Properties

Label 775.2.bl.c.51.1
Level $775$
Weight $2$
Character 775.51
Analytic conductor $6.188$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(51,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.51"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.bl (of order \(15\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(5\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 155)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 51.1
Character \(\chi\) \(=\) 775.51
Dual form 775.2.bl.c.76.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.646517 - 1.98977i) q^{2} +(-1.02325 - 1.13643i) q^{3} +(-1.92319 + 1.39728i) q^{4} +(-1.59970 + 2.77076i) q^{6} +(0.316994 + 3.01600i) q^{7} +(0.638431 + 0.463847i) q^{8} +(0.0691433 - 0.657854i) q^{9} +(-5.57748 - 2.48326i) q^{11} +(3.55581 + 0.755811i) q^{12} +(-5.63533 + 1.19783i) q^{13} +(5.79622 - 2.58064i) q^{14} +(-0.958988 + 2.95146i) q^{16} +(5.25138 - 2.33807i) q^{17} +(-1.35368 + 0.287735i) q^{18} +(1.99768 + 0.424620i) q^{19} +(3.10312 - 3.44636i) q^{21} +(-1.33518 + 12.7034i) q^{22} +(4.95413 + 3.59938i) q^{23} +(-0.126143 - 1.20017i) q^{24} +(6.02674 + 10.4386i) q^{26} +(-4.52986 + 3.29114i) q^{27} +(-4.82382 - 5.35740i) q^{28} +(1.77750 + 5.47059i) q^{29} +(2.16791 + 5.12837i) q^{31} +8.07104 q^{32} +(2.88510 + 8.87943i) q^{33} +(-8.04733 - 8.93747i) q^{34} +(0.786229 + 1.36179i) q^{36} +(1.18290 - 2.04884i) q^{37} +(-0.446636 - 4.24946i) q^{38} +(7.12760 + 5.17850i) q^{39} +(0.618888 - 0.687345i) q^{41} +(-8.86371 - 3.94638i) q^{42} +(-4.17130 - 0.886637i) q^{43} +(14.1963 - 3.01752i) q^{44} +(3.95904 - 12.1847i) q^{46} +(-0.482864 + 1.48610i) q^{47} +(4.33543 - 1.93026i) q^{48} +(-2.14873 + 0.456727i) q^{49} +(-8.03053 - 3.57542i) q^{51} +(9.16409 - 10.1778i) q^{52} +(-0.300872 + 2.86260i) q^{53} +(9.47725 + 6.88563i) q^{54} +(-1.19658 + 2.07254i) q^{56} +(-1.56157 - 2.70472i) q^{57} +(9.73605 - 7.07365i) q^{58} +(0.130293 + 0.144705i) q^{59} -9.68296 q^{61} +(8.80271 - 7.62923i) q^{62} +2.00601 q^{63} +(-3.30009 - 10.1566i) q^{64} +(15.8028 - 11.4814i) q^{66} +(3.22324 + 5.58282i) q^{67} +(-6.83246 + 11.8342i) q^{68} +(-0.978847 - 9.31310i) q^{69} +(-0.100240 + 0.953724i) q^{71} +(0.349287 - 0.387923i) q^{72} +(0.985838 + 0.438923i) q^{73} +(-4.84150 - 1.02909i) q^{74} +(-4.43522 + 1.97469i) q^{76} +(5.72147 - 17.6089i) q^{77} +(5.69594 - 17.5303i) q^{78} +(-8.81227 + 3.92348i) q^{79} +(6.43427 + 1.36765i) q^{81} +(-1.76778 - 0.787068i) q^{82} +(-5.35103 + 5.94292i) q^{83} +(-1.15235 + 10.9639i) q^{84} +(0.932608 + 8.87317i) q^{86} +(4.39813 - 7.61779i) q^{87} +(-2.40899 - 4.17249i) q^{88} +(-8.64669 + 6.28219i) q^{89} +(-5.39901 - 16.6164i) q^{91} -14.5570 q^{92} +(3.60974 - 7.71129i) q^{93} +3.26919 q^{94} +(-8.25869 - 9.17220i) q^{96} +(1.95842 - 1.42288i) q^{97} +(2.29797 + 3.98021i) q^{98} +(-2.01927 + 3.49747i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 2 q^{2} + q^{3} - 10 q^{4} + 4 q^{6} - 4 q^{7} - 13 q^{8} + 2 q^{9} - 28 q^{11} + 13 q^{12} + 6 q^{13} - 6 q^{14} + 8 q^{16} + 10 q^{17} + 27 q^{18} - 13 q^{19} - 8 q^{21} - 2 q^{22} + 12 q^{23}+ \cdots + 53 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{4}{15}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.646517 1.98977i −0.457157 1.40698i −0.868585 0.495541i \(-0.834970\pi\)
0.411428 0.911442i \(-0.365030\pi\)
\(3\) −1.02325 1.13643i −0.590773 0.656120i 0.371427 0.928462i \(-0.378869\pi\)
−0.962201 + 0.272342i \(0.912202\pi\)
\(4\) −1.92319 + 1.39728i −0.961593 + 0.698638i
\(5\) 0 0
\(6\) −1.59970 + 2.77076i −0.653075 + 1.13116i
\(7\) 0.316994 + 3.01600i 0.119813 + 1.13994i 0.874896 + 0.484311i \(0.160930\pi\)
−0.755083 + 0.655629i \(0.772404\pi\)
\(8\) 0.638431 + 0.463847i 0.225720 + 0.163995i
\(9\) 0.0691433 0.657854i 0.0230478 0.219285i
\(10\) 0 0
\(11\) −5.57748 2.48326i −1.68167 0.748730i −0.999852 0.0172126i \(-0.994521\pi\)
−0.681823 0.731517i \(-0.738813\pi\)
\(12\) 3.55581 + 0.755811i 1.02647 + 0.218184i
\(13\) −5.63533 + 1.19783i −1.56296 + 0.332217i −0.906520 0.422163i \(-0.861271\pi\)
−0.656438 + 0.754380i \(0.727938\pi\)
\(14\) 5.79622 2.58064i 1.54910 0.689706i
\(15\) 0 0
\(16\) −0.958988 + 2.95146i −0.239747 + 0.737866i
\(17\) 5.25138 2.33807i 1.27365 0.567064i 0.345200 0.938529i \(-0.387811\pi\)
0.928447 + 0.371465i \(0.121144\pi\)
\(18\) −1.35368 + 0.287735i −0.319067 + 0.0678197i
\(19\) 1.99768 + 0.424620i 0.458299 + 0.0974145i 0.431276 0.902220i \(-0.358064\pi\)
0.0270238 + 0.999635i \(0.491397\pi\)
\(20\) 0 0
\(21\) 3.10312 3.44636i 0.677156 0.752058i
\(22\) −1.33518 + 12.7034i −0.284662 + 2.70838i
\(23\) 4.95413 + 3.59938i 1.03301 + 0.750523i 0.968908 0.247420i \(-0.0795828\pi\)
0.0640985 + 0.997944i \(0.479583\pi\)
\(24\) −0.126143 1.20017i −0.0257487 0.244983i
\(25\) 0 0
\(26\) 6.02674 + 10.4386i 1.18194 + 2.04718i
\(27\) −4.52986 + 3.29114i −0.871772 + 0.633379i
\(28\) −4.82382 5.35740i −0.911617 1.01245i
\(29\) 1.77750 + 5.47059i 0.330074 + 1.01586i 0.969098 + 0.246676i \(0.0793383\pi\)
−0.639024 + 0.769186i \(0.720662\pi\)
\(30\) 0 0
\(31\) 2.16791 + 5.12837i 0.389368 + 0.921082i
\(32\) 8.07104 1.42677
\(33\) 2.88510 + 8.87943i 0.502232 + 1.54571i
\(34\) −8.04733 8.93747i −1.38011 1.53276i
\(35\) 0 0
\(36\) 0.786229 + 1.36179i 0.131038 + 0.226965i
\(37\) 1.18290 2.04884i 0.194468 0.336828i −0.752258 0.658868i \(-0.771035\pi\)
0.946726 + 0.322041i \(0.104369\pi\)
\(38\) −0.446636 4.24946i −0.0724539 0.689353i
\(39\) 7.12760 + 5.17850i 1.14133 + 0.829224i
\(40\) 0 0
\(41\) 0.618888 0.687345i 0.0966541 0.107345i −0.692877 0.721056i \(-0.743657\pi\)
0.789531 + 0.613711i \(0.210324\pi\)
\(42\) −8.86371 3.94638i −1.36770 0.608939i
\(43\) −4.17130 0.886637i −0.636117 0.135211i −0.121445 0.992598i \(-0.538753\pi\)
−0.514672 + 0.857387i \(0.672086\pi\)
\(44\) 14.1963 3.01752i 2.14018 0.454909i
