 + 0.159936i −0.908495 0.417896i \(-0.862768\pi\)
0.816156 + 0.577832i \(0.196101\pi\)
\(200\) 0 0
\(201\) 3.81225 + 2.20100i 0.268895 + 0.155247i
\(202\) 0 0
\(203\) 11.6532i 0.817895i
\(204\) 0 0
\(205\) −0.758819 1.31431i −0.0529982 0.0917956i
\(206\) 0 0
\(207\) −7.37429 −0.512549
\(208\) 0 0
\(209\) 4.45125 0.307899
\(210\) 0 0
\(211\) 0.649913 + 1.12568i 0.0447418 + 0.0774951i 0.887529 0.460752i \(-0.152420\pi\)
−0.842787 + 0.538247i \(0.819087\pi\)
\(212\) 0 0
\(213\) 0.336098i 0.0230290i
\(214\) 0 0
\(215\) −6.01581 3.47323i −0.410275 0.236872i
\(216\) 0 0
\(217\) −0.755793 + 1.30907i −0.0513066 + 0.0888656i
\(218\) 0 0
\(219\) 3.90018 2.25177i 0.263550 0.152161i
\(220\) 0 0
\(221\) −0.332573 17.2874i −0.0223713 1.16288i
\(222\) 0 0
\(223\) 16.6814 9.63103i 1.11707 0.644941i 0.176420 0.984315i \(-0.443548\pi\)
0.940652 + 0.339374i \(0.110215\pi\)
\(224\) 0 0
\(225\) 0.500000 0.866025i 0.0333333 0.0577350i
\(226\) 0 0
\(227\) 19.2774 + 11.1298i 1.27949 + 0.738713i 0.976754 0.214363i \(-0.0687674\pi\)
0.302734 + 0.953075i \(0.402101\pi\)
\(228\) 0 0
\(229\) 10.5393i 0.696456i 0.937410 + 0.348228i \(0.113217\pi\)
−0.937410 + 0.348228i \(0.886783\pi\)
\(230\) 0 0
\(231\) 0.858719 + 1.48735i 0.0564996 + 0.0978602i
\(232\) 0 0
\(233\) 28.3517 1.85738 0.928689 0.370859i \(-0.120937\pi\)
0.928689 + 0.370859i \(0.120937\pi\)
\(234\) 0 0
\(235\) −4.73910 −0.309145
\(236\) 0 0
\(237\) 4.59808 + 7.96410i 0.298677 + 0.517324i
\(238\) 0 0
\(239\) 7.76660i 0.502379i 0.967938 + 0.251190i \(0.0808218\pi\)
−0.967938 + 0.251190i \(0.919178\pi\)
\(240\) 0 0
\(241\) −0.256282 0.147964i −0.0165086 0.00953122i 0.491723 0.870752i \(-0.336367\pi\)
−0.508232 + 0.861220i \(0.669701\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 0.572874 0.330749i 0.0365996 0.0211308i
\(246\) 0 0
\(247\) −23.5226 + 0.452525i −1.49671 + 0.0287935i
\(248\) 0 0
\(249\) −8.69419 + 5.01960i −0.550972 + 0.318104i
\(250\) 0 0
\(251\) 1.07554 1.86288i 0.0678872 0.117584i −0.830084 0.557639i \(-0.811708\pi\)
0.897971 + 0.440054i \(0.145041\pi\)
\(252\) 0 0
\(253\) 4.35651 + 2.51523i 0.273892 + 0.158131i
\(254\) 0 0
\(255\) 4.79555i 0.300309i
\(256\) 0 0
\(257\) −1.89682 3.28538i −0.118320 0.204936i 0.800782 0.598956i \(-0.204418\pi\)
−0.919102 + 0.394020i \(0.871084\pi\)
\(258\) 0 0
\(259\) 25.7473 1.59986
\(260\) 0 0
\(261\) 4.62863 0.286505
\(262\) 0 0
\(263\) −5.59153 9.68481i −0.344788 0.597191i 0.640527 0.767936i \(-0.278716\pi\)
−0.985315 + 0.170745i \(0.945383\pi\)
\(264\) 0 0
\(265\) 10.3631i 0.636599i
\(266\) 0 0
\(267\) −11.2869 6.51652i −0.690750 0.398804i
\(268\) 0 0
\(269\) −13.8540 + 23.9957i −0.844690 + 1.46305i 0.0411996 + 0.999151i \(0.486882\pi\)
−0.885890 + 0.463896i \(0.846451\pi\)
\(270\) 0 0
\(271\) 27.0381 15.6104i 1.64245 0.948267i 0.662487 0.749074i \(-0.269501\pi\)
0.979960 0.199194i \(-0.0638322\pi\)
\(272\) 0 0
\(273\) −4.68910 7.77257i −0.283797 0.470417i
\(274\) 0 0
\(275\) −0.590770 + 0.341081i −0.0356248 + 0.0205680i
\(276\) 0 0
\(277\) 1.07520 1.86230i 0.0646023 0.111894i −0.831915 0.554903i \(-0.812755\pi\)
0.896518 + 0.443008i \(0.146089\pi\)
\(278\) 0 0
\(279\) 0.519960 + 0.300199i 0.0311292 + 0.0179725i
\(280\) 0 0
\(281\) 20.0311i 1.19496i 0.801885 + 0.597478i \(0.203830\pi\)
−0.801885 + 0.597478i \(0.796170\pi\)
\(282\) 0 0
\(283\) 8.45461 + 14.6438i 0.502574 + 0.870484i 0.999996 + 0.00297501i \(0.000946976\pi\)
−0.497421 + 0.867509i \(0.665720\pi\)
\(284\) 0 0
\(285\) 6.52520 0.386520
\(286\) 0 0
\(287\) 3.82086 0.225538
\(288\) 0 0
\(289\) −2.99867 5.19386i −0.176393 0.305521i
\(290\) 0 0
\(291\) 9.20320i 0.539501i
\(292\) 0 0
\(293\) −10.9754 6.33668i −0.641192 0.370193i 0.143881 0.989595i \(-0.454042\pi\)
−0.785074 + 0.619402i \(0.787375\pi\)
\(294\) 0 0
\(295\) −4.73351 + 8.19868i −0.275596 + 0.477346i
\(296\) 0 0
\(297\) 0.590770 0.341081i 0.0342800 0.0197915i
\(298\) 0 0
\(299\) −23.2777 12.8488i −1.34618 0.743068i
