Properties

Label 2340.2.dj.c.901.3
Level $2340$
Weight $2$
Character 2340.901
Analytic conductor $18.685$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(361,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.dj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 780)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.3
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 2340.901
Dual form 2340.2.dj.c.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{5} +(-2.18034 + 1.25882i) q^{7} +(-0.590770 - 0.341081i) q^{11} +(-3.08725 - 1.86250i) q^{13} +(2.39778 + 4.15307i) q^{17} +(5.65099 - 3.26260i) q^{19} +(-3.68715 + 6.38633i) q^{23} -1.00000 q^{25} +(2.31431 - 4.00851i) q^{29} +0.600398i q^{31} +(-1.25882 - 2.18034i) q^{35} +(-8.85666 - 5.11339i) q^{37} +(1.31431 + 0.758819i) q^{41} +(-3.47323 - 6.01581i) q^{43} +4.73910i q^{47} +(-0.330749 + 0.572874i) q^{49} -10.3631 q^{53} +(0.341081 - 0.590770i) q^{55} +(-8.19868 + 4.73351i) q^{59} +(-5.66158 - 9.80614i) q^{61} +(1.86250 - 3.08725i) q^{65} +(-3.81225 - 2.20100i) q^{67} +(-0.291069 + 0.168049i) q^{71} -4.50354i q^{73} +1.71744 q^{77} -9.19615 q^{79} -10.0392i q^{83} +(-4.15307 + 2.39778i) q^{85} +(-11.2869 - 6.51652i) q^{89} +(9.07579 + 0.174599i) q^{91} +(3.26260 + 5.65099i) q^{95} +(7.97021 - 4.60160i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{11} - 4 q^{17} + 12 q^{19} - 4 q^{23} - 8 q^{25} + 8 q^{29} - 8 q^{35} - 24 q^{37} - 16 q^{43} - 4 q^{49} - 16 q^{53} + 4 q^{55} - 24 q^{59} + 8 q^{61} + 24 q^{67} + 12 q^{71} + 8 q^{77} - 32 q^{79}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) −2.18034 + 1.25882i −0.824091 + 0.475789i −0.851825 0.523826i \(-0.824504\pi\)
0.0277345 + 0.999615i \(0.491171\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.590770 0.341081i −0.178124 0.102840i 0.408287 0.912854i \(-0.366126\pi\)
−0.586411 + 0.810014i \(0.699460\pi\)
\(12\) 0 0
\(13\) −3.08725 1.86250i −0.856248 0.516565i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.39778 + 4.15307i 0.581546 + 1.00727i 0.995296 + 0.0968774i \(0.0308855\pi\)
−0.413750 + 0.910391i \(0.635781\pi\)
\(18\) 0 0
\(19\) 5.65099 3.26260i 1.29643 0.748492i 0.316641 0.948545i \(-0.397445\pi\)
0.979785 + 0.200053i \(0.0641116\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.68715 + 6.38633i −0.768823 + 1.33164i 0.169378 + 0.985551i \(0.445824\pi\)
−0.938201 + 0.346090i \(0.887509\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.31431 4.00851i 0.429757 0.744361i −0.567094 0.823653i \(-0.691933\pi\)
0.996851 + 0.0792916i \(0.0252658\pi\)
\(30\) 0 0
\(31\) 0.600398i 0.107835i 0.998545 + 0.0539174i \(0.0171708\pi\)
−0.998545 + 0.0539174i \(0.982829\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.25882 2.18034i −0.212779 0.368544i
\(36\) 0 0
\(37\) −8.85666 5.11339i −1.45603 0.840636i −0.457213 0.889357i \(-0.651152\pi\)
−0.998812 + 0.0487209i \(0.984486\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.31431 + 0.758819i 0.205261 + 0.118508i 0.599107 0.800669i \(-0.295522\pi\)
−0.393846 + 0.919176i \(0.628856\pi\)
\(42\) 0 0
\(43\) −3.47323 6.01581i −0.529663 0.917403i −0.999401 0.0345974i \(-0.988985\pi\)
0.469738 0.882806i \(-0.344348\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.73910i 0.691269i 0.938369 + 0.345634i \(0.112336\pi\)
−0.938369 + 0.345634i \(0.887664\pi\)
\(48\) 0 0
\(49\) −0.330749 + 0.572874i −0.0472499 + 0.0818392i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.3631 −1.42348 −0.711739 0.702444i \(-0.752092\pi\)
−0.711739 + 0.702444i \(0.752092\pi\)
\(54\) 0 0
\(55\) 0.341081 0.590770i 0.0459914 0.0796594i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.19868 + 4.73351i −1.06738 + 0.616251i −0.927464 0.373913i \(-0.878016\pi\)
−0.139914 + 0.990164i \(0.544682\pi\)
\(60\) 0 0
\(61\) −5.66158 9.80614i −0.724891 1.25555i −0.959019 0.283342i \(-0.908557\pi\)
0.234128 0.972206i \(-0.424777\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.86250 3.08725i 0.231015 0.382926i
\(66\) 0 0
\(67\) −3.81225 2.20100i −0.465740 0.268895i 0.248715 0.968577i \(-0.419992\pi\)
−0.714455 + 0.699682i \(0.753325\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.291069 + 0.168049i −0.0345435 + 0.0199437i −0.517172 0.855881i \(-0.673015\pi\)
0.482629 + 0.875825i \(0.339682\pi\)
\(72\) 0 0
\(73\) 4.50354i 0.527100i −0.964646 0.263550i \(-0.915107\pi\)
0.964646 0.263550i \(-0.0848933\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.71744 0.195720
\(78\) 0 0
\(79\) −9.19615 −1.03465 −0.517324 0.855790i \(-0.673072\pi\)
−0.517324 + 0.855790i \(0.673072\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.0392i 1.10194i −0.834524 0.550972i \(-0.814257\pi\)