\(45\) 0 0
\(46\) 3.95904 12.1847i 0.583728 1.79653i
\(47\) −0.482864 + 1.48610i −0.0704330 + 0.216770i −0.980077 0.198619i \(-0.936355\pi\)
0.909644 + 0.415389i \(0.136355\pi\)
\(48\) 4.33543 1.93026i 0.625765 0.278608i
\(49\) −2.14873 + 0.456727i −0.306961 + 0.0652466i
\(50\) 0 0
\(51\) −8.03053 3.57542i −1.12450 0.500659i
\(52\) 9.16409 10.1778i 1.27083 1.41140i
\(53\) −0.300872 + 2.86260i −0.0413279 + 0.393209i 0.954231 + 0.299070i \(0.0966764\pi\)
−0.995559 + 0.0941388i \(0.969990\pi\)
\(54\) 9.47725 + 6.88563i 1.28969 + 0.937015i
\(55\) 0 0
\(56\) −1.19658 + 2.07254i −0.159900 + 0.276955i
\(57\) −1.56157 2.70472i −0.206835 0.358249i
\(58\) 9.73605 7.07365i 1.27841 0.928816i
\(59\) 0.130293 + 0.144705i 0.0169627 + 0.0188390i 0.751566 0.659657i \(-0.229299\pi\)
−0.734604 + 0.678496i \(0.762632\pi\)
\(60\) 0 0
\(61\) −9.68296 −1.23978 −0.619888 0.784690i \(-0.712822\pi\)
−0.619888 + 0.784690i \(0.712822\pi\)
\(62\) 8.80271 7.62923i 1.11795 0.968913i
\(63\) 2.00601 0.252733
\(64\) −3.30009 10.1566i −0.412511 1.26958i
\(65\) 0 0
\(66\) 15.8028 11.4814i 1.94519 1.41326i
\(67\) 3.22324 + 5.58282i 0.393782 + 0.682050i 0.992945 0.118577i \(-0.0378332\pi\)
−0.599163 + 0.800627i \(0.704500\pi\)
\(68\) −6.83246 + 11.8342i −0.828558 + 1.43510i
\(69\) −0.978847 9.31310i −0.117839 1.12117i
\(70\) 0 0
\(71\) −0.100240 + 0.953724i −0.0118964 + 0.113186i −0.998859 0.0477660i \(-0.984790\pi\)
0.986962 + 0.160952i \(0.0514565\pi\)
\(72\) 0.349287 0.387923i 0.0411639 0.0457171i
\(73\) 0.985838 + 0.438923i 0.115384 + 0.0513721i 0.463617 0.886036i \(-0.346552\pi\)
−0.348233 + 0.937408i \(0.613218\pi\)
\(74\) −4.84150 1.02909i −0.562813 0.119630i
\(75\) 0 0
\(76\) −4.43522 + 1.97469i −0.508755 + 0.226512i
\(77\) 5.72147 17.6089i 0.652022 2.00672i
\(78\) 5.69594 17.5303i 0.644938 1.98492i
\(79\) −8.81227 + 3.92348i −0.991458 + 0.441426i −0.837373 0.546632i \(-0.815910\pi\)
−0.154085 + 0.988058i \(0.549243\pi\)
\(80\) 0 0
\(81\) 6.43427 + 1.36765i 0.714919 + 0.151961i
\(82\) −1.76778 0.787068i −0.195219 0.0869171i
\(83\) −5.35103 + 5.94292i −0.587352 + 0.652320i −0.961421 0.275081i \(-0.911295\pi\)
0.374070 + 0.927401i \(0.377962\pi\)
\(84\) −1.15235 + 10.9639i −0.125732 + 1.19626i
\(85\) 0 0
\(86\) 0.932608 + 8.87317i 0.100566 + 0.956819i
\(87\) 4.39813 7.61779i 0.471529 0.816713i
\(88\) −2.40899 4.17249i −0.256799 0.444789i
\(89\) −8.64669 + 6.28219i −0.916548 + 0.665911i −0.942662 0.333748i \(-0.891686\pi\)
0.0261147 + 0.999659i \(0.491686\pi\)
\(90\) 0 0
\(91\) −5.39901 16.6164i −0.565970 1.74188i
\(92\) −14.5570 −1.51768
\(93\) 3.60974 7.71129i 0.374312 0.799623i
\(94\) 3.26919 0.337191
\(95\) 0 0
\(96\) −8.25869 9.17220i −0.842899 0.936134i
\(97\) 1.95842 1.42288i 0.198848 0.144471i −0.483906 0.875120i \(-0.660782\pi\)
0.682754 + 0.730649i \(0.260782\pi\)
\(98\) 2.29797 + 3.98021i 0.232130 + 0.402062i
\(99\) −2.01927 + 3.49747i −0.202944 + 0.351509i
\(100\) 0 0
\(101\) 0.949838 + 0.690097i 0.0945124 + 0.0686673i 0.634038 0.773302i \(-0.281396\pi\)
−0.539525 + 0.841969i \(0.681396\pi\)
\(102\) −1.92241 + 18.2905i −0.190347 + 1.81103i
\(103\) −8.05374 + 8.94458i −0.793558 + 0.881336i −0.995174 0.0981289i \(-0.968714\pi\)
0.201615 + 0.979465i \(0.435381\pi\)
\(104\) −4.15338 1.84920i −0.407272 0.181329i
\(105\) 0 0
\(106\) 5.89046 1.25206i 0.572132 0.121610i
\(107\) 3.33708 1.48576i 0.322607 0.143634i −0.239042 0.971009i \(-0.576833\pi\)
0.561650 + 0.827375i \(0.310167\pi\)
\(108\) 4.11314 12.6589i 0.395787 1.21811i
\(109\) −0.901993 + 2.77605i −0.0863952 + 0.265897i −0.984916 0.173034i \(-0.944643\pi\)
0.898521 + 0.438931i \(0.144643\pi\)
\(110\) 0 0
\(111\) −3.53878 + 0.752190i −0.335886 + 0.0713947i
\(112\) −9.20560 1.95671i −0.869847 0.184892i
\(113\) −15.7857 7.02825i −1.48499 0.661162i −0.505536 0.862806i \(-0.668705\pi\)
−0.979459 + 0.201643i \(0.935372\pi\)
\(114\) −4.37221 + 4.85583i −0.409495 + 0.454790i
\(115\) 0 0
\(116\) −11.0624 8.03729i −1.02712 0.746244i
\(117\) 0.398350 + 3.79005i 0.0368275 + 0.350390i
\(118\) 0.203694 0.352808i 0.0187516 0.0324786i
\(119\) 8.71626 + 15.0970i 0.799018 + 1.38394i
\(120\) 0 0
\(121\) 17.5813 + 19.5260i 1.59830 + 1.77510i
\(122\) 6.26020 + 19.2669i 0.566772 + 1.74434i
\(123\) −1.41440 −0.127532
\(124\) −11.3350 6.83364i −1.01792 0.613679i
\(125\) 0 0
\(126\) −1.29692 3.99150i −0.115539 0.355591i
\(127\) 6.64696 + 7.38220i 0.589822 + 0.655064i 0.961985 0.273104i \(-0.0880502\pi\)
−0.372162 + 0.928168i \(0.621384\pi\)
\(128\) −5.01662 + 3.64479i −0.443411 + 0.322157i
\(129\) 3.26068 + 5.64766i 0.287087 + 0.497248i
\(130\) 0 0
\(131\) −0.622368 5.92143i −0.0543765 0.517358i −0.987479 0.157748i \(-0.949577\pi\)
0.933103 0.359610i \(-0.117090\pi\)
\(132\) −17.9556 13.0455i −1.56284 1.13547i
\(133\) −0.647400 + 6.15960i −0.0561367 + 0.534105i
\(134\) 9.02468 10.0229i 0.779613 0.865848i
\(135\) 0 0
\(136\) 4.43715 + 0.943146i 0.380483 + 0.0808741i
\(137\) −21.8539 + 4.64520i −1.86711 + 0.396866i −0.995615 0.0935423i \(-0.970181\pi\)
−0.871493 + 0.490408i \(0.836848\pi\)
\(138\) −17.8981 + 7.96877i −1.52359 + 0.678346i
\(139\) −2.09191 + 6.43825i −0.177434 + 0.546085i −0.999736 0.0229656i \(-0.992689\pi\)
0.822302 + 0.569051i \(0.192689\pi\)
\(140\) 0 0
\(141\) 2.18295 0.971911i 0.183837 0.0818497i
\(142\) 1.96250 0.417143i 0.164690 0.0350059i
\(143\) 34.4055 + 7.31311i 2.87713 + 0.611553i
\(144\) 1.87532 + 0.834948i 0.156277 + 0.0695790i
\(145\) 0 0
\(146\) 0.235998 2.24537i 0.0195313 0.185828i
\(147\) 2.71773 + 1.97454i 0.224154 + 0.162858i
\(148\) 0.587863 + 5.59314i 0.0483221 + 0.459754i
\(149\) 10.7029 18.5379i 0.876812 1.51868i 0.0219926 0.999758i \(-0.492999\pi\)
0.854820 0.518925i \(-0.173668\pi\)
\(150\) 0 0
\(151\) 2.75097 1.99870i 0.223871 0.162652i −0.470196 0.882562i \(-0.655817\pi\)
0.694067 + 0.719910i \(0.255817\pi\)