\(300\) 0 0
\(301\) 15.1456 8.74434i 0.872980 0.504015i
\(302\) 0 0
\(303\) −7.33279 + 12.7008i −0.421258 + 0.729640i
\(304\) 0 0
\(305\) −9.80614 5.66158i −0.561498 0.324181i
\(306\) 0 0
\(307\) 7.54738i 0.430752i −0.976531 0.215376i \(-0.930902\pi\)
0.976531 0.215376i \(-0.0690976\pi\)
\(308\) 0 0
\(309\) −2.48784 4.30907i −0.141528 0.245135i
\(310\) 0 0
\(311\) 22.0924 1.25274 0.626372 0.779524i \(-0.284539\pi\)
0.626372 + 0.779524i \(0.284539\pi\)
\(312\) 0 0
\(313\) −10.9392 −0.618318 −0.309159 0.951010i \(-0.600048\pi\)
−0.309159 + 0.951010i \(0.600048\pi\)
\(314\) 0 0
\(315\) 1.25882 + 2.18034i 0.0709264 + 0.122848i
\(316\) 0 0
\(317\) 20.9873i 1.17877i 0.807854 + 0.589383i \(0.200629\pi\)
−0.807854 + 0.589383i \(0.799371\pi\)
\(318\) 0 0
\(319\) −2.73445 1.57874i −0.153100 0.0883924i
\(320\) 0 0
\(321\) −2.86394 + 4.96050i −0.159850 + 0.276868i
\(322\) 0 0
\(323\) −27.0996 + 15.6460i −1.50786 + 0.870566i
\(324\) 0 0
\(325\) 3.08725 1.86250i 0.171250 0.103313i
\(326\) 0 0
\(327\) 4.72386 2.72732i 0.261230 0.150821i
\(328\) 0 0
\(329\) 5.96567 10.3328i 0.328898 0.569668i
\(330\) 0 0
\(331\) 12.1031 + 6.98771i 0.665245 + 0.384079i 0.794272 0.607562i \(-0.207852\pi\)
−0.129028 + 0.991641i \(0.541186\pi\)
\(332\) 0 0
\(333\) 10.2268i 0.560424i
\(334\) 0 0
\(335\) −2.20100 3.81225i −0.120254 0.208285i
\(336\) 0 0
\(337\) −21.2954 −1.16004 −0.580018 0.814603i \(-0.696955\pi\)
−0.580018 + 0.814603i \(0.696955\pi\)
\(338\) 0 0
\(339\) 8.73545 0.474445
\(340\) 0 0
\(341\) −0.204785 0.354697i −0.0110897 0.0192079i
\(342\) 0 0
\(343\) 19.2889i 1.04150i
\(344\) 0 0
\(345\) 6.38633 + 3.68715i 0.343828 + 0.198509i
\(346\) 0 0
\(347\) −11.7167 + 20.2939i −0.628986 + 1.08944i 0.358770 + 0.933426i \(0.383196\pi\)
−0.987756 + 0.156009i \(0.950137\pi\)
\(348\) 0 0
\(349\) −13.2104 + 7.62701i −0.707135 + 0.408264i −0.809999 0.586431i \(-0.800533\pi\)
0.102865 + 0.994695i \(0.467199\pi\)
\(350\) 0 0
\(351\) −3.08725 + 1.86250i −0.164785 + 0.0994130i
\(352\) 0 0
\(353\) 19.9325 11.5080i 1.06090 0.612510i 0.135217 0.990816i \(-0.456827\pi\)
0.925680 + 0.378306i \(0.123493\pi\)
\(354\) 0 0
\(355\) −0.168049 + 0.291069i −0.00891910 + 0.0154483i
\(356\) 0 0
\(357\) −10.4559 6.03674i −0.553387 0.319498i
\(358\) 0 0
\(359\) 2.03111i 0.107198i −0.998563 0.0535990i \(-0.982931\pi\)
0.998563 0.0535990i \(-0.0170693\pi\)
\(360\) 0 0
\(361\) 11.7891 + 20.4194i 0.620480 + 1.07470i
\(362\) 0 0
\(363\) 10.5347 0.552926
\(364\) 0 0
\(365\) −4.50354 −0.235726
\(366\) 0 0
\(367\) −13.0719 22.6412i −0.682348 1.18186i −0.974262 0.225417i \(-0.927626\pi\)
0.291915 0.956444i \(-0.405708\pi\)
\(368\) 0 0
\(369\) 1.51764i 0.0790051i
\(370\) 0 0
\(371\) −22.5950 13.0452i −1.17308 0.677275i
\(372\) 0 0
\(373\) −5.12680 + 8.87988i −0.265456 + 0.459783i −0.967683 0.252170i \(-0.918856\pi\)
0.702227 + 0.711953i \(0.252189\pi\)
\(374\) 0 0
\(375\) −0.866025 + 0.500000i −0.0447214 + 0.0258199i
\(376\) 0 0
\(377\) 14.6107 + 8.06484i 0.752490 + 0.415360i
\(378\) 0 0
\(379\) −13.0013 + 7.50632i −0.667833 + 0.385574i −0.795255 0.606275i \(-0.792663\pi\)
0.127422 + 0.991849i \(0.459330\pi\)
\(380\) 0 0
\(381\) −11.0294 + 19.1035i −0.565055 + 0.978704i
\(382\) 0 0
\(383\) 6.60256 + 3.81199i 0.337375 + 0.194784i 0.659111 0.752046i \(-0.270933\pi\)
−0.321736 + 0.946830i \(0.604266\pi\)
\(384\) 0 0
\(385\) 1.71744i 0.0875288i
\(386\) 0 0
\(387\) −3.47323 6.01581i −0.176554 0.305801i
\(388\) 0 0
\(389\) 4.91824 0.249364 0.124682 0.992197i \(-0.460209\pi\)
0.124682 + 0.992197i \(0.460209\pi\)
\(390\) 0 0
\(391\) −35.3638 −1.78843
\(392\) 0 0
\(393\) 3.92833 + 6.80406i 0.198158 + 0.343220i
\(394\) 0 0
\(395\) 9.19615i 0.462709i
\(396\) 0 0
\(397\) 16.9432 + 9.78215i 0.850353 + 0.490952i 0.860770 0.508994i \(-0.169982\pi\)
−0.0104167 + 0.999946i \(0.503316\pi\)
\(398\) 0 0
\(399\) −8.21405 + 14.2271i −0.411217 + 0.712248i
\(400\) 0 0