0.834524 0.550972i \(-0.185743\pi\)
\(84\) 0 0
\(85\) −4.15307 + 2.39778i −0.450464 + 0.260075i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −11.2869 6.51652i −1.19641 0.690750i −0.236660 0.971593i \(-0.576053\pi\)
−0.959754 + 0.280843i \(0.909386\pi\)
\(90\) 0 0
\(91\) 9.07579 + 0.174599i 0.951402 + 0.0183030i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.26260 + 5.65099i 0.334736 + 0.579779i
\(96\) 0 0
\(97\) 7.97021 4.60160i 0.809252 0.467222i −0.0374442 0.999299i \(-0.511922\pi\)
0.846696 + 0.532077i \(0.178588\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.33279 12.7008i 0.729640 1.26377i −0.227396 0.973802i \(-0.573021\pi\)
0.957036 0.289971i \(-0.0936456\pi\)
\(102\) 0 0
\(103\) 4.97569 0.490269 0.245135 0.969489i \(-0.421168\pi\)
0.245135 + 0.969489i \(0.421168\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.86394 4.96050i 0.276868 0.479549i −0.693737 0.720229i \(-0.744037\pi\)
0.970605 + 0.240679i \(0.0773702\pi\)
\(108\) 0 0
\(109\) 5.45465i 0.522461i −0.965276 0.261230i \(-0.915872\pi\)
0.965276 0.261230i \(-0.0841282\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.36773 + 7.56512i 0.410881 + 0.711667i 0.994986 0.100011i \(-0.0318878\pi\)
−0.584105 + 0.811678i \(0.698554\pi\)
\(114\) 0 0
\(115\) −6.38633 3.68715i −0.595528 0.343828i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −10.4559 6.03674i −0.958494 0.553387i
\(120\) 0 0
\(121\) −5.26733 9.12328i −0.478848 0.829389i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −11.0294 + 19.1035i −0.978704 + 1.69516i −0.311576 + 0.950221i \(0.600857\pi\)
−0.667128 + 0.744943i \(0.732477\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.85666 0.686439 0.343220 0.939255i \(-0.388483\pi\)
0.343220 + 0.939255i \(0.388483\pi\)
\(132\) 0 0
\(133\) −8.21405 + 14.2271i −0.712248 + 1.23365i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 13.1725 7.60514i 1.12540 0.649751i 0.182627 0.983182i \(-0.441540\pi\)
0.942774 + 0.333431i \(0.108206\pi\)
\(138\) 0 0
\(139\) 6.77792 + 11.7397i 0.574895 + 0.995748i 0.996053 + 0.0887606i \(0.0282906\pi\)
−0.421158 + 0.906987i \(0.638376\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.18859 + 2.15331i 0.0993948 + 0.180069i
\(144\) 0 0
\(145\) 4.00851 + 2.31431i 0.332888 + 0.192193i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.14760 + 4.12667i −0.585554 + 0.338070i −0.763338 0.646000i \(-0.776441\pi\)
0.177783 + 0.984070i \(0.443107\pi\)
\(150\) 0 0
\(151\) 3.83307i 0.311931i −0.987763 0.155965i \(-0.950151\pi\)
0.987763 0.155965i \(-0.0498489\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.600398 −0.0482252
\(156\) 0 0
\(157\) −21.8654 −1.74505 −0.872524 0.488572i \(-0.837518\pi\)
−0.872524 + 0.488572i \(0.837518\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 18.5658i 1.46319i
\(162\) 0 0
\(163\) −6.94402 + 4.00913i −0.543897 + 0.314019i −0.746657 0.665209i \(-0.768342\pi\)
0.202760 + 0.979229i \(0.435009\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.76368 4.48236i −0.600771 0.346856i 0.168574 0.985689i \(-0.446084\pi\)
−0.769345 + 0.638834i \(0.779417\pi\)
\(168\) 0 0
\(169\) 6.06218 + 11.5000i 0.466321 + 0.884615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.97652 10.3516i −0.454386 0.787020i 0.544267 0.838912i \(-0.316808\pi\)
−0.998653 + 0.0518925i \(0.983475\pi\)
\(174\) 0 0
\(175\) 2.18034 1.25882i 0.164818 0.0951578i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.60426 + 16.6351i −0.717856 + 1.24336i 0.243991 + 0.969777i \(0.421543\pi\)
−0.961848 + 0.273586i \(0.911790\pi\)
\(180\) 0 0
\(181\) −14.2526 −1.05939 −0.529694 0.848189i \(-0.677693\pi\)
−0.529694 + 0.848189i \(0.677693\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.11339 8.85666i 0.375944 0.651154i
\(186\) 0 0
\(187\) 3.27135i 0.239225i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.84058 8.38414i −0.350252 0.606655i 0.636041 0.771655i \(-0.280571\pi\)
−0.986294 + 0.165000i \(0.947237\pi\)
\(192\) 0 0
\(193\) 11.1428 + 6.43331i 0.802078 + 0.463080i 0.844197 0.536033i \(-0.180078\pi\)
−0.0421193 + 0.999113i \(0.513411\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.6883 + 8.48030i 1.04650 + 0.604196i 0.921667 0.387982i \(-0.126828\pi\)
0.124831 + 0.992178i \(0.460161\pi\)
\(198\) 0 0
\(199\) −1.30260 2.25617i −0.0923391 0.159936i 0.816156 0.577832i \(-0.196101\pi\)
−0.908495 + 0.417896i \(0.862768\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 11.6532i 0.817895i
\(204\) 0 0
\(205\) −0.758819 + 1.31431i −0.0529982 + 0.0917956i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.45125 −0.307899
\(210\) 0 0