\(152\) 1.07842 + 1.19771i 0.0874716 + 0.0971471i
\(153\) −1.17501 3.61631i −0.0949939 0.292361i
\(154\) −38.7367 −3.12149
\(155\) 0 0
\(156\) −20.9435 −1.67682
\(157\) −2.90996 8.95594i −0.232240 0.714762i −0.997476 0.0710113i \(-0.977377\pi\)
0.765235 0.643751i \(-0.222623\pi\)
\(158\) 13.5041 + 14.9978i 1.07433 + 1.19316i
\(159\) 3.56103 2.58724i 0.282408 0.205181i
\(160\) 0 0
\(161\) −9.28531 + 16.0826i −0.731785 + 1.26749i
\(162\) −1.43856 13.6870i −0.113024 1.07535i
\(163\) −9.25245 6.72230i −0.724708 0.526531i 0.163177 0.986597i \(-0.447826\pi\)
−0.887885 + 0.460066i \(0.847826\pi\)
\(164\) −0.229826 + 2.18665i −0.0179464 + 0.170749i
\(165\) 0 0
\(166\) 15.2846 + 6.80514i 1.18632 + 0.528182i
\(167\) 7.54945 + 1.60468i 0.584194 + 0.124174i 0.490522 0.871429i \(-0.336806\pi\)
0.0936719 + 0.995603i \(0.470140\pi\)
\(168\) 3.57971 0.760892i 0.276181 0.0587041i
\(169\) 18.4460 8.21270i 1.41893 0.631747i
\(170\) 0 0
\(171\) 0.417464 1.28482i 0.0319243 0.0982529i
\(172\) 9.26106 4.12329i 0.706149 0.314398i
\(173\) −4.55039 + 0.967215i −0.345960 + 0.0735360i −0.377615 0.925963i \(-0.623256\pi\)
0.0316548 + 0.999499i \(0.489922\pi\)
\(174\) −18.0012 3.82626i −1.36466 0.290068i
\(175\) 0 0
\(176\) 12.6780 14.0803i 0.955639 1.06134i
\(177\) 0.0311255 0.296139i 0.00233953 0.0222592i
\(178\) 18.0904 + 13.1434i 1.35593 + 0.985142i
\(179\) 0.594181 + 5.65325i 0.0444111 + 0.422544i 0.994028 + 0.109129i \(0.0348063\pi\)
−0.949616 + 0.313415i \(0.898527\pi\)
\(180\) 0 0
\(181\) 0.568358 + 0.984425i 0.0422457 + 0.0731718i 0.886375 0.462968i \(-0.153215\pi\)
−0.844129 + 0.536140i \(0.819882\pi\)
\(182\) −29.5724 + 21.4856i −2.19205 + 1.59262i
\(183\) 9.90809 + 11.0040i 0.732427 + 0.813442i
\(184\) 1.49330 + 4.59592i 0.110088 + 0.338816i
\(185\) 0 0
\(186\) −17.6775 2.19709i −1.29618 0.161098i
\(187\) −35.0955 −2.56644
\(188\) −1.14786 3.53275i −0.0837162 0.257652i
\(189\) −11.3620 12.6188i −0.826464 0.917881i
\(190\) 0 0
\(191\) 9.70293 + 16.8060i 0.702079 + 1.21604i 0.967735 + 0.251969i \(0.0810782\pi\)
−0.265656 + 0.964068i \(0.585589\pi\)
\(192\) −8.16552 + 14.1431i −0.589295 + 1.02069i
\(193\) −1.68977 16.0771i −0.121632 1.15725i −0.869683 0.493611i \(-0.835677\pi\)
0.748051 0.663641i \(-0.230990\pi\)
\(194\) −4.09736 2.97691i −0.294173 0.213729i
\(195\) 0 0
\(196\) 3.49423 3.88074i 0.249588 0.277196i
\(197\) 7.06835 + 3.14703i 0.503599 + 0.224217i 0.642781 0.766050i \(-0.277781\pi\)
−0.139182 + 0.990267i \(0.544447\pi\)
\(198\) 8.26467 + 1.75671i 0.587345 + 0.124844i
\(199\) −25.9544 + 5.51677i −1.83986 + 0.391074i −0.990587 0.136884i \(-0.956291\pi\)
−0.849271 + 0.527958i \(0.822958\pi\)
\(200\) 0 0
\(201\) 3.04633 9.37562i 0.214871 0.661306i
\(202\) 0.759052 2.33612i 0.0534067 0.164369i
\(203\) −15.9358 + 7.09509i −1.11848 + 0.497977i
\(204\) 20.4401 4.34467i 1.43109 0.304188i
\(205\) 0 0
\(206\) 23.0046 + 10.2423i 1.60281 + 0.713615i
\(207\) 2.71041 3.01022i 0.188387 0.209225i
\(208\) 1.86887 17.7812i 0.129583 1.23290i
\(209\) −10.0876 7.32906i −0.697773 0.506962i
\(210\) 0 0
\(211\) −8.12604 + 14.0747i −0.559419 + 0.968943i 0.438125 + 0.898914i \(0.355643\pi\)
−0.997545 + 0.0700292i \(0.977691\pi\)
\(212\) −3.42122 5.92572i −0.234970 0.406980i
\(213\) 1.18642 0.861981i 0.0812918 0.0590620i
\(214\) −5.11381 5.67946i −0.349573 0.388240i
\(215\) 0 0
\(216\) −4.41859 −0.300647
\(217\) −14.7799 + 8.16408i −1.00333 + 0.554214i
\(218\) 6.10686 0.413609
\(219\) −0.509951 1.56947i −0.0344593 0.106055i
\(220\) 0 0
\(221\) −26.7927 + 19.4660i −1.80227 + 1.30943i
\(222\) 3.78457 + 6.55507i 0.254004 + 0.439947i
\(223\) −2.42908 + 4.20728i −0.162663 + 0.281741i −0.935823 0.352471i \(-0.885342\pi\)
0.773160 + 0.634211i \(0.218675\pi\)
\(224\) 2.55847 + 24.3422i 0.170945 + 1.62643i
\(225\) 0 0
\(226\) −3.77891 + 35.9539i −0.251369 + 2.39162i
\(227\) −3.26879 + 3.63036i −0.216957 + 0.240955i −0.841793 0.539801i \(-0.818499\pi\)
0.624835 + 0.780756i \(0.285166\pi\)
\(228\) 6.78244 + 3.01974i 0.449178 + 0.199987i
\(229\) −3.34903 0.711858i −0.221310 0.0470409i 0.0959219 0.995389i \(-0.469420\pi\)
−0.317232 + 0.948348i \(0.602753\pi\)
\(230\) 0 0
\(231\) −25.8658 + 11.5162i −1.70184 + 0.757710i
\(232\) −1.40270 + 4.31708i −0.0920921 + 0.283430i
\(233\) −4.60780 + 14.1813i −0.301867 + 0.929050i 0.678961 + 0.734174i \(0.262431\pi\)
−0.980828 + 0.194876i \(0.937569\pi\)
\(234\) 7.28380 3.24296i 0.476157 0.211999i
\(235\) 0 0
\(236\) −0.452771 0.0962395i −0.0294729 0.00626466i
\(237\) 13.4759 + 5.99987i 0.875356 + 0.389733i
\(238\) 24.4044 27.1039i 1.58190 1.75688i
\(239\) 0.784172 7.46090i 0.0507239 0.482605i −0.939442 0.342708i \(-0.888656\pi\)
0.990166 0.139898i \(-0.0446773\pi\)
\(240\) 0 0
\(241\) 0.637348 + 6.06396i 0.0410552 + 0.390614i 0.995683 + 0.0928139i \(0.0295862\pi\)
−0.954628 + 0.297800i \(0.903747\pi\)
\(242\) 27.4858 47.6068i 1.76685 3.06028i
\(243\) 3.36920 + 5.83563i 0.216134 + 0.374356i
\(244\) 18.6221 13.5298i 1.19216 0.866155i
\(245\) 0 0
\(246\) 0.914433 + 2.81434i 0.0583021 + 0.179436i
\(247\) −11.7662 −0.748666
\(248\) −0.994719 + 4.27969i −0.0631647 + 0.271761i
\(249\) 12.2292 0.774992
\(250\) 0 0
\(251\) 3.54377 + 3.93575i 0.223681 + 0.248422i 0.844531 0.535507i \(-0.179879\pi\)
−0.620851 + 0.783929i \(0.713213\pi\)
\(252\) −3.85792 + 2.80295i −0.243026 + 0.176569i
\(253\) −18.6934 32.3779i −1.17524 2.03558i
\(254\) 10.3915 17.9987i 0.652023 1.12934i
\(255\) 0 0
\(256\) −6.78384 4.92875i −0.423990 0.308047i
\(257\) −0.766808 + 7.29569i −0.0478321 + 0.455092i 0.944225 + 0.329302i \(0.106813\pi\)
−0.992057 + 0.125791i \(0.959853\pi\)
\(258\) 9.12948 10.1393i 0.568377 0.631246i
\(259\) 6.55428 + 2.91815i 0.407263 + 0.181325i
\(260\) 0 0
\(261\) 3.72175 0.791083i 0.230371 0.0489668i
\(262\) −11.3799 + 5.06668i −0.703056 + 0.313021i
