Properties

Label 777.1.n.b
Level $777$
Weight $1$
Character orbit 777.n
Analytic conductor $0.388$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
RM discriminant 21
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [777,1,Mod(524,777)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(777, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 3])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("777.524"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 777 = 3 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 777.n (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.387773514816\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.1063713.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + i q^{3} + i q^{4} + (i - 1) q^{5} + q^{7} - q^{9} - q^{12} + ( - i - 1) q^{15} - q^{16} + ( - i + 1) q^{17} + ( - i - 1) q^{20} + i q^{21} - i q^{25} - i q^{27} + i q^{28} + (i - 1) q^{35} - i q^{36} + \cdots + ( - i - 1) q^{89} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} + 2 q^{7} - 2 q^{9} - 2 q^{12} - 2 q^{15} - 2 q^{16} + 2 q^{17} - 2 q^{20} - 2 q^{35} - 2 q^{43} + 2 q^{45} + 2 q^{49} + 2 q^{51} + 2 q^{59} + 2 q^{60} - 2 q^{63} + 2 q^{68} + 2 q^{75} + 2 q^{79}+ \cdots - 2 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/777\mathbb{Z}\right)^\times\).

\(n\) \(260\) \(556\) \(631\)
\(\chi(n)\) \(-1\) \(-1\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
524.1
1.00000i
1.00000i
0 1.00000i 1.00000i −1.00000 1.00000i 0 1.00000 0 −1.00000 0
734.1 0 1.00000i 1.00000i −1.00000 + 1.00000i 0 1.00000 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.c even 2 1 RM by \(\Q(\sqrt{21}) \)
37.d odd 4 1 inner
777.n odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 777.1.n.b 2
3.b odd 2 1 777.1.n.c yes 2
7.b odd 2 1 777.1.n.c yes 2
21.c even 2 1 RM 777.1.n.b 2
37.d odd 4 1 inner 777.1.n.b 2
111.g even 4 1 777.1.n.c yes 2
259.j even 4 1 777.1.n.c yes 2
777.n odd 4 1 inner 777.1.n.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
777.1.n.b 2 1.a even 1 1 trivial
777.1.n.b 2 21.c even 2 1 RM
777.1.n.b 2 37.d odd 4 1 inner
777.1.n.b 2 777.n odd 4 1 inner
777.1.n.c yes 2 3.b odd 2 1
777.1.n.c yes 2 7.b odd 2 1
777.1.n.c yes 2 111.g even 4 1
777.1.n.c yes 2 259.j even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(777, [\chi])\):

\( T_{5}^{2} + 2T_{5} + 2 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 1 \) Copy content Toggle raw display
$41$ \( T^{2} + 4 \) Copy content Toggle raw display
$43$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 4 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$83$ \( (T - 2)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less