\(401\) −6.23851 + 3.60181i −0.311536 + 0.179866i −0.647614 0.761969i \(-0.724233\pi\)
0.336077 + 0.941834i \(0.390900\pi\)
\(402\) 0 0
\(403\) 1.11824 + 1.85358i 0.0557036 + 0.0923333i
\(404\) 0 0
\(405\) 0.866025 0.500000i 0.0430331 0.0248452i
\(406\) 0 0
\(407\) −3.48817 + 6.04168i −0.172902 + 0.299475i
\(408\) 0 0
\(409\) 24.6051 + 14.2057i 1.21664 + 0.702429i 0.964198 0.265182i \(-0.0854322\pi\)
0.252444 + 0.967611i \(0.418766\pi\)
\(410\) 0 0
\(411\) 15.2103i 0.750268i
\(412\) 0 0
\(413\) −11.9173 20.6413i −0.586410 1.01569i
\(414\) 0 0
\(415\) 10.0392 0.492805
\(416\) 0 0
\(417\) −13.5558 −0.663832
\(418\) 0 0
\(419\) 17.7177 + 30.6879i 0.865564 + 1.49920i 0.866486 + 0.499201i \(0.166373\pi\)
−0.000921968 1.00000i \(0.500293\pi\)
\(420\) 0 0
\(421\) 24.9625i 1.21660i 0.793708 + 0.608299i \(0.208148\pi\)
−0.793708 + 0.608299i \(0.791852\pi\)
\(422\) 0 0
\(423\) −4.10418 2.36955i −0.199552 0.115211i
\(424\) 0 0
\(425\) 2.39778 4.15307i 0.116309 0.201454i
\(426\) 0 0
\(427\) 24.6883 14.2538i 1.19475 0.689790i
\(428\) 0 0
\(429\) 2.45912 0.0473082i 0.118727 0.00228406i
\(430\) 0 0
\(431\) −0.463797 + 0.267773i −0.0223403 + 0.0128982i −0.511129 0.859504i \(-0.670772\pi\)
0.488788 + 0.872402i \(0.337439\pi\)
\(432\) 0 0
\(433\) 6.34967 10.9980i 0.305146 0.528528i −0.672148 0.740417i \(-0.734628\pi\)
0.977294 + 0.211889i \(0.0679615\pi\)
\(434\) 0 0
\(435\) −4.00851 2.31431i −0.192193 0.110963i
\(436\) 0 0
\(437\) 48.1188i 2.30183i
\(438\) 0 0
\(439\) −6.71752 11.6351i −0.320610 0.555312i 0.660004 0.751262i \(-0.270554\pi\)
−0.980614 + 0.195949i \(0.937221\pi\)
\(440\) 0 0
\(441\) 0.661498 0.0314999
\(442\) 0 0
\(443\) −1.83564 −0.0872138 −0.0436069 0.999049i \(-0.513885\pi\)
−0.0436069 + 0.999049i \(0.513885\pi\)
\(444\) 0 0
\(445\) 6.51652 + 11.2869i 0.308913 + 0.535052i
\(446\) 0 0
\(447\) 8.25334i 0.390369i
\(448\) 0 0
\(449\) 7.49598 + 4.32780i 0.353757 + 0.204242i 0.666339 0.745649i \(-0.267860\pi\)
−0.312582 + 0.949891i \(0.601194\pi\)
\(450\) 0 0
\(451\) −0.517638 + 0.896575i −0.0243746 + 0.0422181i
\(452\) 0 0
\(453\) 3.31954 1.91654i 0.155965 0.0900467i
\(454\) 0 0
\(455\) 0.174599 + 9.07579i 0.00818533 + 0.425480i
\(456\) 0 0
\(457\) 32.3298 18.6656i 1.51232 0.873141i 0.512428 0.858730i \(-0.328746\pi\)
0.999896 0.0144108i \(-0.00458726\pi\)
\(458\) 0 0
\(459\) −2.39778 + 4.15307i −0.111919 + 0.193849i
\(460\) 0 0
\(461\) −22.0005 12.7020i −1.02466 0.591590i −0.109212 0.994018i \(-0.534833\pi\)
−0.915451 + 0.402429i \(0.868166\pi\)
\(462\) 0 0
\(463\) 22.2244i 1.03285i −0.856331 0.516427i \(-0.827262\pi\)
0.856331 0.516427i \(-0.172738\pi\)
\(464\) 0 0
\(465\) −0.300199 0.519960i −0.0139214 0.0241126i
\(466\) 0 0
\(467\) 2.97104 0.137483 0.0687417 0.997634i \(-0.478102\pi\)
0.0687417 + 0.997634i \(0.478102\pi\)
\(468\) 0 0
\(469\) 11.0827 0.511750
\(470\) 0 0
\(471\) 10.9327 + 18.9360i 0.503752 + 0.872524i
\(472\) 0 0
\(473\) 4.73862i 0.217882i
\(474\) 0 0
\(475\) −5.65099 3.26260i −0.259285 0.149698i
\(476\) 0 0
\(477\) −5.18154 + 8.97469i −0.237246 + 0.410923i
\(478\) 0 0
\(479\) 15.6262 9.02178i 0.713979 0.412216i −0.0985537 0.995132i \(-0.531422\pi\)
0.812533 + 0.582916i \(0.198088\pi\)
\(480\) 0 0
\(481\) 17.8190 32.2818i 0.812475 1.47192i
\(482\) 0 0
\(483\) −16.0785 + 9.28290i −0.731595 + 0.422387i
\(484\) 0 0
\(485\) −4.60160 + 7.97021i −0.208948 + 0.361908i
\(486\) 0 0
\(487\) 31.9312 + 18.4355i 1.44694 + 0.835393i 0.998298 0.0583177i \(-0.0185736\pi\)
0.448644 + 0.893710i \(0.351907\pi\)
\(488\) 0 0
\(489\) 8.01826i 0.362598i
\(490\) 0 0
\(491\) −6.24668 10.8196i −0.281909 0.488280i 0.689946 0.723861i \(-0.257634\pi\)
−0.971855 + 0.235580i \(0.924301\pi\)
\(492\) 0 0
\(493\) 22.1968 0.999695
\(494\) 0 0
\(495\) −0.682163 −0.0306609
\(496\) 0 0
\(497\) −0.423086 0.732806i −0.0189780 0.0328709i
\(498\) 0 0
\(499\) 25.2232i 1.12914i −0.825384 0.564572i \(-0.809041\pi\)
0.825384 0.564572i \(-0.190959\pi\)