\(263\) 5.46518 16.8201i 0.336998 1.03717i −0.628732 0.777622i \(-0.716426\pi\)
0.965730 0.259550i \(-0.0835742\pi\)
\(264\) −2.27676 + 7.00715i −0.140125 + 0.431261i
\(265\) 0 0
\(266\) 12.6748 2.69411i 0.777141 0.165186i
\(267\) 15.9870 + 3.39815i 0.978390 + 0.207963i
\(268\) −13.9996 6.23304i −0.855164 0.380744i
\(269\) −9.87200 + 10.9640i −0.601906 + 0.668485i −0.964690 0.263389i \(-0.915160\pi\)
0.362783 + 0.931873i \(0.381826\pi\)
\(270\) 0 0
\(271\) −9.47183 6.88169i −0.575373 0.418033i 0.261680 0.965155i \(-0.415723\pi\)
−0.837053 + 0.547122i \(0.815723\pi\)
\(272\) 1.86470 + 17.7414i 0.113064 + 1.07573i
\(273\) −13.3589 + 23.1384i −0.808520 + 1.40040i
\(274\) 23.3718 + 40.4812i 1.41194 + 2.44556i
\(275\) 0 0
\(276\) 14.8955 + 16.5431i 0.896603 + 0.995778i
\(277\) 3.15910 + 9.72271i 0.189812 + 0.584181i 0.999998 0.00199166i \(-0.000633966\pi\)
−0.810186 + 0.586173i \(0.800634\pi\)
\(278\) 14.1631 0.849448
\(279\) 3.52362 1.07158i 0.210953 0.0641536i
\(280\) 0 0
\(281\) −1.32233 4.06971i −0.0788835 0.242779i 0.903836 0.427879i \(-0.140739\pi\)
−0.982720 + 0.185100i \(0.940739\pi\)
\(282\) −3.34520 3.71522i −0.199204 0.221238i
\(283\) −16.6406 + 12.0901i −0.989180 + 0.718682i −0.959741 0.280885i \(-0.909372\pi\)
−0.0294389 + 0.999567i \(0.509372\pi\)
\(284\) −1.13984 1.97425i −0.0676368 0.117150i
\(285\) 0 0
\(286\) −7.69228 73.1872i −0.454854 4.32765i
\(287\) 2.26922 + 1.64868i 0.133948 + 0.0973186i
\(288\) 0.558058 5.30957i 0.0328839 0.312869i
\(289\) 10.7352 11.9227i 0.631485 0.701335i
\(290\) 0 0
\(291\) −3.62096 0.769659i −0.212264 0.0451182i
\(292\) −2.50925 + 0.533357i −0.146843 + 0.0312123i
\(293\) 5.98353 2.66404i 0.349562 0.155635i −0.224442 0.974487i \(-0.572056\pi\)
0.574004 + 0.818853i \(0.305389\pi\)
\(294\) 2.17184 6.68424i 0.126664 0.389833i
\(295\) 0 0
\(296\) 1.70555 0.759360i 0.0991331 0.0441369i
\(297\) 33.4380 7.10746i 1.94027 0.412416i
\(298\) −43.8058 9.31121i −2.53760 0.539384i
\(299\) −32.2296 14.3495i −1.86388 0.829854i
\(300\) 0 0
\(301\) 1.35182 12.8617i 0.0779175 0.741336i
\(302\) −5.75551 4.18162i −0.331192 0.240625i
\(303\) −0.187671 1.78557i −0.0107814 0.102578i
\(304\) −3.16900 + 5.48887i −0.181755 + 0.314808i
\(305\) 0 0
\(306\) −6.43597 + 4.67601i −0.367920 + 0.267310i
\(307\) 21.0413 + 23.3687i 1.20089 + 1.33372i 0.928407 + 0.371564i \(0.121178\pi\)
0.272483 + 0.962161i \(0.412155\pi\)
\(308\) 13.6010 + 41.8596i 0.774989 + 2.38517i
\(309\) 18.4059 1.04708
\(310\) 0 0
\(311\) 1.01917 0.0577920 0.0288960 0.999582i \(-0.490801\pi\)
0.0288960 + 0.999582i \(0.490801\pi\)
\(312\) 2.14845 + 6.61223i 0.121632 + 0.374344i
\(313\) 1.18545 + 1.31658i 0.0670057 + 0.0744173i 0.775716 0.631083i \(-0.217389\pi\)
−0.708710 + 0.705500i \(0.750722\pi\)
\(314\) −15.9390 + 11.5803i −0.899488 + 0.653516i
\(315\) 0 0
\(316\) 11.4655 19.8588i 0.644982 1.11714i
\(317\) −2.12894 20.2556i −0.119573 1.13767i −0.875570 0.483090i \(-0.839514\pi\)
0.755997 0.654575i \(-0.227152\pi\)
\(318\) −7.45029 5.41295i −0.417791 0.303543i
\(319\) 3.67088 34.9261i 0.205530 1.95549i
\(320\) 0 0
\(321\) −5.10313 2.27206i −0.284829 0.126814i
\(322\) 38.0039 + 8.07798i 2.11787 + 0.450168i
\(323\) 11.4834 2.44087i 0.638952 0.135813i
\(324\) −14.2853 + 6.36021i −0.793626 + 0.353345i
\(325\) 0 0
\(326\) −7.39399 + 22.7564i −0.409515 + 1.26036i
\(327\) 4.07776 1.81553i 0.225501 0.100399i
\(328\) 0.713941 0.151753i 0.0394208 0.00837915i
\(329\) −4.63515 0.985232i −0.255544 0.0543176i
\(330\) 0 0
\(331\) 12.0257 13.3559i 0.660991 0.734104i −0.315676 0.948867i \(-0.602231\pi\)
0.976666 + 0.214763i \(0.0688978\pi\)
\(332\) 1.98712 18.9062i 0.109057 1.03761i
\(333\) −1.26605 0.919840i −0.0693792 0.0504069i
\(334\) −1.68789 16.0592i −0.0923570 0.878718i
\(335\) 0 0
\(336\) 7.19595 + 12.4638i 0.392572 + 0.679954i
\(337\) 7.33578 5.32976i 0.399606 0.290330i −0.369775 0.929121i \(-0.620565\pi\)
0.769380 + 0.638791i \(0.220565\pi\)
\(338\) −28.2671 31.3938i −1.53753 1.70760i
\(339\) 8.16558 + 25.1311i 0.443494 + 1.36493i
\(340\) 0 0
\(341\) 0.643568 33.9869i 0.0348511 1.84049i
\(342\) −2.82641 −0.152835
\(343\) 4.50128 + 13.8535i 0.243046 + 0.748019i
\(344\) −2.25182 2.50090i −0.121410 0.134840i
\(345\) 0 0
\(346\) 4.86645 + 8.42893i 0.261622 + 0.453142i
\(347\) −4.80067 + 8.31501i −0.257714 + 0.446373i −0.965629 0.259924i \(-0.916302\pi\)
0.707915 + 0.706297i \(0.249636\pi\)
\(348\) 2.18573 + 20.7958i 0.117167 + 1.11477i
\(349\) −7.35418 5.34313i −0.393660 0.286011i 0.373293 0.927713i \(-0.378228\pi\)
−0.766954 + 0.641702i \(0.778228\pi\)
\(350\) 0 0
\(351\) 21.5850 23.9726i 1.15212 1.27956i
\(352\) −45.0161 20.0424i −2.39937 1.06827i
\(353\) −1.18790 0.252497i −0.0632257 0.0134390i 0.176190 0.984356i \(-0.443623\pi\)
−0.239416 + 0.970917i \(0.576956\pi\)
\(354\) −0.609373 + 0.129526i −0.0323878 + 0.00688424i
\(355\) 0 0
\(356\) 7.85124 24.1636i 0.416115 1.28067i
\(357\) 8.23784 25.3535i 0.435993 1.34185i
\(358\) 10.8645 4.83721i 0.574209 0.255654i
\(359\) −1.53751 + 0.326807i −0.0811465 + 0.0172482i −0.248306 0.968682i \(-0.579874\pi\)
0.167160 + 0.985930i \(0.446541\pi\)
\(360\) 0 0
\(361\) −13.5469 6.03149i −0.712997 0.317447i
\(362\) 1.59133 1.76735i 0.0836385 0.0928900i
\(363\) 4.19997 39.9600i 0.220441 2.09736i
\(364\) 33.6011 + 24.4126i 1.76117 + 1.27957i
\(365\) 0 0
\(366\) 15.4898 26.8292i 0.809666 1.40238i
\(367\) 1.15727 + 2.00445i 0.0604091 + 0.104632i 0.894648 0.446771i \(-0.147426\pi\)
−0.834239 + 0.551403i \(0.814093\pi\)
\(368\) −15.3744 + 11.1701i −0.801446 + 0.582284i
\(369\) −0.409381 0.454664i −0.0213115 0.0236688i
\(370\) 0 0
\(371\) −8.72898 −0.453186
\(372\) 3.83260 + 19.8740i 0.198711 + 1.03042i
\(373\) 30.7941 1.59446 0.797230 0.603676i \(-0.206298\pi\)
0.797230 + 0.603676i \(0.206298\pi\)
\(374\) 22.6899 + 69.8322i 1.17326 + 3.61094i
\(375\) 0 0
\(376\) −0.997601 + 0.724799i −0.0514473 + 0.0373787i