\(211\) 0.649913 1.12568i 0.0447418 0.0774951i −0.842787 0.538247i \(-0.819087\pi\)
0.887529 + 0.460752i \(0.152420\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.01581 3.47323i 0.410275 0.236872i
\(216\) 0 0
\(217\) −0.755793 1.30907i −0.0513066 0.0888656i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.332573 17.2874i 0.0223713 1.16288i
\(222\) 0 0
\(223\) 16.6814 + 9.63103i 1.11707 + 0.644941i 0.940652 0.339374i \(-0.110215\pi\)
0.176420 + 0.984315i \(0.443548\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −19.2774 + 11.1298i −1.27949 + 0.738713i −0.976754 0.214363i \(-0.931233\pi\)
−0.302734 + 0.953075i \(0.597899\pi\)
\(228\) 0 0
\(229\) 10.5393i 0.696456i −0.937410 0.348228i \(-0.886783\pi\)
0.937410 0.348228i \(-0.113217\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −28.3517 −1.85738 −0.928689 0.370859i \(-0.879063\pi\)
−0.928689 + 0.370859i \(0.879063\pi\)
\(234\) 0 0
\(235\) −4.73910 −0.309145
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.76660i 0.502379i 0.967938 + 0.251190i \(0.0808218\pi\)
−0.967938 + 0.251190i \(0.919178\pi\)
\(240\) 0 0
\(241\) −0.256282 + 0.147964i −0.0165086 + 0.00953122i −0.508232 0.861220i \(-0.669701\pi\)
0.491723 + 0.870752i \(0.336367\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.572874 0.330749i −0.0365996 0.0211308i
\(246\) 0 0
\(247\) −23.5226 0.452525i −1.49671 0.0287935i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.07554 1.86288i −0.0678872 0.117584i 0.830084 0.557639i \(-0.188292\pi\)
−0.897971 + 0.440054i \(0.854959\pi\)
\(252\) 0 0
\(253\) 4.35651 2.51523i 0.273892 0.158131i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.89682 3.28538i 0.118320 0.204936i −0.800782 0.598956i \(-0.795582\pi\)
0.919102 + 0.394020i \(0.128916\pi\)
\(258\) 0 0
\(259\) 25.7473 1.59986
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.59153 9.68481i 0.344788 0.597191i −0.640527 0.767936i \(-0.721284\pi\)
0.985315 + 0.170745i \(0.0546174\pi\)
\(264\) 0 0
\(265\) 10.3631i 0.636599i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.8540 + 23.9957i 0.844690 + 1.46305i 0.885890 + 0.463896i \(0.153549\pi\)
−0.0411996 + 0.999151i \(0.513118\pi\)
\(270\) 0 0
\(271\) 27.0381 + 15.6104i 1.64245 + 0.948267i 0.979960 + 0.199194i \(0.0638322\pi\)
0.662487 + 0.749074i \(0.269501\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.590770 + 0.341081i 0.0356248 + 0.0205680i
\(276\) 0 0
\(277\) 1.07520 + 1.86230i 0.0646023 + 0.111894i 0.896518 0.443008i \(-0.146089\pi\)
−0.831915 + 0.554903i \(0.812755\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 20.0311i 1.19496i 0.801885 + 0.597478i \(0.203830\pi\)
−0.801885 + 0.597478i \(0.796170\pi\)
\(282\) 0 0
\(283\) 8.45461 14.6438i 0.502574 0.870484i −0.497421 0.867509i \(-0.665720\pi\)
0.999996 0.00297501i \(-0.000946976\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.82086 −0.225538
\(288\) 0 0
\(289\) −2.99867 + 5.19386i −0.176393 + 0.305521i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.9754 6.33668i 0.641192 0.370193i −0.143881 0.989595i \(-0.545958\pi\)
0.785074 + 0.619402i \(0.212625\pi\)
\(294\) 0 0
\(295\) −4.73351 8.19868i −0.275596 0.477346i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 23.2777 12.8488i 1.34618 0.743068i
\(300\) 0 0
\(301\) 15.1456 + 8.74434i 0.872980 + 0.504015i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.80614 5.66158i 0.561498 0.324181i
\(306\) 0 0
\(307\) 7.54738i 0.430752i 0.976531 + 0.215376i \(0.0690976\pi\)
−0.976531 + 0.215376i \(0.930902\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −22.0924 −1.25274 −0.626372 0.779524i \(-0.715461\pi\)
−0.626372 + 0.779524i \(0.715461\pi\)
\(312\) 0 0
\(313\) −10.9392 −0.618318 −0.309159 0.951010i \(-0.600048\pi\)
−0.309159 + 0.951010i \(0.600048\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.9873i 1.17877i 0.807854 + 0.589383i \(0.200629\pi\)
−0.807854 + 0.589383i \(0.799371\pi\)
\(318\) 0 0
\(319\) −2.73445 + 1.57874i −0.153100 + 0.0883924i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 27.0996 + 15.6460i 1.50786 + 0.870566i
\(324\) 0 0
\(325\) 3.08725 + 1.86250i 0.171250 + 0.103313i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.96567 10.3328i −0.328898 0.569668i
\(330\) 0 0
\(331\) 12.1031 6.98771i 0.665245 0.384079i −0.129028 0.991641i \(-0.541186\pi\)
0.794272 + 0.607562i \(0.207852\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.20100 3.81225i 0.120254 0.208285i
\(336\) 0 0
\(337\) −21.2954 −1.16004 −0.580018 0.814603i \(-0.696955\pi\)
−0.580018 + 0.814603i \(0.696955\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.204785 0.354697i 0.0110897 0.0192079i