\(500\) 0 0
\(501\) −7.76368 4.48236i −0.346856 0.200257i
\(502\) 0 0
\(503\) −21.1455 + 36.6251i −0.942833 + 1.63303i −0.182800 + 0.983150i \(0.558516\pi\)
−0.760033 + 0.649884i \(0.774817\pi\)
\(504\) 0 0
\(505\) 12.7008 7.33279i 0.565177 0.326305i
\(506\) 0 0
\(507\) −12.9904 + 0.500000i −0.576923 + 0.0222058i
\(508\) 0 0
\(509\) −32.0972 + 18.5313i −1.42268 + 0.821387i −0.996528 0.0832618i \(-0.973466\pi\)
−0.426157 + 0.904649i \(0.640133\pi\)
\(510\) 0 0
\(511\) 5.66914 9.81925i 0.250788 0.434378i
\(512\) 0 0
\(513\) 5.65099 + 3.26260i 0.249497 + 0.144047i
\(514\) 0 0
\(515\) 4.97569i 0.219255i
\(516\) 0 0
\(517\) 1.61642 + 2.79972i 0.0710900 + 0.123131i
\(518\) 0 0
\(519\) −11.9530 −0.524680
\(520\) 0 0
\(521\) −15.6983 −0.687754 −0.343877 0.939015i \(-0.611740\pi\)
−0.343877 + 0.939015i \(0.611740\pi\)
\(522\) 0 0
\(523\) −11.8549 20.5333i −0.518378 0.897858i −0.999772 0.0213532i \(-0.993203\pi\)
0.481394 0.876505i \(-0.340131\pi\)
\(524\) 0 0
\(525\) 2.51764i 0.109879i
\(526\) 0 0
\(527\) 2.49350 + 1.43962i 0.108618 + 0.0627109i
\(528\) 0 0
\(529\) −15.6901 + 27.1761i −0.682178 + 1.18157i
\(530\) 0 0
\(531\) −8.19868 + 4.73351i −0.355792 + 0.205417i
\(532\) 0 0
\(533\) 2.64431 4.79057i 0.114538 0.207503i
\(534\) 0 0
\(535\) 4.96050 2.86394i 0.214461 0.123819i
\(536\) 0 0
\(537\) 9.60426 16.6351i 0.414454 0.717856i
\(538\) 0 0
\(539\) −0.390794 0.225625i −0.0168327 0.00971835i
\(540\) 0 0
\(541\) 33.9788i 1.46086i 0.682987 + 0.730431i \(0.260681\pi\)
−0.682987 + 0.730431i \(0.739319\pi\)
\(542\) 0 0
\(543\) 7.12630 + 12.3431i 0.305819 + 0.529694i
\(544\) 0 0
\(545\) −5.45465 −0.233652
\(546\) 0 0
\(547\) −11.5043 −0.491888 −0.245944 0.969284i \(-0.579098\pi\)
−0.245944 + 0.969284i \(0.579098\pi\)
\(548\) 0 0
\(549\) −5.66158 9.80614i −0.241630 0.418516i
\(550\) 0 0
\(551\) 30.2027i 1.28668i
\(552\) 0 0
\(553\) 20.0507 + 11.5763i 0.852644 + 0.492274i
\(554\) 0 0
\(555\) −5.11339 + 8.85666i −0.217051 + 0.375944i
\(556\) 0 0
\(557\) 11.4808 6.62845i 0.486458 0.280856i −0.236646 0.971596i \(-0.576048\pi\)
0.723104 + 0.690739i \(0.242715\pi\)
\(558\) 0 0
\(559\) −0.481740 25.0412i −0.0203754 1.05913i
\(560\) 0 0
\(561\) 2.83307 1.63567i 0.119612 0.0690582i
\(562\) 0 0
\(563\) −19.1263 + 33.1277i −0.806077 + 1.39617i 0.109485 + 0.993988i \(0.465080\pi\)
−0.915562 + 0.402177i \(0.868254\pi\)
\(564\) 0 0
\(565\) −7.56512 4.36773i −0.318267 0.183752i
\(566\) 0 0
\(567\) 2.51764i 0.105731i
\(568\) 0 0
\(569\) 1.68122 + 2.91196i 0.0704803 + 0.122076i 0.899112 0.437719i \(-0.144213\pi\)
−0.828632 + 0.559794i \(0.810880\pi\)
\(570\) 0 0
\(571\) 11.7625 0.492246 0.246123 0.969239i \(-0.420843\pi\)
0.246123 + 0.969239i \(0.420843\pi\)
\(572\) 0 0
\(573\) −9.68117 −0.404437
\(574\) 0 0
\(575\) −3.68715 6.38633i −0.153765 0.266328i
\(576\) 0 0
\(577\) 9.86954i 0.410874i −0.978670 0.205437i \(-0.934138\pi\)
0.978670 0.205437i \(-0.0658616\pi\)
\(578\) 0 0
\(579\) −11.1428 6.43331i −0.463080 0.267359i
\(580\) 0 0
\(581\) −12.6375 + 21.8888i −0.524293 + 0.908102i
\(582\) 0 0
\(583\) 6.12220 3.53465i 0.253556 0.146390i
\(584\) 0 0
\(585\) 3.60488 0.0693504i 0.149044 0.00286728i
\(586\) 0 0
\(587\) 23.5364 13.5888i 0.971453 0.560869i 0.0717740 0.997421i \(-0.477134\pi\)
0.899679 + 0.436552i \(0.143801\pi\)
\(588\) 0 0
\(589\) 1.95886 3.39285i 0.0807134 0.139800i
\(590\) 0 0
\(591\) 14.6883 + 8.48030i 0.604196 + 0.348833i
\(592\) 0 0
\(593\) 44.1747i 1.81404i −0.421090 0.907019i \(-0.638352\pi\)
0.421090 0.907019i \(-0.361648\pi\)
\(594\) 0 0
\(595\) 6.03674 + 10.4559i 0.247482 + 0.428651i
\(596\) 0 0
\(597\) 2.60521 0.106624
\(598\) 0 0
\(599\) 16.1581 0.660203 0.330101 0.943945i \(-0.392917\pi\)
0.330101 + 0.943945i \(0.392917\pi\)
\(600\) 0 0
\(601\) 7.11685 + 12.3267i 0.290302 + 0.502819i 0.973881 0.227058i \(-0.0729108\pi\)
−0.683579 + 0.729877i \(0.739577\pi\)
\(602\) 0 0
\(603\) 4.40201i 0.179264i
\(604\) 0 0