\(377\) −16.5696 28.6994i −0.853378 1.47809i
\(378\) −17.7628 + 30.7661i −0.913620 + 1.58244i
\(379\) 0.209001 + 1.98851i 0.0107357 + 0.102143i 0.998578 0.0533190i \(-0.0169800\pi\)
−0.987842 + 0.155462i \(0.950313\pi\)
\(380\) 0 0
\(381\) 1.58788 15.1077i 0.0813495 0.773989i
\(382\) 27.1670 30.1720i 1.38998 1.54373i
\(383\) −13.8994 6.18843i −0.710228 0.316214i 0.0196351 0.999807i \(-0.493750\pi\)
−0.729863 + 0.683593i \(0.760416\pi\)
\(384\) 9.27531 + 1.97153i 0.473329 + 0.100609i
\(385\) 0 0
\(386\) −30.8973 + 13.7563i −1.57263 + 0.700180i
\(387\) −0.871695 + 2.68280i −0.0443108 + 0.136375i
\(388\) −1.77826 + 5.47291i −0.0902774 + 0.277845i
\(389\) −20.1871 + 8.98788i −1.02353 + 0.455704i −0.848688 0.528893i \(-0.822607\pi\)
−0.174839 + 0.984597i \(0.555941\pi\)
\(390\) 0 0
\(391\) 34.4316 + 7.31866i 1.74128 + 0.370121i
\(392\) −1.58367 0.705094i −0.0799873 0.0356126i
\(393\) −6.09248 + 6.76639i −0.307325 + 0.341319i
\(394\) 1.69208 16.0990i 0.0852456 0.811058i
\(395\) 0 0
\(396\) −1.00351 9.54776i −0.0504283 0.479793i
\(397\) −2.95954 + 5.12607i −0.148535 + 0.257270i −0.930686 0.365818i \(-0.880789\pi\)
0.782151 + 0.623089i \(0.214122\pi\)
\(398\) 27.7571 + 48.0767i 1.39134 + 2.40987i
\(399\) 7.66244 5.56708i 0.383602 0.278703i
\(400\) 0 0
\(401\) 6.80958 + 20.9577i 0.340054 + 1.04658i 0.964178 + 0.265254i \(0.0854560\pi\)
−0.624124 + 0.781325i \(0.714544\pi\)
\(402\) −20.6249 −1.02868
\(403\) −18.3598 26.3033i −0.914566 1.31026i
\(404\) −2.79097 −0.138856
\(405\) 0 0
\(406\) 24.4204 + 27.1216i 1.21196 + 1.34602i
\(407\) −11.6854 + 8.48995i −0.579224 + 0.420831i
\(408\) −3.46849 6.00760i −0.171716 0.297421i
\(409\) 15.7750 27.3232i 0.780026 1.35104i −0.151900 0.988396i \(-0.548539\pi\)
0.931926 0.362648i \(-0.118127\pi\)
\(410\) 0 0
\(411\) 27.6410 + 20.0824i 1.36343 + 0.990590i
\(412\) 2.99078 28.4554i 0.147345 1.40190i
\(413\) −0.395128 + 0.438835i −0.0194430 + 0.0215936i
\(414\) −7.74199 3.44696i −0.380498 0.169409i
\(415\) 0 0
\(416\) −45.4829 + 9.66770i −2.22998 + 0.473998i
\(417\) 9.45719 4.21061i 0.463121 0.206195i
\(418\) −8.06139 + 24.8104i −0.394295 + 1.21352i
\(419\) 1.30801 4.02565i 0.0639007 0.196666i −0.914009 0.405694i \(-0.867030\pi\)
0.977910 + 0.209028i \(0.0670299\pi\)
\(420\) 0 0
\(421\) −0.803249 + 0.170736i −0.0391479 + 0.00832115i −0.227444 0.973791i \(-0.573037\pi\)
0.188296 + 0.982112i \(0.439704\pi\)
\(422\) 33.2591 + 7.06945i 1.61903 + 0.344135i
\(423\) 0.944253 + 0.420408i 0.0459111 + 0.0204410i
\(424\) −1.51990 + 1.68802i −0.0738127 + 0.0819774i
\(425\) 0 0
\(426\) −2.48219 1.80341i −0.120262 0.0873757i
\(427\) −3.06944 29.2038i −0.148541 1.41327i
\(428\) −4.34180 + 7.52022i −0.209869 + 0.363503i
\(429\) −26.8945 46.5827i −1.29848 2.24903i
\(430\) 0 0
\(431\) 24.6170 + 27.3399i 1.18576 + 1.31692i 0.937402 + 0.348249i \(0.113223\pi\)
0.248356 + 0.968669i \(0.420110\pi\)
\(432\) −5.36958 16.5259i −0.258344 0.795101i
\(433\) 8.37708 0.402577 0.201288 0.979532i \(-0.435487\pi\)
0.201288 + 0.979532i \(0.435487\pi\)
\(434\) 25.8002 + 24.1305i 1.23845 + 1.15830i
\(435\) 0 0
\(436\) −2.14421 6.59919i −0.102689 0.316044i
\(437\) 8.36839 + 9.29404i 0.400314 + 0.444594i
\(438\) −2.79320 + 2.02937i −0.133464 + 0.0969673i
\(439\) 19.1752 + 33.2125i 0.915184 + 1.58515i 0.806632 + 0.591054i \(0.201288\pi\)
0.108552 + 0.994091i \(0.465379\pi\)
\(440\) 0 0
\(441\) 0.151889 + 1.44513i 0.00723283 + 0.0688157i
\(442\) 56.0549 + 40.7263i 2.66626 + 1.93715i
\(443\) 1.44602 13.7580i 0.0687027 0.653662i −0.904933 0.425554i \(-0.860079\pi\)
0.973636 0.228108i \(-0.0732541\pi\)
\(444\) 5.75471 6.39125i 0.273106 0.303315i
\(445\) 0 0
\(446\) 9.94199 + 2.11323i 0.470767 + 0.100065i
\(447\) −32.0188 + 6.80580i −1.51444 + 0.321903i
\(448\) 29.5863 13.1726i 1.39782 0.622349i
\(449\) 7.32528 22.5449i 0.345701 1.06396i −0.615506 0.788132i \(-0.711048\pi\)
0.961207 0.275827i \(-0.0889517\pi\)
\(450\) 0 0
\(451\) −5.15869 + 2.29680i −0.242913 + 0.108152i
\(452\) 40.1793 8.54037i 1.88987 0.401705i
\(453\) −5.08632 1.08113i −0.238976 0.0507959i
\(454\) 9.33692 + 4.15706i 0.438203 + 0.195101i
\(455\) 0 0
\(456\) 0.257622 2.45111i 0.0120643 0.114784i
\(457\) −23.6411 17.1763i −1.10588 0.803472i −0.123874 0.992298i \(-0.539532\pi\)
−0.982011 + 0.188826i \(0.939532\pi\)
\(458\) 0.748767 + 7.12404i 0.0349876 + 0.332885i
\(459\) −16.0931 + 27.8741i −0.751163 + 1.30105i
\(460\) 0 0
\(461\) 18.9530 13.7701i 0.882728 0.641340i −0.0512435 0.998686i \(-0.516318\pi\)
0.933972 + 0.357346i \(0.116318\pi\)
\(462\) 39.6373 + 44.0217i 1.84409 + 2.04807i
\(463\) −7.42425 22.8495i −0.345034 1.06191i −0.961566 0.274576i \(-0.911463\pi\)
0.616531 0.787330i \(-0.288537\pi\)
\(464\) −17.8508 −0.828704
\(465\) 0 0
\(466\) 31.1967 1.44516
\(467\) 6.92278 + 21.3061i 0.320348 + 0.985930i 0.973497 + 0.228701i \(0.0734477\pi\)
−0.653149 + 0.757230i \(0.726552\pi\)
\(468\) −6.06184 6.73236i −0.280209 0.311203i
\(469\) −15.8160 + 11.4910i −0.730317 + 0.530606i
\(470\) 0 0
\(471\) −7.20022 + 12.4711i −0.331769 + 0.574640i
\(472\) 0.0160621 + 0.152820i 0.000739317 + 0.00703413i
\(473\) 21.0636 + 15.3036i 0.968506 + 0.703661i
\(474\) 3.22597 30.6931i 0.148174 1.40978i
\(475\) 0 0
\(476\) −37.8577 16.8553i −1.73520 0.772563i
\(477\) 1.86237 + 0.395860i 0.0852722 + 0.0181252i
\(478\) −15.3525 + 3.26327i −0.702206 + 0.149259i
\(479\) 20.2792 9.02888i 0.926580 0.412540i 0.112737 0.993625i \(-0.464038\pi\)
0.813843 + 0.581085i \(0.197372\pi\)
\(480\) 0 0
\(481\) −4.21187 + 12.9628i −0.192045 + 0.591053i
\(482\) 11.6539 5.18863i 0.530819 0.236336i
\(483\) 27.7780 5.90440i 1.26394 0.268660i
\(484\) −61.0955 12.9862i −2.77707 0.590284i
\(485\) 0 0
\(486\) 9.43334 10.4768i 0.427905 0.475236i
\(487\) −2.19255 + 20.8608i −0.0993541 + 0.945291i 0.825354 + 0.564615i \(0.190975\pi\)
−0.924709 + 0.380676i \(0.875691\pi\)
