L(s) = 1 | − 2·5-s + 2·7-s − 9-s − 16-s + 2·17-s + 2·25-s − 4·35-s − 2·43-s + 2·45-s + 3·49-s + 2·59-s − 2·63-s + 2·79-s + 2·80-s + 81-s + 4·83-s − 4·85-s − 2·89-s − 2·109-s − 2·112-s + 4·119-s − 2·121-s − 2·125-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 2·5-s + 2·7-s − 9-s − 16-s + 2·17-s + 2·25-s − 4·35-s − 2·43-s + 2·45-s + 3·49-s + 2·59-s − 2·63-s + 2·79-s + 2·80-s + 81-s + 4·83-s − 4·85-s − 2·89-s − 2·109-s − 2·112-s + 4·119-s − 2·121-s − 2·125-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7153961835\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7153961835\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.05642525438482019890253504223, −10.36083690280556504892501268837, −10.09045604760130454787215968241, −9.098721141271697609114017869113, −9.049972179239141072564591541794, −8.341837928933393863668457480641, −8.039470672228302394721514508922, −7.77701095497476555853585799928, −7.74009376506585359357403103394, −6.75746028764500147447942077355, −6.68779108672136037735494074000, −5.59584092659544347351645893187, −5.21715438124194475900243651267, −5.01584006950340574836907555228, −4.32853803433833152787050427985, −3.82398391179252951417187775505, −3.47225769203919290802917903174, −2.71629453829185550282097748806, −1.95198756785957959256130349811, −0.965207469623200946542639481084,
0.965207469623200946542639481084, 1.95198756785957959256130349811, 2.71629453829185550282097748806, 3.47225769203919290802917903174, 3.82398391179252951417187775505, 4.32853803433833152787050427985, 5.01584006950340574836907555228, 5.21715438124194475900243651267, 5.59584092659544347351645893187, 6.68779108672136037735494074000, 6.75746028764500147447942077355, 7.74009376506585359357403103394, 7.77701095497476555853585799928, 8.039470672228302394721514508922, 8.341837928933393863668457480641, 9.049972179239141072564591541794, 9.098721141271697609114017869113, 10.09045604760130454787215968241, 10.36083690280556504892501268837, 11.05642525438482019890253504223