\(605\) −9.12328 5.26733i −0.370914 0.214147i
\(606\) 0 0
\(607\) 3.96336 6.86475i 0.160868 0.278631i −0.774312 0.632804i \(-0.781904\pi\)
0.935180 + 0.354172i \(0.115237\pi\)
\(608\) 0 0
\(609\) 10.0920 5.82660i 0.408947 0.236106i
\(610\) 0 0
\(611\) −8.82658 14.6308i −0.357085 0.591897i
\(612\) 0 0
\(613\) −16.9541 + 9.78846i −0.684770 + 0.395352i −0.801650 0.597794i \(-0.796044\pi\)
0.116880 + 0.993146i \(0.462711\pi\)
\(614\) 0 0
\(615\) −0.758819 + 1.31431i −0.0305985 + 0.0529982i
\(616\) 0 0
\(617\) 26.3970 + 15.2403i 1.06270 + 0.613552i 0.926179 0.377084i \(-0.123073\pi\)
0.136525 + 0.990637i \(0.456407\pi\)
\(618\) 0 0
\(619\) 36.7094i 1.47548i −0.675087 0.737738i \(-0.735894\pi\)
0.675087 0.737738i \(-0.264106\pi\)
\(620\) 0 0
\(621\) 3.68715 + 6.38633i 0.147960 + 0.256274i
\(622\) 0 0
\(623\) −32.8125 −1.31460
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −2.22562 3.85490i −0.0888829 0.153950i
\(628\) 0 0
\(629\) 49.0431i 1.95548i
\(630\) 0 0
\(631\) −5.94414 3.43185i −0.236633 0.136620i 0.376996 0.926215i \(-0.376957\pi\)
−0.613628 + 0.789595i \(0.710291\pi\)
\(632\) 0 0
\(633\) 0.649913 1.12568i 0.0258317 0.0447418i
\(634\) 0 0
\(635\) 19.1035 11.0294i 0.758101 0.437690i
\(636\) 0 0
\(637\) 2.08808 + 1.15258i 0.0827329 + 0.0456670i
\(638\) 0 0
\(639\) −0.291069 + 0.168049i −0.0115145 + 0.00664791i
\(640\) 0 0
\(641\) 7.31212 12.6650i 0.288812 0.500236i −0.684715 0.728811i \(-0.740073\pi\)
0.973526 + 0.228575i \(0.0734066\pi\)
\(642\) 0 0
\(643\) 18.5342 + 10.7007i 0.730919 + 0.421996i 0.818758 0.574138i \(-0.194663\pi\)
−0.0878394 + 0.996135i \(0.527996\pi\)
\(644\) 0 0
\(645\) 6.94646i 0.273517i
\(646\) 0 0
\(647\) −7.37395 12.7721i −0.289900 0.502122i 0.683886 0.729589i \(-0.260289\pi\)
−0.973786 + 0.227468i \(0.926955\pi\)
\(648\) 0 0
\(649\) 6.45805 0.253501
\(650\) 0 0
\(651\) 1.51159 0.0592437
\(652\) 0 0
\(653\) 6.96066 + 12.0562i 0.272392 + 0.471796i 0.969474 0.245195i \(-0.0788520\pi\)
−0.697082 + 0.716991i \(0.745519\pi\)
\(654\) 0 0
\(655\) 7.85666i 0.306985i
\(656\) 0 0
\(657\) −3.90018 2.25177i −0.152161 0.0878499i
\(658\) 0 0
\(659\) −1.60229 + 2.77524i −0.0624162 + 0.108108i −0.895545 0.444971i \(-0.853214\pi\)
0.833129 + 0.553079i \(0.186547\pi\)
\(660\) 0 0
\(661\) −26.8607 + 15.5080i −1.04476 + 0.603192i −0.921178 0.389142i \(-0.872771\pi\)
−0.123582 + 0.992334i \(0.539438\pi\)
\(662\) 0 0
\(663\) −14.8051 + 8.93173i −0.574981 + 0.346880i
\(664\) 0 0
\(665\) 14.2271 8.21405i 0.551705 0.318527i
\(666\) 0 0
\(667\) 17.0664 29.5599i 0.660815 1.14456i
\(668\) 0 0
\(669\) −16.6814 9.63103i −0.644941 0.372357i
\(670\) 0 0
\(671\) 7.72424i 0.298191i
\(672\) 0 0
\(673\) 9.74082 + 16.8716i 0.375481 + 0.650352i 0.990399 0.138239i \(-0.0441442\pi\)
−0.614918 + 0.788591i \(0.710811\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) 44.0602 1.69337 0.846685 0.532095i \(-0.178595\pi\)
0.846685 + 0.532095i \(0.178595\pi\)
\(678\) 0 0
\(679\) −11.5852 20.0661i −0.444598 0.770066i
\(680\) 0 0
\(681\) 22.2597i 0.852992i
\(682\) 0 0
\(683\) 15.1167 + 8.72765i 0.578426 + 0.333954i 0.760507 0.649329i \(-0.224950\pi\)
−0.182082 + 0.983283i \(0.558284\pi\)
\(684\) 0 0
\(685\) 7.60514 13.1725i 0.290578 0.503295i
\(686\) 0 0
\(687\) 9.12730 5.26965i 0.348228 0.201050i
\(688\) 0 0
\(689\) −31.9934 + 19.3013i −1.21885 + 0.735319i
\(690\) 0 0
\(691\) 26.4277 15.2580i 1.00536 0.580443i 0.0955281 0.995427i \(-0.469546\pi\)
0.909829 + 0.414984i \(0.136213\pi\)
\(692\) 0 0
\(693\) 0.858719 1.48735i 0.0326201 0.0564996i
\(694\) 0 0
\(695\) 11.7397 + 6.77792i 0.445312 + 0.257101i
\(696\) 0 0
\(697\) 7.27792i 0.275671i
\(698\) 0 0
\(699\) −14.1758 24.5533i −0.536179 0.928689i
\(700\) 0 0
\(701\) −26.9510 −1.01792 −0.508962 0.860789i \(-0.669971\pi\)
−0.508962 + 0.860789i \(0.669971\pi\)
\(702\) 0 0
\(703\) −66.7318 −2.51684
\(704\) 0 0
\(705\) 2.36955 + 4.10418i 0.0892424 + 0.154572i
\(706\) 0 0
