Properties

Label 777.1
Level 777
Weight 1
Dimension 88
Nonzero newspaces 11
Newform subspaces 18
Sturm bound 43776
Trace bound 27

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 777 = 3 \cdot 7 \cdot 37 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 11 \)
Newform subspaces: \( 18 \)
Sturm bound: \(43776\)
Trace bound: \(27\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(777))\).

Total New Old
Modular forms 1000 440 560
Cusp forms 136 88 48
Eisenstein series 864 352 512

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 80 8 0 0

Trace form

\( 88 q - 6 q^{4} + 2 q^{7} - 14 q^{9} - 4 q^{13} - 8 q^{15} - 10 q^{16} - 2 q^{19} - 8 q^{25} - 12 q^{27} + 8 q^{28} + 8 q^{30} - 4 q^{31} + 2 q^{33} - 16 q^{34} + 8 q^{36} - 10 q^{37} - 12 q^{39} - 16 q^{40}+ \cdots - 8 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(777))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
777.1.b \(\chi_{777}(260, \cdot)\) None 0 1
777.1.e \(\chi_{777}(517, \cdot)\) None 0 1
777.1.g \(\chi_{777}(223, \cdot)\) None 0 1
777.1.h \(\chi_{777}(554, \cdot)\) None 0 1
777.1.n \(\chi_{777}(524, \cdot)\) 777.1.n.a 2 2
777.1.n.b 2
777.1.n.c 2
777.1.n.d 2
777.1.o \(\chi_{777}(43, \cdot)\) None 0 2
777.1.q \(\chi_{777}(418, \cdot)\) None 0 2
777.1.t \(\chi_{777}(158, \cdot)\) 777.1.t.a 4 2
777.1.u \(\chi_{777}(565, \cdot)\) None 0 2
777.1.w \(\chi_{777}(221, \cdot)\) 777.1.w.a 2 2
777.1.w.b 2
777.1.w.c 4
777.1.w.d 8
777.1.x \(\chi_{777}(323, \cdot)\) None 0 2
777.1.z \(\chi_{777}(433, \cdot)\) None 0 2
777.1.ba \(\chi_{777}(334, \cdot)\) None 0 2
777.1.bc \(\chi_{777}(11, \cdot)\) None 0 2
777.1.be \(\chi_{777}(137, \cdot)\) 777.1.be.a 4 2
777.1.bg \(\chi_{777}(286, \cdot)\) None 0 2
777.1.bh \(\chi_{777}(73, \cdot)\) None 0 2
777.1.bk \(\chi_{777}(149, \cdot)\) None 0 2
777.1.bl \(\chi_{777}(470, \cdot)\) None 0 2
777.1.bn \(\chi_{777}(397, \cdot)\) None 0 2
777.1.bp \(\chi_{777}(233, \cdot)\) None 0 2
777.1.bq \(\chi_{777}(10, \cdot)\) None 0 2
777.1.bw \(\chi_{777}(88, \cdot)\) None 0 4
777.1.bx \(\chi_{777}(341, \cdot)\) None 0 4
777.1.ca \(\chi_{777}(125, \cdot)\) 777.1.ca.a 4 4
777.1.ca.b 4
777.1.cd \(\chi_{777}(193, \cdot)\) None 0 4
777.1.ce \(\chi_{777}(142, \cdot)\) None 0 4
777.1.cf \(\chi_{777}(236, \cdot)\) None 0 4
777.1.cg \(\chi_{777}(68, \cdot)\) None 0 4
777.1.cj \(\chi_{777}(421, \cdot)\) None 0 4
777.1.cl \(\chi_{777}(271, \cdot)\) None 0 6
777.1.cn \(\chi_{777}(95, \cdot)\) 777.1.cn.a 6 6
777.1.co \(\chi_{777}(176, \cdot)\) None 0 6
777.1.cq \(\chi_{777}(34, \cdot)\) None 0 6
777.1.cs \(\chi_{777}(145, \cdot)\) None 0 6
777.1.ct \(\chi_{777}(65, \cdot)\) 777.1.ct.a 6 6
777.1.cu \(\chi_{777}(115, \cdot)\) None 0 6
777.1.cw \(\chi_{777}(44, \cdot)\) 777.1.cw.a 6 6
777.1.cy \(\chi_{777}(71, \cdot)\) None 0 6
777.1.db \(\chi_{777}(139, \cdot)\) None 0 6
777.1.dd \(\chi_{777}(40, \cdot)\) None 0 6
777.1.df \(\chi_{777}(86, \cdot)\) 777.1.df.a 6 6
777.1.dg \(\chi_{777}(89, \cdot)\) 777.1.dg.a 12 12
777.1.di \(\chi_{777}(79, \cdot)\) None 0 12
777.1.dk \(\chi_{777}(22, \cdot)\) None 0 12
777.1.dn \(\chi_{777}(20, \cdot)\) None 0 12
777.1.dp \(\chi_{777}(5, \cdot)\) 777.1.dp.a 12 12
777.1.dr \(\chi_{777}(130, \cdot)\) None 0 12

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(777))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(777)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(37))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(111))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(259))\)\(^{\oplus 2}\)