\(342\) 0 0
\(343\) 19.2889i 1.04150i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.7167 + 20.2939i 0.628986 + 1.08944i 0.987756 + 0.156009i \(0.0498630\pi\)
−0.358770 + 0.933426i \(0.616804\pi\)
\(348\) 0 0
\(349\) −13.2104 7.62701i −0.707135 0.408264i 0.102865 0.994695i \(-0.467199\pi\)
−0.809999 + 0.586431i \(0.800533\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −19.9325 11.5080i −1.06090 0.612510i −0.135217 0.990816i \(-0.543173\pi\)
−0.925680 + 0.378306i \(0.876507\pi\)
\(354\) 0 0
\(355\) −0.168049 0.291069i −0.00891910 0.0154483i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.03111i 0.107198i −0.998563 0.0535990i \(-0.982931\pi\)
0.998563 0.0535990i \(-0.0170693\pi\)
\(360\) 0 0
\(361\) 11.7891 20.4194i 0.620480 1.07470i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.50354 0.235726
\(366\) 0 0
\(367\) −13.0719 + 22.6412i −0.682348 + 1.18186i 0.291915 + 0.956444i \(0.405708\pi\)
−0.974262 + 0.225417i \(0.927626\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 22.5950 13.0452i 1.17308 0.677275i
\(372\) 0 0
\(373\) −5.12680 8.87988i −0.265456 0.459783i 0.702227 0.711953i \(-0.252189\pi\)
−0.967683 + 0.252170i \(0.918856\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −14.6107 + 8.06484i −0.752490 + 0.415360i
\(378\) 0 0
\(379\) −13.0013 7.50632i −0.667833 0.385574i 0.127422 0.991849i \(-0.459330\pi\)
−0.795255 + 0.606275i \(0.792663\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.60256 + 3.81199i −0.337375 + 0.194784i −0.659111 0.752046i \(-0.729067\pi\)
0.321736 + 0.946830i \(0.395734\pi\)
\(384\) 0 0
\(385\) 1.71744i 0.0875288i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.91824 −0.249364 −0.124682 0.992197i \(-0.539791\pi\)
−0.124682 + 0.992197i \(0.539791\pi\)
\(390\) 0 0
\(391\) −35.3638 −1.78843
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9.19615i 0.462709i
\(396\) 0 0
\(397\) 16.9432 9.78215i 0.850353 0.490952i −0.0104167 0.999946i \(-0.503316\pi\)
0.860770 + 0.508994i \(0.169982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.23851 + 3.60181i 0.311536 + 0.179866i 0.647614 0.761969i \(-0.275767\pi\)
−0.336077 + 0.941834i \(0.609100\pi\)
\(402\) 0 0
\(403\) 1.11824 1.85358i 0.0557036 0.0923333i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.48817 + 6.04168i 0.172902 + 0.299475i
\(408\) 0 0
\(409\) 24.6051 14.2057i 1.21664 0.702429i 0.252444 0.967611i \(-0.418766\pi\)
0.964198 + 0.265182i \(0.0854322\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 11.9173 20.6413i 0.586410 1.01569i
\(414\) 0 0
\(415\) 10.0392 0.492805
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −17.7177 + 30.6879i −0.865564 + 1.49920i 0.000921968 1.00000i \(0.499707\pi\)
−0.866486 + 0.499201i \(0.833627\pi\)
\(420\) 0 0
\(421\) 24.9625i 1.21660i −0.793708 0.608299i \(-0.791852\pi\)
0.793708 0.608299i \(-0.208148\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.39778 4.15307i −0.116309 0.201454i
\(426\) 0 0
\(427\) 24.6883 + 14.2538i 1.19475 + 0.689790i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.463797 + 0.267773i 0.0223403 + 0.0128982i 0.511129 0.859504i \(-0.329228\pi\)
−0.488788 + 0.872402i \(0.662561\pi\)
\(432\) 0 0
\(433\) 6.34967 + 10.9980i 0.305146 + 0.528528i 0.977294 0.211889i \(-0.0679615\pi\)
−0.672148 + 0.740417i \(0.734628\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 48.1188i 2.30183i
\(438\) 0 0
\(439\) −6.71752 + 11.6351i −0.320610 + 0.555312i −0.980614 0.195949i \(-0.937221\pi\)
0.660004 + 0.751262i \(0.270554\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.83564 0.0872138 0.0436069 0.999049i \(-0.486115\pi\)
0.0436069 + 0.999049i \(0.486115\pi\)
\(444\) 0 0
\(445\) 6.51652 11.2869i 0.308913 0.535052i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −7.49598 + 4.32780i −0.353757 + 0.204242i −0.666339 0.745649i \(-0.732140\pi\)
0.312582 + 0.949891i \(0.398806\pi\)
\(450\) 0 0
\(451\) −0.517638 0.896575i −0.0243746 0.0422181i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.174599 + 9.07579i −0.00818533 + 0.425480i
\(456\) 0 0
\(457\) 32.3298 + 18.6656i 1.51232 + 0.873141i 0.999896 + 0.0144108i \(0.00458726\pi\)
0.512428 + 0.858730i \(0.328746\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 22.0005 12.7020i 1.02466 0.591590i 0.109212 0.994018i \(-0.465167\pi\)
0.915451 + 0.402429i \(0.131834\pi\)
\(462\) 0 0
\(463\) 22.2244i 1.03285i 0.856331 + 0.516427i \(0.172738\pi\)
−0.856331 + 0.516427i \(0.827262\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.97104 −0.137483 −0.0687417 0.997634i \(-0.521898\pi\)
−0.0687417 + 0.997634i \(0.521898\pi\)
\(468\) 0 0
\(469\) 11.0827 0.511750