\(707\) 36.9226i 1.38862i
\(708\) 0 0
\(709\) −0.508972 0.293855i −0.0191148 0.0110360i 0.490412 0.871491i \(-0.336846\pi\)
−0.509527 + 0.860455i \(0.670180\pi\)
\(710\) 0 0
\(711\) 4.59808 7.96410i 0.172441 0.298677i
\(712\) 0 0
\(713\) 3.83434 2.21376i 0.143597 0.0829058i
\(714\) 0 0
\(715\) −2.15331 1.18859i −0.0805293 0.0444507i
\(716\) 0 0
\(717\) 6.72607 3.88330i 0.251190 0.145024i
\(718\) 0 0
\(719\) −4.67083 + 8.09011i −0.174192 + 0.301710i −0.939882 0.341501i \(-0.889065\pi\)
0.765689 + 0.643211i \(0.222398\pi\)
\(720\) 0 0
\(721\) −10.8487 6.26349i −0.404026 0.233265i
\(722\) 0 0
\(723\) 0.295929i 0.0110057i
\(724\) 0 0
\(725\) 2.31431 + 4.00851i 0.0859514 + 0.148872i
\(726\) 0 0
\(727\) −6.51180 −0.241509 −0.120755 0.992682i \(-0.538531\pi\)
−0.120755 + 0.992682i \(0.538531\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −16.6561 28.8492i −0.616047 1.06702i
\(732\) 0 0
\(733\) 20.7661i 0.767014i −0.923538 0.383507i \(-0.874716\pi\)
0.923538 0.383507i \(-0.125284\pi\)
\(734\) 0 0
\(735\) −0.572874 0.330749i −0.0211308 0.0121999i
\(736\) 0 0
\(737\) −1.50144 + 2.60057i −0.0553063 + 0.0957934i
\(738\) 0 0
\(739\) −37.4028 + 21.5945i −1.37588 + 0.794367i −0.991661 0.128874i \(-0.958864\pi\)
−0.384223 + 0.923240i \(0.625531\pi\)
\(740\) 0 0
\(741\) 12.1532 + 20.1449i 0.446459 + 0.740042i
\(742\) 0 0
\(743\) 8.44574 4.87615i 0.309844 0.178889i −0.337013 0.941500i \(-0.609416\pi\)
0.646857 + 0.762612i \(0.276083\pi\)
\(744\) 0 0
\(745\) −4.12667 + 7.14760i −0.151189 + 0.261868i
\(746\) 0 0
\(747\) 8.69419 + 5.01960i 0.318104 + 0.183657i
\(748\) 0 0
\(749\) 14.4207i 0.526923i
\(750\) 0 0
\(751\) 20.1431 + 34.8888i 0.735031 + 1.27311i 0.954710 + 0.297539i \(0.0961658\pi\)
−0.219679 + 0.975572i \(0.570501\pi\)
\(752\) 0 0
\(753\) −2.15107 −0.0783894
\(754\) 0 0
\(755\) −3.83307 −0.139500
\(756\) 0 0
\(757\) −4.06486 7.04055i −0.147740 0.255893i 0.782652 0.622460i \(-0.213867\pi\)
−0.930392 + 0.366567i \(0.880533\pi\)
\(758\) 0 0
\(759\) 5.03047i 0.182594i
\(760\) 0 0
\(761\) 12.1452 + 7.01203i 0.440263 + 0.254186i 0.703709 0.710488i \(-0.251526\pi\)
−0.263446 + 0.964674i \(0.584859\pi\)
\(762\) 0 0
\(763\) 6.86642 11.8930i 0.248581 0.430555i
\(764\) 0 0
\(765\) 4.15307 2.39778i 0.150155 0.0866918i
\(766\) 0 0
\(767\) −34.1275 + 0.656541i −1.23227 + 0.0237063i
\(768\) 0 0
\(769\) 31.2076 18.0177i 1.12538 0.649736i 0.182607 0.983186i \(-0.441546\pi\)
0.942768 + 0.333450i \(0.108213\pi\)
\(770\) 0 0
\(771\) −1.89682 + 3.28538i −0.0683121 + 0.118320i
\(772\) 0 0
\(773\) 15.9183 + 9.19044i 0.572542 + 0.330557i 0.758164 0.652064i \(-0.226097\pi\)
−0.185622 + 0.982621i \(0.559430\pi\)
\(774\) 0 0
\(775\) 0.600398i 0.0215669i
\(776\) 0 0
\(777\) −12.8737 22.2979i −0.461840 0.799931i
\(778\) 0 0
\(779\) −9.90289 −0.354808
\(780\) 0 0
\(781\) 0.229273 0.00820404
\(782\) 0 0
\(783\) −2.31431 4.00851i −0.0827068 0.143252i
\(784\) 0 0
\(785\) 21.8654i 0.780409i
\(786\) 0 0
\(787\) −2.22029 1.28189i −0.0791449 0.0456943i 0.459905 0.887968i \(-0.347883\pi\)
−0.539050 + 0.842274i \(0.681217\pi\)
\(788\) 0 0
\(789\) −5.59153 + 9.68481i −0.199064 + 0.344788i
\(790\) 0 0
\(791\) 19.0462 10.9964i 0.677206 0.390985i
\(792\) 0 0
\(793\) −0.785265 40.8187i −0.0278856 1.44951i
\(794\) 0 0
\(795\) 8.97469 5.18154i 0.318300 0.183770i
\(796\) 0 0
\(797\) 14.6111 25.3072i 0.517552 0.896427i −0.482240 0.876039i \(-0.660177\pi\)
0.999792 0.0203879i \(-0.00649011\pi\)
\(798\) 0 0
\(799\) −19.6818 11.3633i −0.696293 0.402005i
\(800\) 0 0
\(801\) 13.0330i 0.460500i
\(802\) 0 0
\(803\) 1.53607 + 2.66056i 0.0542069 + 0.0938891i
\(804\) 0 0
\(805\) 18.5658 0.654359
\(806\) 0 0
\(807\) 27.7079 0.975364
\(808\) 0 0
\(809\) −10.5166 18.2154i −0.369745 0.640418i 0.619780 0.784776i \(-0.287222\pi\)
−0.989526 + 0.144358i \(0.953888\pi\)
\(810\) 0 0
\(811\) 39.9501i 1.40284i −0.712750 0.701419i \(-0.752550\pi\)
0.712750 0.701419i \(-0.247450\pi\)