\(488\) −6.18190 4.49142i −0.279842 0.203317i
\(489\) 1.82812 + 17.3934i 0.0826704 + 0.786556i
\(490\) 0 0
\(491\) −11.3850 19.7194i −0.513798 0.889925i −0.999872 0.0160069i \(-0.994905\pi\)
0.486074 0.873918i \(-0.338429\pi\)
\(492\) 2.72015 1.97631i 0.122634 0.0890988i
\(493\) 22.1249 + 24.5722i 0.996457 + 1.10668i
\(494\) 7.60705 + 23.4121i 0.342257 + 1.05336i
\(495\) 0 0
\(496\) −17.2152 + 1.48046i −0.772985 + 0.0664746i
\(497\) −2.90821 −0.130451
\(498\) −7.90637 24.3333i −0.354293 1.09040i
\(499\) 4.53741 + 5.03931i 0.203123 + 0.225590i 0.836096 0.548583i \(-0.184833\pi\)
−0.632974 + 0.774173i \(0.718166\pi\)
\(500\) 0 0
\(501\) −5.90135 10.2214i −0.263653 0.456660i
\(502\) 5.54015 9.59583i 0.247269 0.428283i
\(503\) −1.94958 18.5490i −0.0869275 0.827060i −0.947934 0.318466i \(-0.896832\pi\)
0.861007 0.508594i \(-0.169834\pi\)
\(504\) 1.28070 + 0.930481i 0.0570468 + 0.0414469i
\(505\) 0 0
\(506\) −52.3391 + 58.1284i −2.32676 + 2.58412i
\(507\) −28.2081 12.5591i −1.25277 0.557767i
\(508\) −23.0983 4.90970i −1.02482 0.217833i
\(509\) 18.9298 4.02366i 0.839051 0.178346i 0.231708 0.972785i \(-0.425569\pi\)
0.607343 + 0.794440i \(0.292235\pi\)
\(510\) 0 0
\(511\) −1.01129 + 3.11242i −0.0447367 + 0.137685i
\(512\) −9.25359 + 28.4796i −0.408955 + 1.25863i
\(513\) −10.4467 + 4.65117i −0.461233 + 0.205354i
\(514\) 15.0125 3.19101i 0.662174 0.140749i
\(515\) 0 0
\(516\) −14.1622 6.30543i −0.623457 0.277581i
\(517\) 6.38354 7.08964i 0.280748 0.311802i
\(518\) 1.56901 14.9282i 0.0689386 0.655907i
\(519\) 5.75536 + 4.18152i 0.252632 + 0.183548i
\(520\) 0 0
\(521\) 17.8991 31.0021i 0.784172 1.35823i −0.145320 0.989385i \(-0.546421\pi\)
0.929492 0.368842i \(-0.120246\pi\)
\(522\) −3.98025 6.89400i −0.174211 0.301742i
\(523\) −13.4111 + 9.74371i −0.586425 + 0.426063i −0.841035 0.540981i \(-0.818053\pi\)
0.254610 + 0.967044i \(0.418053\pi\)
\(524\) 9.47081 + 10.5184i 0.413734 + 0.459498i
\(525\) 0 0
\(526\) −37.0016 −1.61334
\(527\) 23.3750 + 21.8623i 1.01823 + 0.952337i
\(528\) −28.9741 −1.26094
\(529\) 4.48041 + 13.7893i 0.194801 + 0.599535i
\(530\) 0 0
\(531\) 0.104204 0.0757085i 0.00452206 0.00328547i
\(532\) −7.36160 12.7507i −0.319166 0.552811i
\(533\) −2.66432 + 4.61473i −0.115404 + 0.199886i
\(534\) −3.57434 34.0075i −0.154677 1.47165i
\(535\) 0 0
\(536\) −0.531758 + 5.05934i −0.0229685 + 0.218530i
\(537\) 5.81655 6.45993i 0.251003 0.278767i
\(538\) 28.1982 + 12.5547i 1.21571 + 0.541270i
\(539\) 13.1187 + 2.78846i 0.565061 + 0.120107i
\(540\) 0 0
\(541\) −18.3608 + 8.17474i −0.789391 + 0.351460i −0.761511 0.648152i \(-0.775542\pi\)
−0.0278800 + 0.999611i \(0.508876\pi\)
\(542\) −7.56931 + 23.2959i −0.325130 + 1.00065i
\(543\) 0.537162 1.65321i 0.0230518 0.0709462i
\(544\) 42.3841 18.8706i 1.81720 0.809071i
\(545\) 0 0
\(546\) 54.6770 + 11.6219i 2.33996 + 0.497373i
\(547\) −9.58694 4.26838i −0.409908 0.182503i 0.191414 0.981509i \(-0.438693\pi\)
−0.601322 + 0.799007i \(0.705359\pi\)
\(548\) 35.5386 39.4696i 1.51813 1.68606i
\(549\) −0.669512 + 6.36998i −0.0285741 + 0.271864i
\(550\) 0 0
\(551\) 1.22796 + 11.6832i 0.0523128 + 0.497723i
\(552\) 3.69493 6.39981i 0.157267 0.272394i
\(553\) −14.6266 25.3341i −0.621988 1.07731i
\(554\) 17.3036 12.5718i 0.735159 0.534125i
\(555\) 0 0
\(556\) −4.97287 15.3049i −0.210897 0.649074i
\(557\) −30.1350 −1.27686 −0.638431 0.769679i \(-0.720416\pi\)
−0.638431 + 0.769679i \(0.720416\pi\)
\(558\) −4.41028 6.31841i −0.186702 0.267480i
\(559\) 24.5687 1.03914
\(560\) 0 0
\(561\) 35.9115 + 39.8837i 1.51618 + 1.68389i
\(562\) −7.24290 + 5.26227i −0.305523 + 0.221976i
\(563\) 20.5872 + 35.6581i 0.867648 + 1.50281i 0.864394 + 0.502815i \(0.167702\pi\)
0.00325339 + 0.999995i \(0.498964\pi\)
\(564\) −2.84019 + 4.91935i −0.119593 + 0.207142i
\(565\) 0 0
\(566\) 34.8150 + 25.2946i 1.46338 + 1.06321i
\(567\) −2.08519 + 19.8393i −0.0875698 + 0.833171i
\(568\) −0.506379 + 0.562391i −0.0212472 + 0.0235974i
\(569\) −34.8431 15.5131i −1.46070 0.650344i −0.486017 0.873949i \(-0.661551\pi\)
−0.974680 + 0.223605i \(0.928217\pi\)
\(570\) 0 0
\(571\) −12.4274 + 2.64152i −0.520069 + 0.110544i −0.460465 0.887678i \(-0.652317\pi\)
−0.0596044 + 0.998222i \(0.518984\pi\)
\(572\) −76.3865 + 34.0095i −3.19388 + 1.42201i
\(573\) 9.17035 28.2234i 0.383097 1.17905i
\(574\) 1.81342 5.58113i 0.0756906 0.232952i
\(575\) 0 0
\(576\) −6.90976 + 1.46871i −0.287907 + 0.0611964i
\(577\) −9.42440 2.00322i −0.392343 0.0833951i 0.00751594 0.999972i \(-0.497608\pi\)
−0.399859 + 0.916577i \(0.630941\pi\)
\(578\) −30.6640 13.6525i −1.27545 0.567869i
\(579\) −16.5415 + 18.3712i −0.687440 + 0.763479i
\(580\) 0 0
\(581\) −19.6201 14.2548i −0.813978 0.591390i
\(582\) 0.809565 + 7.70249i 0.0335575 + 0.319279i
\(583\) 8.78669 15.2190i 0.363907 0.630306i
\(584\) 0.425796 + 0.737501i 0.0176196 + 0.0305180i
\(585\) 0 0
\(586\) −9.16929 10.1835i −0.378780 0.420678i
\(587\) −11.2747 34.7001i −0.465359 1.43223i −0.858531 0.512762i \(-0.828622\pi\)
0.393173 0.919465i \(-0.371378\pi\)
\(588\) −7.98568 −0.329324
\(589\) 2.15318 + 11.1654i 0.0887204 + 0.460061i
\(590\) 0 0
\(591\) −3.65629 11.2529i −0.150400 0.462883i
\(592\) 4.91270 + 5.45610i 0.201911 + 0.224244i
\(593\) −22.7074 + 16.4979i −0.932482 + 0.677488i −0.946599 0.322413i \(-0.895506\pi\)
0.0141175 + 0.999900i \(0.495506\pi\)
\(594\) −35.7605 61.9389i −1.46727 2.54138i
\(595\) 0 0
\(596\) 5.31898 + 50.6067i 0.217874 + 2.07293i
\(597\) 32.8273 + 23.8504i 1.34353 + 0.976132i
\(598\) −7.71536 + 73.4068i −0.315505 + 3.00183i
\(599\) −9.33989 + 10.3730i −0.381618 + 0.423829i −0.903098 0.429434i \(-0.858713\pi\)
0.521481 + 0.853263i \(0.325380\pi\)
\(600\) 0 0
\(601\) −28.2285 6.00014i −1.15146 0.244751i −0.407649 0.913139i \(-0.633651\pi\)
−0.743813 + 0.668388i \(0.766985\pi\)
\(602\) −26.4658 + 5.62549i −1.07867 + 0.229278i