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.73862i 0.217882i
\(474\) 0 0
\(475\) −5.65099 + 3.26260i −0.259285 + 0.149698i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.6262 9.02178i −0.713979 0.412216i 0.0985537 0.995132i \(-0.468578\pi\)
−0.812533 + 0.582916i \(0.801912\pi\)
\(480\) 0 0
\(481\) 17.8190 + 32.2818i 0.812475 + 1.47192i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.60160 + 7.97021i 0.208948 + 0.361908i
\(486\) 0 0
\(487\) 31.9312 18.4355i 1.44694 0.835393i 0.448644 0.893710i \(-0.351907\pi\)
0.998298 + 0.0583177i \(0.0185736\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.24668 10.8196i 0.281909 0.488280i −0.689946 0.723861i \(-0.742366\pi\)
0.971855 + 0.235580i \(0.0756991\pi\)
\(492\) 0 0
\(493\) 22.1968 0.999695
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.423086 0.732806i 0.0189780 0.0328709i
\(498\) 0 0
\(499\) 25.2232i 1.12914i 0.825384 + 0.564572i \(0.190959\pi\)
−0.825384 + 0.564572i \(0.809041\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.1455 + 36.6251i 0.942833 + 1.63303i 0.760033 + 0.649884i \(0.225183\pi\)
0.182800 + 0.983150i \(0.441484\pi\)
\(504\) 0 0
\(505\) 12.7008 + 7.33279i 0.565177 + 0.326305i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 32.0972 + 18.5313i 1.42268 + 0.821387i 0.996528 0.0832618i \(-0.0265338\pi\)
0.426157 + 0.904649i \(0.359867\pi\)
\(510\) 0 0
\(511\) 5.66914 + 9.81925i 0.250788 + 0.434378i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.97569i 0.219255i
\(516\) 0 0
\(517\) 1.61642 2.79972i 0.0710900 0.123131i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.6983 0.687754 0.343877 0.939015i \(-0.388260\pi\)
0.343877 + 0.939015i \(0.388260\pi\)
\(522\) 0 0
\(523\) −11.8549 + 20.5333i −0.518378 + 0.897858i 0.481394 + 0.876505i \(0.340131\pi\)
−0.999772 + 0.0213532i \(0.993203\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.49350 + 1.43962i −0.108618 + 0.0627109i
\(528\) 0 0
\(529\) −15.6901 27.1761i −0.682178 1.18157i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.64431 4.79057i −0.114538 0.207503i
\(534\) 0 0
\(535\) 4.96050 + 2.86394i 0.214461 + 0.123819i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.390794 0.225625i 0.0168327 0.00971835i
\(540\) 0 0
\(541\) 33.9788i 1.46086i −0.682987 0.730431i \(-0.739319\pi\)
0.682987 0.730431i \(-0.260681\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.45465 0.233652
\(546\) 0 0
\(547\) −11.5043 −0.491888 −0.245944 0.969284i \(-0.579098\pi\)
−0.245944 + 0.969284i \(0.579098\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 30.2027i 1.28668i
\(552\) 0 0
\(553\) 20.0507 11.5763i 0.852644 0.492274i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11.4808 6.62845i −0.486458 0.280856i 0.236646 0.971596i \(-0.423952\pi\)
−0.723104 + 0.690739i \(0.757285\pi\)
\(558\) 0 0
\(559\) −0.481740 + 25.0412i −0.0203754 + 1.05913i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.1263 + 33.1277i 0.806077 + 1.39617i 0.915562 + 0.402177i \(0.131746\pi\)
−0.109485 + 0.993988i \(0.534920\pi\)
\(564\) 0 0
\(565\) −7.56512 + 4.36773i −0.318267 + 0.183752i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.68122 + 2.91196i −0.0704803 + 0.122076i −0.899112 0.437719i \(-0.855787\pi\)
0.828632 + 0.559794i \(0.189120\pi\)
\(570\) 0 0
\(571\) 11.7625 0.492246 0.246123 0.969239i \(-0.420843\pi\)
0.246123 + 0.969239i \(0.420843\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.68715 6.38633i 0.153765 0.266328i
\(576\) 0 0
\(577\) 9.86954i 0.410874i 0.978670 + 0.205437i \(0.0658616\pi\)
−0.978670 + 0.205437i \(0.934138\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12.6375 + 21.8888i 0.524293 + 0.908102i
\(582\) 0 0
\(583\) 6.12220 + 3.53465i 0.253556 + 0.146390i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −23.5364 13.5888i −0.971453 0.560869i −0.0717740 0.997421i \(-0.522866\pi\)
−0.899679 + 0.436552i \(0.856199\pi\)
\(588\) 0 0
\(589\) 1.95886 + 3.39285i 0.0807134 + 0.139800i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 44.1747i 1.81404i −0.421090 0.907019i \(-0.638352\pi\)
0.421090 0.907019i \(-0.361648\pi\)
\(594\) 0 0
\(595\) 6.03674 10.4559i 0.247482 0.428651i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.1581 −0.660203 −0.330101 0.943945i \(-0.607083\pi\)
−0.330101 + 0.943945i \(0.607083\pi\)
\(600\) 0 0
\(601\) 7.11685 12.3267i 0.290302 0.502819i −0.683579 0.729877i \(-0.739577\pi\)
0.973881 + 0.227058i \(0.0729108\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.12328 5.26733i 0.370914 0.214147i
\(606\) 0 0
\(607\) 3.96336 + 6.86475i 0.160868 + 0.278631i 0.935180 0.354172i \(-0.115237\pi\)