\(812\) 0 0
\(813\) −27.0381 15.6104i −0.948267 0.547482i
\(814\) 0 0
\(815\) 4.00913 6.94402i 0.140434 0.243238i
\(816\) 0 0
\(817\) −39.2544 + 22.6635i −1.37334 + 0.792897i
\(818\) 0 0
\(819\) −4.38669 + 7.94717i −0.153283 + 0.277697i
\(820\) 0 0
\(821\) 36.6162 21.1404i 1.27791 0.737804i 0.301450 0.953482i \(-0.402529\pi\)
0.976465 + 0.215678i \(0.0691961\pi\)
\(822\) 0 0
\(823\) 3.91824 6.78658i 0.136581 0.236565i −0.789619 0.613597i \(-0.789722\pi\)
0.926200 + 0.377032i \(0.123055\pi\)
\(824\) 0 0
\(825\) 0.590770 + 0.341081i 0.0205680 + 0.0118749i
\(826\) 0 0
\(827\) 36.0916i 1.25503i −0.778605 0.627515i \(-0.784072\pi\)
0.778605 0.627515i \(-0.215928\pi\)
\(828\) 0 0
\(829\) −12.7220 22.0351i −0.441852 0.765309i 0.555975 0.831199i \(-0.312345\pi\)
−0.997827 + 0.0658893i \(0.979012\pi\)
\(830\) 0 0
\(831\) −2.15039 −0.0745963
\(832\) 0 0
\(833\) 3.17225 0.109912
\(834\) 0 0
\(835\) 4.48236 + 7.76368i 0.155119 + 0.268673i
\(836\) 0 0
\(837\) 0.600398i 0.0207528i
\(838\) 0 0
\(839\) −41.3763 23.8886i −1.42847 0.824727i −0.431469 0.902128i \(-0.642004\pi\)
−0.997000 + 0.0774010i \(0.975338\pi\)
\(840\) 0 0
\(841\) 3.78791 6.56085i 0.130618 0.226236i
\(842\) 0 0
\(843\) 17.3475 10.0156i 0.597478 0.344954i
\(844\) 0 0
\(845\) 11.5000 + 6.06218i 0.395612 + 0.208545i
\(846\) 0 0
\(847\) 22.9691 13.2612i 0.789228 0.455661i
\(848\) 0 0
\(849\) 8.45461 14.6438i 0.290161 0.502574i
\(850\) 0 0
\(851\) −65.3116 37.7077i −2.23885 1.29260i
\(852\) 0 0
\(853\) 3.49165i 0.119552i 0.998212 + 0.0597759i \(0.0190386\pi\)
−0.998212 + 0.0597759i \(0.980961\pi\)
\(854\) 0 0
\(855\) −3.26260 5.65099i −0.111579 0.193260i
\(856\) 0 0
\(857\) 24.0170 0.820404 0.410202 0.911995i \(-0.365458\pi\)
0.410202 + 0.911995i \(0.365458\pi\)
\(858\) 0 0
\(859\) 1.09887 0.0374928 0.0187464 0.999824i \(-0.494032\pi\)
0.0187464 + 0.999824i \(0.494032\pi\)
\(860\) 0 0
\(861\) −1.91043 3.30896i −0.0651073 0.112769i
\(862\) 0 0
\(863\) 19.6082i 0.667472i −0.942667 0.333736i \(-0.891691\pi\)
0.942667 0.333736i \(-0.108309\pi\)
\(864\) 0 0
\(865\) 10.3516 + 5.97652i 0.351966 + 0.203208i
\(866\) 0 0
\(867\) −2.99867 + 5.19386i −0.101840 + 0.176393i
\(868\) 0 0
\(869\) −5.43281 + 3.13664i −0.184296 + 0.106403i
\(870\) 0 0
\(871\) 7.66998 13.8954i 0.259887 0.470826i
\(872\) 0 0
\(873\) −7.97021 + 4.60160i −0.269751 + 0.155741i
\(874\) 0 0
\(875\) −1.25882 + 2.18034i −0.0425559 + 0.0737089i
\(876\) 0 0
\(877\) 30.7427 + 17.7493i 1.03811 + 0.599352i 0.919297 0.393564i \(-0.128758\pi\)
0.118812 + 0.992917i \(0.462091\pi\)
\(878\) 0 0
\(879\) 12.6734i 0.427462i
\(880\) 0 0
\(881\) −6.30663 10.9234i −0.212476 0.368019i 0.740013 0.672592i \(-0.234819\pi\)
−0.952489 + 0.304574i \(0.901486\pi\)
\(882\) 0 0
\(883\) −16.9815 −0.571474 −0.285737 0.958308i \(-0.592238\pi\)
−0.285737 + 0.958308i \(0.592238\pi\)
\(884\) 0 0
\(885\) 9.46702 0.318230
\(886\) 0 0
\(887\) 13.4683 + 23.3278i 0.452222 + 0.783272i 0.998524 0.0543167i \(-0.0172980\pi\)
−0.546302 + 0.837589i \(0.683965\pi\)
\(888\) 0 0
\(889\) 55.5362i 1.86263i
\(890\) 0 0
\(891\) −0.590770 0.341081i −0.0197915 0.0114267i
\(892\) 0 0
\(893\) −15.4618 + 26.7806i −0.517409 + 0.896179i
\(894\) 0 0
\(895\) −16.6351 + 9.60426i −0.556049 + 0.321035i
\(896\) 0 0
\(897\) 0.511410 + 26.5835i 0.0170755 + 0.887596i
\(898\) 0 0
\(899\) −2.40670 + 1.38951i −0.0802680 + 0.0463427i
\(900\) 0 0
\(901\) −24.8484 + 43.0386i −0.827819 + 1.43382i
\(902\) 0 0
\(903\) −15.1456 8.74434i −0.504015 0.290993i
\(904\) 0 0
\(905\) 14.2526i 0.473773i
\(906\) 0 0
\(907\) 11.5207 + 19.9544i 0.382538 + 0.662575i 0.991424 0.130683i \(-0.0417169\pi\)
−0.608887 + 0.793257i \(0.708384\pi\)
\(908\) 0 0
\(909\) 14.6656 0.486427
\(910\) 0 0
\(911\) −22.8698 −0.757709 −0.378854 0.925456i \(-0.623682\pi\)
−0.378854 + 0.925456i \(0.623682\pi\)
\(912\) 0 0
\(913\) −3.42418 5.93086i −0.113324 0.196283i
\(914\) 0 0
\(915\) 11.3232i 0.374332i