\(603\) 3.89555 1.73441i 0.158639 0.0706307i
\(604\) −2.49790 + 7.68774i −0.101638 + 0.312810i
\(605\) 0 0
\(606\) −3.43155 + 1.52782i −0.139397 + 0.0620636i
\(607\) 15.8258 3.36388i 0.642350 0.136536i 0.124791 0.992183i \(-0.460174\pi\)
0.517559 + 0.855647i \(0.326841\pi\)
\(608\) 16.1234 + 3.42712i 0.653888 + 0.138988i
\(609\) 24.3694 + 10.8500i 0.987499 + 0.439663i
\(610\) 0 0
\(611\) 0.941005 8.95307i 0.0380690 0.362202i
\(612\) 7.31274 + 5.31302i 0.295600 + 0.214766i
\(613\) 1.05171 + 10.0063i 0.0424781 + 0.404152i 0.995015 + 0.0997283i \(0.0317973\pi\)
−0.952537 + 0.304424i \(0.901536\pi\)
\(614\) 32.8950 56.9757i 1.32753 2.29935i
\(615\) 0 0
\(616\) 11.8206 8.58816i 0.476265 0.346027i
\(617\) −21.2109 23.5571i −0.853921 0.948375i 0.145238 0.989397i \(-0.453605\pi\)
−0.999158 + 0.0410218i \(0.986939\pi\)
\(618\) −11.8997 36.6236i −0.478678 1.47322i
\(619\) −8.46480 −0.340229 −0.170114 0.985424i \(-0.554414\pi\)
−0.170114 + 0.985424i \(0.554414\pi\)
\(620\) 0 0
\(621\) −34.2876 −1.37591
\(622\) −0.658913 2.02793i −0.0264200 0.0813124i
\(623\) −21.6880 24.0870i −0.868912 0.965025i
\(624\) −22.1194 + 16.0707i −0.885486 + 0.643343i
\(625\) 0 0
\(626\) 1.85328 3.20997i 0.0740719 0.128296i
\(627\) 1.99313 + 18.9633i 0.0795979 + 0.757323i
\(628\) 18.1103 + 13.1579i 0.722681 + 0.525058i
\(629\) 1.42153 13.5250i 0.0566801 0.539275i
\(630\) 0 0
\(631\) −42.3260 18.8448i −1.68497 0.750198i −0.999761 0.0218541i \(-0.993043\pi\)
−0.685212 0.728344i \(-0.740290\pi\)
\(632\) −7.44592 1.58268i −0.296183 0.0629556i
\(633\) 24.3099 5.16724i 0.966233 0.205379i
\(634\) −38.9276 + 17.3317i −1.54601 + 0.688329i
\(635\) 0 0
\(636\) −3.23343 + 9.95148i −0.128214 + 0.394602i
\(637\) 11.5617 5.14761i 0.458092 0.203956i
\(638\) −71.8684 + 15.2761i −2.84530 + 0.604786i
\(639\) 0.620481 + 0.131887i 0.0245458 + 0.00521738i
\(640\) 0 0
\(641\) 18.1485 20.1560i 0.716824 0.796114i −0.269134 0.963103i \(-0.586738\pi\)
0.985959 + 0.166989i \(0.0534043\pi\)
\(642\) −1.22163 + 11.6230i −0.0482138 + 0.458724i
\(643\) 2.65807 + 1.93120i 0.104824 + 0.0761590i 0.638962 0.769238i \(-0.279364\pi\)
−0.534139 + 0.845397i \(0.679364\pi\)
\(644\) −4.61450 43.9040i −0.181837 1.73006i
\(645\) 0 0
\(646\) −12.2810 21.2713i −0.483188 0.836907i
\(647\) 40.1839 29.1953i 1.57979 1.14779i 0.662861 0.748742i \(-0.269342\pi\)
0.916932 0.399045i \(-0.130658\pi\)
\(648\) 3.47346 + 3.85767i 0.136450 + 0.151543i
\(649\) −0.367368 1.13064i −0.0144204 0.0443816i
\(650\) 0 0
\(651\) 24.4015 + 8.44253i 0.956370 + 0.330889i
\(652\) 27.1871 1.06473
\(653\) 3.38743 + 10.4254i 0.132560 + 0.407978i 0.995203 0.0978360i \(-0.0311921\pi\)
−0.862642 + 0.505814i \(0.831192\pi\)
\(654\) −6.24885 6.94005i −0.244349 0.271377i
\(655\) 0 0
\(656\) 1.43517 + 2.48578i 0.0560338 + 0.0970534i
\(657\) 0.356912 0.618189i 0.0139244 0.0241179i
\(658\) 1.03631 + 9.85988i 0.0403998 + 0.384378i
\(659\) −36.2046 26.3042i −1.41033 1.02466i −0.993275 0.115783i \(-0.963062\pi\)
−0.417055 0.908881i \(-0.636938\pi\)
\(660\) 0 0
\(661\) 14.3179 15.9017i 0.556904 0.618504i −0.397290 0.917693i \(-0.630049\pi\)
0.954194 + 0.299189i \(0.0967161\pi\)
\(662\) −34.3500 15.2936i −1.33505 0.594402i
\(663\) 49.5374 + 10.5295i 1.92387 + 0.408932i
\(664\) −6.17287 + 1.31208i −0.239554 + 0.0509187i
\(665\) 0 0
\(666\) −1.01175 + 3.11385i −0.0392045 + 0.120659i
\(667\) −10.8848 + 33.4999i −0.421460 + 1.29712i
\(668\) −16.7612 + 7.46256i −0.648509 + 0.288735i
\(669\) 7.26685 1.54462i 0.280953 0.0597183i
\(670\) 0 0
\(671\) 54.0066 + 24.0453i 2.08490 + 0.928257i
\(672\) 25.0454 27.8157i 0.966147 1.07301i
\(673\) −3.99345 + 37.9951i −0.153936 + 1.46460i 0.595942 + 0.803027i \(0.296779\pi\)
−0.749878 + 0.661576i \(0.769888\pi\)
\(674\) −15.3477 11.1508i −0.591172 0.429512i
\(675\) 0 0
\(676\) −23.9997 + 41.5688i −0.923067 + 1.59880i
\(677\) 18.8406 + 32.6330i 0.724105 + 1.25419i 0.959341 + 0.282248i \(0.0910802\pi\)
−0.235236 + 0.971938i \(0.575586\pi\)
\(678\) 44.7260 32.4953i 1.71769 1.24798i
\(679\) 4.91220 + 5.45555i 0.188513 + 0.209365i
\(680\) 0 0
\(681\) 7.47045 0.286268
\(682\) −68.0423 + 20.6925i −2.60547 + 0.792358i
\(683\) −1.48318 −0.0567524 −0.0283762 0.999597i \(-0.509034\pi\)
−0.0283762 + 0.999597i \(0.509034\pi\)
\(684\) 0.992392 + 3.05427i 0.0379450 + 0.116783i
\(685\) 0 0
\(686\) 24.6552 17.9131i 0.941340 0.683924i
\(687\) 2.61791 + 4.53436i 0.0998796 + 0.172997i
\(688\) 6.61710 11.4612i 0.252275 0.436952i
\(689\) −1.73339 16.4921i −0.0660369 0.628299i
\(690\) 0 0
\(691\) −3.43812 + 32.7115i −0.130792 + 1.24440i 0.710451 + 0.703747i \(0.248491\pi\)
−0.841243 + 0.540658i \(0.818175\pi\)
\(692\) 7.39978 8.21829i 0.281297 0.312413i
\(693\) −11.1885 4.98143i −0.425015 0.189229i
\(694\) 19.6487 + 4.17646i 0.745855 + 0.158536i
\(695\) 0 0
\(696\) 6.34140 2.82337i 0.240370 0.107020i
\(697\) 1.64296 5.05651i 0.0622316 0.191529i
\(698\) −5.87701 + 18.0876i −0.222448 + 0.684625i
\(699\) 20.8311 9.27460i 0.787904 0.350797i
\(700\) 0 0
\(701\) −3.29647 0.700686i −0.124506 0.0264646i 0.145237 0.989397i \(-0.453605\pi\)
−0.269743 + 0.962932i \(0.586939\pi\)
\(702\) −61.6552 27.4507i −2.32703 1.03606i
\(703\) 3.23304 3.59065i 0.121936 0.135424i
\(704\) −6.81531 + 64.8434i −0.256862 + 2.44388i
\(705\) 0 0
\(706\) 0.265588 + 2.52690i 0.00999554 + 0.0951012i
\(707\) −1.78024 + 3.08347i −0.0669528 + 0.115966i
\(708\) 0.353928 + 0.613021i 0.0133014 + 0.0230388i
\(709\) 11.8802 8.63149i 0.446172 0.324163i −0.341911 0.939732i \(-0.611074\pi\)
0.788082 + 0.615570i \(0.211074\pi\)
\(710\) 0 0
\(711\) 1.97177 + 6.06847i 0.0739470 + 0.227586i
\(712\) −8.43430 −0.316089
\(713\) −7.71886 + 33.2097i −0.289074 + 1.24371i
\(714\) −55.7736 −2.08727
\(715\) 0 0
\(716\) −9.04188 10.0420i −0.337911 0.375288i
\(717\) −9.28122 + 6.74320i −0.346613 + 0.251829i