−0.774312 + 0.632804i \(0.781904\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.82658 14.6308i 0.357085 0.591897i
\(612\) 0 0
\(613\) −16.9541 9.78846i −0.684770 0.395352i 0.116880 0.993146i \(-0.462711\pi\)
−0.801650 + 0.597794i \(0.796044\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −26.3970 + 15.2403i −1.06270 + 0.613552i −0.926179 0.377084i \(-0.876927\pi\)
−0.136525 + 0.990637i \(0.543593\pi\)
\(618\) 0 0
\(619\) 36.7094i 1.47548i 0.675087 + 0.737738i \(0.264106\pi\)
−0.675087 + 0.737738i \(0.735894\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 32.8125 1.31460
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 49.0431i 1.95548i
\(630\) 0 0
\(631\) −5.94414 + 3.43185i −0.236633 + 0.136620i −0.613628 0.789595i \(-0.710291\pi\)
0.376996 + 0.926215i \(0.376957\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −19.1035 11.0294i −0.758101 0.437690i
\(636\) 0 0
\(637\) 2.08808 1.15258i 0.0827329 0.0456670i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.31212 12.6650i −0.288812 0.500236i 0.684715 0.728811i \(-0.259927\pi\)
−0.973526 + 0.228575i \(0.926593\pi\)
\(642\) 0 0
\(643\) 18.5342 10.7007i 0.730919 0.421996i −0.0878394 0.996135i \(-0.527996\pi\)
0.818758 + 0.574138i \(0.194663\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7.37395 12.7721i 0.289900 0.502122i −0.683886 0.729589i \(-0.739711\pi\)
0.973786 + 0.227468i \(0.0730446\pi\)
\(648\) 0 0
\(649\) 6.45805 0.253501
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6.96066 + 12.0562i −0.272392 + 0.471796i −0.969474 0.245195i \(-0.921148\pi\)
0.697082 + 0.716991i \(0.254481\pi\)
\(654\) 0 0
\(655\) 7.85666i 0.306985i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.60229 + 2.77524i 0.0624162 + 0.108108i 0.895545 0.444971i \(-0.146786\pi\)
−0.833129 + 0.553079i \(0.813453\pi\)
\(660\) 0 0
\(661\) −26.8607 15.5080i −1.04476 0.603192i −0.123582 0.992334i \(-0.539438\pi\)
−0.921178 + 0.389142i \(0.872771\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −14.2271 8.21405i −0.551705 0.318527i
\(666\) 0 0
\(667\) 17.0664 + 29.5599i 0.660815 + 1.14456i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 7.72424i 0.298191i
\(672\) 0 0
\(673\) 9.74082 16.8716i 0.375481 0.650352i −0.614918 0.788591i \(-0.710811\pi\)
0.990399 + 0.138239i \(0.0441442\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −44.0602 −1.69337 −0.846685 0.532095i \(-0.821405\pi\)
−0.846685 + 0.532095i \(0.821405\pi\)
\(678\) 0 0
\(679\) −11.5852 + 20.0661i −0.444598 + 0.770066i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −15.1167 + 8.72765i −0.578426 + 0.333954i −0.760507 0.649329i \(-0.775050\pi\)
0.182082 + 0.983283i \(0.441716\pi\)
\(684\) 0 0
\(685\) 7.60514 + 13.1725i 0.290578 + 0.503295i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 31.9934 + 19.3013i 1.21885 + 0.735319i
\(690\) 0 0
\(691\) 26.4277 + 15.2580i 1.00536 + 0.580443i 0.909829 0.414984i \(-0.136213\pi\)
0.0955281 + 0.995427i \(0.469546\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11.7397 + 6.77792i −0.445312 + 0.257101i
\(696\) 0 0
\(697\) 7.27792i 0.275671i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 26.9510 1.01792 0.508962 0.860789i \(-0.330029\pi\)
0.508962 + 0.860789i \(0.330029\pi\)
\(702\) 0 0
\(703\) −66.7318 −2.51684
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 36.9226i 1.38862i
\(708\) 0 0
\(709\) −0.508972 + 0.293855i −0.0191148 + 0.0110360i −0.509527 0.860455i \(-0.670180\pi\)
0.490412 + 0.871491i \(0.336846\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.83434 2.21376i −0.143597 0.0829058i
\(714\) 0 0
\(715\) −2.15331 + 1.18859i −0.0805293 + 0.0444507i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.67083 + 8.09011i 0.174192 + 0.301710i 0.939882 0.341501i \(-0.110935\pi\)
−0.765689 + 0.643211i \(0.777602\pi\)
\(720\) 0 0
\(721\) −10.8487 + 6.26349i −0.404026 + 0.233265i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.31431 + 4.00851i −0.0859514 + 0.148872i
\(726\) 0 0
\(727\) −6.51180 −0.241509 −0.120755 0.992682i \(-0.538531\pi\)
−0.120755 + 0.992682i \(0.538531\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 16.6561 28.8492i 0.616047 1.06702i
\(732\) 0 0
\(733\) 20.7661i 0.767014i 0.923538 + 0.383507i \(0.125284\pi\)
−0.923538 + 0.383507i \(0.874716\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.50144 + 2.60057i 0.0553063 + 0.0957934i
\(738\) 0 0
\(739\) −37.4028 21.5945i −1.37588 0.794367i −0.384223 0.923240i \(-0.625531\pi\)
−0.991661 + 0.128874i \(0.958864\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.44574 4.87615i −0.309844 0.178889i 0.337013 0.941500i \(-0.390584\pi\)
−0.646857 + 0.762612i \(0.723917\pi\)
\(744\) 0 0