\(916\) 0 0
\(917\) 17.1302 + 9.89011i 0.565688 + 0.326600i
\(918\) 0 0
\(919\) −13.9537 + 24.1686i −0.460291 + 0.797248i −0.998975 0.0452601i \(-0.985588\pi\)
0.538684 + 0.842508i \(0.318922\pi\)
\(920\) 0 0
\(921\) −6.53622 + 3.77369i −0.215376 + 0.124347i
\(922\) 0 0
\(923\) −1.21159 + 0.0233085i −0.0398801 + 0.000767208i
\(924\) 0 0
\(925\) 8.85666 5.11339i 0.291205 0.168127i
\(926\) 0 0
\(927\) −2.48784 + 4.30907i −0.0817115 + 0.141528i
\(928\) 0 0
\(929\) 30.6659 + 17.7050i 1.00612 + 0.580882i 0.910052 0.414494i \(-0.136041\pi\)
0.0960642 + 0.995375i \(0.469375\pi\)
\(930\) 0 0
\(931\) 4.31641i 0.141465i
\(932\) 0 0
\(933\) −11.0462 19.1326i −0.361636 0.626372i
\(934\) 0 0
\(935\) −3.27135 −0.106985
\(936\) 0 0
\(937\) 11.9030 0.388855 0.194428 0.980917i \(-0.437715\pi\)
0.194428 + 0.980917i \(0.437715\pi\)
\(938\) 0 0
\(939\) 5.46958 + 9.47360i 0.178493 + 0.309159i
\(940\) 0 0
\(941\) 5.02987i 0.163969i 0.996634 + 0.0819845i \(0.0261258\pi\)
−0.996634 + 0.0819845i \(0.973874\pi\)
\(942\) 0 0
\(943\) −9.69213 5.59575i −0.315619 0.182223i
\(944\) 0 0
\(945\) 1.25882 2.18034i 0.0409494 0.0709264i
\(946\) 0 0
\(947\) 7.70716 4.44973i 0.250449 0.144597i −0.369521 0.929222i \(-0.620478\pi\)
0.619970 + 0.784626i \(0.287145\pi\)
\(948\) 0 0
\(949\) −8.38785 13.9035i −0.272281 0.451328i
\(950\) 0 0
\(951\) 18.1756 10.4937i 0.589383 0.340280i
\(952\) 0 0
\(953\) 0.298508 0.517032i 0.00966963 0.0167483i −0.861150 0.508351i \(-0.830255\pi\)
0.870820 + 0.491602i \(0.163589\pi\)
\(954\) 0 0
\(955\) 8.38414 + 4.84058i 0.271304 + 0.156638i
\(956\) 0 0
\(957\) 3.15748i 0.102067i
\(958\) 0 0
\(959\) 19.1470 + 33.1636i 0.618289 + 1.07091i
\(960\) 0 0
\(961\) 30.6395 0.988372
\(962\) 0 0
\(963\) 5.72789 0.184579
\(964\) 0 0
\(965\) 6.43331 + 11.1428i 0.207096 + 0.358700i
\(966\) 0 0
\(967\) 33.2641i 1.06970i 0.844946 + 0.534851i \(0.179632\pi\)
−0.844946 + 0.534851i \(0.820368\pi\)
\(968\) 0 0
\(969\) 27.0996 + 15.6460i 0.870566 + 0.502621i
\(970\) 0 0
\(971\) 19.1490 33.1671i 0.614521 1.06438i −0.375947 0.926641i \(-0.622683\pi\)
0.990468 0.137740i \(-0.0439840\pi\)
\(972\) 0 0
\(973\) −29.5563 + 17.0643i −0.947532 + 0.547058i
\(974\) 0 0
\(975\) −3.15660 1.74238i −0.101092 0.0558009i
\(976\) 0 0
\(977\) −11.0098 + 6.35651i −0.352235 + 0.203363i −0.665669 0.746247i \(-0.731854\pi\)
0.313434 + 0.949610i \(0.398520\pi\)
\(978\) 0 0
\(979\) 4.44533 7.69953i 0.142073 0.246078i
\(980\) 0 0
\(981\) −4.72386 2.72732i −0.150821 0.0870768i
\(982\) 0 0
\(983\) 48.3272i 1.54140i 0.637198 + 0.770700i \(0.280093\pi\)
−0.637198 + 0.770700i \(0.719907\pi\)
\(984\) 0 0
\(985\) −8.48030 14.6883i −0.270205 0.468008i
\(986\) 0 0
\(987\) −11.9313 −0.379779
\(988\) 0 0
\(989\) −51.2253 −1.62887
\(990\) 0 0
\(991\) −1.74548 3.02326i −0.0554469 0.0960369i 0.836970 0.547249i \(-0.184325\pi\)
−0.892417 + 0.451212i \(0.850992\pi\)
\(992\) 0 0
\(993\) 13.9754i 0.443497i
\(994\) 0 0
\(995\) −2.25617 1.30260i −0.0715256 0.0412953i
\(996\) 0 0
\(997\) −2.46671 + 4.27247i −0.0781215 + 0.135310i −0.902439 0.430817i \(-0.858226\pi\)
0.824318 + 0.566127i \(0.191559\pi\)
\(998\) 0 0
\(999\) −8.85666 + 5.11339i −0.280212 + 0.161781i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 780.2.cc.b.361.3 yes 8
3.2 odd 2 2340.2.dj.c.361.1 8
5.2 odd 4 3900.2.bw.l.49.2 8
5.3 odd 4 3900.2.bw.g.49.3 8
5.4 even 2 3900.2.cd.l.2701.4 8
13.4 even 6 inner 780.2.cc.b.121.1 8
39.17 odd 6 2340.2.dj.c.901.3 8
65.4 even 6 3900.2.cd.l.901.4 8
65.17 odd 12 3900.2.bw.g.2149.3 8
65.43 odd 12 3900.2.bw.l.2149.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.cc.b.121.1 8 13.4 even 6 inner
780.2.cc.b.361.3 yes 8 1.1 even 1 trivial
2340.2.dj.c.361.1 8 3.2 odd 2
2340.2.dj.c.901.3 8 39.17 odd 6
3900.2.bw.g.49.3 8 5.3 odd 4
3900.2.bw.g.2149.3 8 65.17 odd 12
3900.2.bw.l.49.2 8 5.2 odd 4
3900.2.bw.l.2149.2 8 65.43 odd 12
3900.2.cd.l.901.4 8 65.4 even 6
3900.2.cd.l.2701.4 8 5.4 even 2