\(745\) −4.12667 7.14760i −0.151189 0.261868i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 14.4207i 0.526923i
\(750\) 0 0
\(751\) 20.1431 34.8888i 0.735031 1.27311i −0.219679 0.975572i \(-0.570501\pi\)
0.954710 0.297539i \(-0.0961658\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.83307 0.139500
\(756\) 0 0
\(757\) −4.06486 + 7.04055i −0.147740 + 0.255893i −0.930392 0.366567i \(-0.880533\pi\)
0.782652 + 0.622460i \(0.213867\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −12.1452 + 7.01203i −0.440263 + 0.254186i −0.703709 0.710488i \(-0.748474\pi\)
0.263446 + 0.964674i \(0.415141\pi\)
\(762\) 0 0
\(763\) 6.86642 + 11.8930i 0.248581 + 0.430555i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 34.1275 + 0.656541i 1.23227 + 0.0237063i
\(768\) 0 0
\(769\) 31.2076 + 18.0177i 1.12538 + 0.649736i 0.942768 0.333450i \(-0.108213\pi\)
0.182607 + 0.983186i \(0.441546\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −15.9183 + 9.19044i −0.572542 + 0.330557i −0.758164 0.652064i \(-0.773903\pi\)
0.185622 + 0.982621i \(0.440570\pi\)
\(774\) 0 0
\(775\) 0.600398i 0.0215669i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.90289 0.354808
\(780\) 0 0
\(781\) 0.229273 0.00820404
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 21.8654i 0.780409i
\(786\) 0 0
\(787\) −2.22029 + 1.28189i −0.0791449 + 0.0456943i −0.539050 0.842274i \(-0.681217\pi\)
0.459905 + 0.887968i \(0.347883\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −19.0462 10.9964i −0.677206 0.390985i
\(792\) 0 0
\(793\) −0.785265 + 40.8187i −0.0278856 + 1.44951i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.6111 25.3072i −0.517552 0.896427i −0.999792 0.0203879i \(-0.993510\pi\)
0.482240 0.876039i \(-0.339823\pi\)
\(798\) 0 0
\(799\) −19.6818 + 11.3633i −0.696293 + 0.402005i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.53607 + 2.66056i −0.0542069 + 0.0938891i
\(804\) 0 0
\(805\) 18.5658 0.654359
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 10.5166 18.2154i 0.369745 0.640418i −0.619780 0.784776i \(-0.712778\pi\)
0.989526 + 0.144358i \(0.0461116\pi\)
\(810\) 0 0
\(811\) 39.9501i 1.40284i 0.712750 + 0.701419i \(0.247450\pi\)
−0.712750 + 0.701419i \(0.752550\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.00913 6.94402i −0.140434 0.243238i
\(816\) 0 0
\(817\) −39.2544 22.6635i −1.37334 0.792897i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −36.6162 21.1404i −1.27791 0.737804i −0.301450 0.953482i \(-0.597471\pi\)
−0.976465 + 0.215678i \(0.930804\pi\)
\(822\) 0 0
\(823\) 3.91824 + 6.78658i 0.136581 + 0.236565i 0.926200 0.377032i \(-0.123055\pi\)
−0.789619 + 0.613597i \(0.789722\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0916i 1.25503i −0.778605 0.627515i \(-0.784072\pi\)
0.778605 0.627515i \(-0.215928\pi\)
\(828\) 0 0
\(829\) −12.7220 + 22.0351i −0.441852 + 0.765309i −0.997827 0.0658893i \(-0.979012\pi\)
0.555975 + 0.831199i \(0.312345\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.17225 −0.109912
\(834\) 0 0
\(835\) 4.48236 7.76368i 0.155119 0.268673i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 41.3763 23.8886i 1.42847 0.824727i 0.431469 0.902128i \(-0.357996\pi\)
0.997000 + 0.0774010i \(0.0246622\pi\)
\(840\) 0 0
\(841\) 3.78791 + 6.56085i 0.130618 + 0.226236i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −11.5000 + 6.06218i −0.395612 + 0.208545i
\(846\) 0 0
\(847\) 22.9691 + 13.2612i 0.789228 + 0.455661i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 65.3116 37.7077i 2.23885 1.29260i
\(852\) 0 0
\(853\) 3.49165i 0.119552i −0.998212 0.0597759i \(-0.980961\pi\)
0.998212 0.0597759i \(-0.0190386\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24.0170 −0.820404 −0.410202 0.911995i \(-0.634542\pi\)
−0.410202 + 0.911995i \(0.634542\pi\)
\(858\) 0 0
\(859\) 1.09887 0.0374928 0.0187464 0.999824i \(-0.494032\pi\)
0.0187464 + 0.999824i \(0.494032\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 19.6082i 0.667472i −0.942667 0.333736i \(-0.891691\pi\)
0.942667 0.333736i \(-0.108309\pi\)
\(864\) 0 0
\(865\) 10.3516 5.97652i 0.351966 0.203208i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.43281 + 3.13664i 0.184296 + 0.106403i
\(870\) 0 0
\(871\) 7.66998 + 13.8954i 0.259887 + 0.470826i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.25882 + 2.18034i 0.0425559 + 0.0737089i
\(876\) 0 0
\(877\) 30.7427 17.7493i 1.03811 0.599352i 0.118812 0.992917i \(-0.462091\pi\)
0.919297 + 0.393564i \(0.128758\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 6.30663 10.9234i 0.212476 0.368019i −0.740013 0.672592i \(-0.765181\pi\)
0.952489 + 0.304574i \(0.0985141\pi\)
\(882\) 0 0
\(883\) −16.9815 −0.571474 −0.285737 0.958308i \(-0.592238\pi\)
−0.285737 + 0.958308i \(0.592238\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −13.4683 + 23.3278i −0.452222 + 0.783272i −0.998524 0.0543167i \(-0.982702\pi\)
0.546302 + 0.837589i \(0.316035\pi\)
\(888\) 0 0
\(889\) 55.5362i 1.86263i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 15.4618 + 26.7806i 0.517409 + 0.896179i
\(894\) 0 0
\(895\) −16.6351 9.60426i −0.556049 0.321035i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.40670 + 1.38951i 0.0802680 + 0.0463427i
\(900\) 0 0
\(901\) −24.8484 43.0386i −0.827819 1.43382i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 14.2526i 0.473773i
\(906\) 0 0
\(907\) 11.5207 19.9544i 0.382538 0.662575i −0.608887 0.793257i \(-0.708384\pi\)
0.991424 + 0.130683i \(0.0417169\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 22.8698 0.757709 0.378854 0.925456i \(-0.376318\pi\)
0.378854 + 0.925456i \(0.376318\pi\)
\(912\) 0 0
\(913\) −3.42418 + 5.93086i −0.113324 + 0.196283i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −17.1302 + 9.89011i −0.565688 + 0.326600i
\(918\) 0 0
\(919\) −13.9537 24.1686i −0.460291 0.797248i 0.538684 0.842508i \(-0.318922\pi\)
−0.998975 + 0.0452601i \(0.985588\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.21159 + 0.0233085i 0.0398801 + 0.000767208i
\(924\) 0 0
\(925\) 8.85666 + 5.11339i 0.291205 + 0.168127i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −30.6659 + 17.7050i −1.00612 + 0.580882i −0.910052 0.414494i \(-0.863959\pi\)
−0.0960642 + 0.995375i \(0.530625\pi\)
\(930\) 0 0
\(931\) 4.31641i 0.141465i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.27135 0.106985
\(936\) 0 0
\(937\) 11.9030 0.388855 0.194428 0.980917i \(-0.437715\pi\)
0.194428 + 0.980917i \(0.437715\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.02987i 0.163969i 0.996634 + 0.0819845i \(0.0261258\pi\)
−0.996634 + 0.0819845i \(0.973874\pi\)
\(942\) 0 0
\(943\) −9.69213 + 5.59575i −0.315619 + 0.182223i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −7.70716 4.44973i −0.250449 0.144597i 0.369521 0.929222i \(-0.379522\pi\)
−0.619970 + 0.784626i \(0.712855\pi\)
\(948\) 0 0
\(949\) −8.38785 + 13.9035i −0.272281 + 0.451328i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.298508 0.517032i −0.00966963 0.0167483i 0.861150 0.508351i \(-0.169745\pi\)
−0.870820 + 0.491602i \(0.836411\pi\)
\(954\) 0 0
\(955\) 8.38414 4.84058i 0.271304 0.156638i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −19.1470 + 33.1636i −0.618289 + 1.07091i
\(960\) 0 0
\(961\) 30.6395 0.988372
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −6.43331 + 11.1428i −0.207096 + 0.358700i
\(966\) 0 0
\(967\) 33.2641i 1.06970i −0.844946 0.534851i \(-0.820368\pi\)
0.844946 0.534851i \(-0.179632\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −19.1490 33.1671i −0.614521 1.06438i −0.990468 0.137740i \(-0.956016\pi\)
0.375947 0.926641i \(-0.377317\pi\)
\(972\) 0 0
\(973\) −29.5563 17.0643i −0.947532 0.547058i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11.0098 + 6.35651i 0.352235 + 0.203363i 0.665669 0.746247i \(-0.268146\pi\)
−0.313434 + 0.949610i \(0.601480\pi\)
\(978\) 0 0
\(979\) 4.44533 + 7.69953i 0.142073 + 0.246078i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 48.3272i 1.54140i 0.637198 + 0.770700i \(0.280093\pi\)
−0.637198 + 0.770700i \(0.719907\pi\)
\(984\) 0 0
\(985\) −8.48030 + 14.6883i −0.270205 + 0.468008i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 51.2253 1.62887
\(990\) 0 0
\(991\) −1.74548 + 3.02326i −0.0554469 + 0.0960369i −0.892417 0.451212i \(-0.850992\pi\)
0.836970 + 0.547249i \(0.184325\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.25617 1.30260i 0.0715256 0.0412953i
\(996\) 0 0
\(997\) −2.46671 4.27247i −0.0781215 0.135310i 0.824318 0.566127i \(-0.191559\pi\)
−0.902439 + 0.430817i \(0.858226\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.dj.c.901.3 8
3.2 odd 2 780.2.cc.b.121.1 8
13.10 even 6 inner 2340.2.dj.c.361.1 8
15.2 even 4 3900.2.bw.g.2149.3 8
15.8 even 4 3900.2.bw.l.2149.2 8
15.14 odd 2 3900.2.cd.l.901.4 8
39.23 odd 6 780.2.cc.b.361.3 yes 8
195.23 even 12 3900.2.bw.g.49.3 8
195.62 even 12 3900.2.bw.l.49.2 8
195.179 odd 6 3900.2.cd.l.2701.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.cc.b.121.1 8 3.2 odd 2
780.2.cc.b.361.3 yes 8 39.23 odd 6
2340.2.dj.c.361.1 8 13.10 even 6 inner
2340.2.dj.c.901.3 8 1.1 even 1 trivial
3900.2.bw.g.49.3 8 195.23 even 12
3900.2.bw.g.2149.3 8 15.2 even 4
3900.2.bw.l.49.2 8 195.62 even 12
3900.2.bw.l.2149.2 8 15.8 even 4
3900.2.cd.l.901.4 8 15.14 odd 2
3900.2.cd.l.2701.4 8 195.179 odd 6