\(718\) 1.64430 + 2.84800i 0.0613646 + 0.106287i
\(719\) −26.6781 + 46.2078i −0.994924 + 1.72326i −0.410316 + 0.911943i \(0.634582\pi\)
−0.584608 + 0.811316i \(0.698752\pi\)
\(720\) 0 0
\(721\) −29.5298 21.4547i −1.09975 0.799014i
\(722\) −3.24297 + 30.8548i −0.120691 + 1.14830i
\(723\) 6.23912 6.92925i 0.232035 0.257701i
\(724\) −2.46857 1.09908i −0.0917438 0.0408470i
\(725\) 0 0
\(726\) −82.2269 + 17.4779i −3.05172 + 0.648664i
\(727\) −22.9289 + 10.2086i −0.850387 + 0.378617i −0.785189 0.619256i \(-0.787434\pi\)
−0.0651976 + 0.997872i \(0.520768\pi\)
\(728\) 4.26060 13.1128i 0.157908 0.485991i
\(729\) 9.28242 28.5684i 0.343793 1.05809i
\(730\) 0 0
\(731\) −23.9781 + 5.09670i −0.886862 + 0.188508i
\(732\) −34.4308 7.31849i −1.27260 0.270499i
\(733\) 47.0408 + 20.9439i 1.73749 + 0.773582i 0.994554 + 0.104222i \(0.0332352\pi\)
0.742938 + 0.669360i \(0.233432\pi\)
\(734\) 3.24021 3.59862i 0.119599 0.132828i
\(735\) 0 0
\(736\) 39.9849 + 29.0508i 1.47386 + 1.07083i
\(737\) −4.11402 39.1422i −0.151542 1.44182i
\(738\) −0.640007 + 1.10852i −0.0235590 + 0.0408053i
\(739\) 19.2463 + 33.3355i 0.707985 + 1.22627i 0.965603 + 0.260019i \(0.0837288\pi\)
−0.257619 + 0.966247i \(0.582938\pi\)
\(740\) 0 0
\(741\) 12.0398 + 13.3715i 0.442292 + 0.491215i
\(742\) 5.64344 + 17.3687i 0.207177 + 0.637626i
\(743\) 14.9183 0.547299 0.273650 0.961829i \(-0.411769\pi\)
0.273650 + 0.961829i \(0.411769\pi\)
\(744\) 5.88143 3.24876i 0.215624 0.119105i
\(745\) 0 0
\(746\) −19.9089 61.2734i −0.728918 2.24338i
\(747\) 3.53959 + 3.93111i 0.129507 + 0.143832i
\(748\) 67.4952 49.0381i 2.46787 1.79301i
\(749\) 5.53889 + 9.59364i 0.202387 + 0.350544i
\(750\) 0 0
\(751\) −0.461597 4.39180i −0.0168439 0.160259i 0.982867 0.184318i \(-0.0590077\pi\)
−0.999711 + 0.0240591i \(0.992341\pi\)
\(752\) −3.92312 2.85031i −0.143061 0.103940i
\(753\) 0.846563 8.05451i 0.0308505 0.293523i
\(754\) −46.3928 + 51.5245i −1.68953 + 1.87641i
\(755\) 0 0
\(756\) 39.4832 + 8.39241i 1.43599 + 0.305229i
\(757\) 25.4464 5.40879i 0.924863 0.196586i 0.279222 0.960227i \(-0.409923\pi\)
0.645641 + 0.763641i \(0.276590\pi\)
\(758\) 3.82157 1.70147i 0.138806 0.0618002i
\(759\) −17.6673 + 54.3744i −0.641283 + 1.97367i
\(760\) 0 0
\(761\) 37.3942 16.6490i 1.35554 0.603525i 0.405053 0.914293i \(-0.367253\pi\)
0.950486 + 0.310769i \(0.100586\pi\)
\(762\) −31.0874 + 6.60784i −1.12618 + 0.239377i
\(763\) −8.65848 1.84042i −0.313458 0.0666276i
\(764\) −42.1431 18.7633i −1.52468 0.678833i
\(765\) 0 0
\(766\) −3.32736 + 31.6577i −0.120222 + 1.14384i
\(767\) −0.907576 0.659393i −0.0327707 0.0238093i
\(768\) 1.34037 + 12.7527i 0.0483663 + 0.460174i
\(769\) −13.8277 + 23.9503i −0.498641 + 0.863671i −0.999999 0.00156868i \(-0.999501\pi\)
0.501358 + 0.865240i \(0.332834\pi\)
\(770\) 0 0
\(771\) 9.07570 6.59388i 0.326853 0.237473i
\(772\) 25.7138 + 28.5581i 0.925461 + 1.02783i
\(773\) −9.88207 30.4139i −0.355433 1.09391i −0.955758 0.294155i \(-0.904962\pi\)
0.600324 0.799757i \(-0.295038\pi\)
\(774\) 5.90174 0.212134
\(775\) 0 0
\(776\) 1.91032 0.0685763
\(777\) −3.39038 10.4345i −0.121629 0.374336i
\(778\) 30.9352 + 34.3570i 1.10908 + 1.23176i
\(779\) 1.52820 1.11030i 0.0547535 0.0397807i
\(780\) 0 0
\(781\) 2.92743 5.07046i 0.104752 0.181435i
\(782\) −7.69813 73.2428i −0.275284 2.61916i
\(783\) −26.0563 18.9310i −0.931175 0.676538i
\(784\) 0.712595 6.77989i 0.0254498 0.242139i
\(785\) 0 0
\(786\) 17.4025 + 7.74808i 0.620726 + 0.276365i
\(787\) −41.0761 8.73099i −1.46420 0.311226i −0.594219 0.804304i \(-0.702539\pi\)
−0.869985 + 0.493077i \(0.835872\pi\)
\(788\) −17.9910 + 3.82411i −0.640904 + 0.136228i
\(789\) −24.7072 + 11.0003i −0.879599 + 0.391623i
\(790\) 0 0
\(791\) 16.1932 49.8376i 0.575765 1.77202i
\(792\) −2.91146 + 1.29626i −0.103454 + 0.0460607i
\(793\) 54.5666 11.5985i 1.93772 0.411875i
\(794\) 12.1131 + 2.57472i 0.429879 + 0.0913735i
\(795\) 0 0
\(796\) 42.2067 46.8752i 1.49598 1.66145i
\(797\) 2.44204 23.2345i 0.0865015 0.823007i −0.862144 0.506664i \(-0.830878\pi\)
0.948645 0.316343i \(-0.102455\pi\)
\(798\) −16.0311 11.6473i −0.567496 0.412310i
\(799\) 0.938903 + 8.93306i 0.0332160 + 0.316029i
\(800\) 0 0
\(801\) 3.53491 + 6.12264i 0.124900 + 0.216333i
\(802\) 37.2987 27.0991i 1.31706 0.956902i
\(803\) −4.40854 4.89617i −0.155574 0.172782i
\(804\) 7.24169 + 22.2876i 0.255395 + 0.786024i
\(805\) 0 0
\(806\) −40.4677 + 53.5373i −1.42541 + 1.88577i
\(807\) 22.5613 0.794197
\(808\) 0.286306 + 0.881159i 0.0100722 + 0.0309991i
\(809\) 33.0587 + 36.7154i 1.16228 + 1.29085i 0.949507 + 0.313745i \(0.101584\pi\)
0.212776 + 0.977101i \(0.431749\pi\)
\(810\) 0 0
\(811\) −15.1368 26.2176i −0.531524 0.920626i −0.999323 0.0367913i \(-0.988286\pi\)
0.467799 0.883835i \(-0.345047\pi\)
\(812\) 20.7338 35.9119i 0.727612 1.26026i
\(813\) 1.87146 + 17.8058i 0.0656351 + 0.624477i
\(814\) 24.4479 + 17.7624i 0.856898 + 0.622573i
\(815\) 0 0
\(816\) 18.2539 20.2730i 0.639015 0.709698i
\(817\) −7.95644 3.54243i −0.278361 0.123934i
\(818\) −64.5658 13.7239i −2.25749 0.479844i
\(819\) −11.3045 + 2.40285i −0.395011 + 0.0839622i
\(820\) 0 0
\(821\) 3.54582 10.9129i 0.123750 0.380863i −0.869921 0.493190i \(-0.835831\pi\)
0.993671 + 0.112328i \(0.0358306\pi\)
\(822\) 22.0890 67.9830i 0.770442 2.37118i
\(823\) −17.4335 + 7.76188i −0.607692 + 0.270562i −0.687426 0.726254i \(-0.741260\pi\)
0.0797341 + 0.996816i \(0.474593\pi\)
\(824\) −9.29068 + 1.97479i −0.323656 + 0.0687952i
\(825\) 0 0
\(826\) 1.12864 + 0.502503i 0.0392704 + 0.0174843i
\(827\) 10.5375 11.7031i 0.366425 0.406957i −0.531533 0.847038i \(-0.678384\pi\)
0.897958 + 0.440081i \(0.145050\pi\)
\(828\) −1.00652 + 9.57641i −0.0349790 + 0.332803i
\(829\) 2.42911 + 1.76485i 0.0843666 + 0.0612959i 0.629169 0.777269i \(-0.283395\pi\)
−0.544802 + 0.838564i \(0.683395\pi\)
\(830\) 0 0
\(831\) 7.81667 13.5389i 0.271157 0.469658i
\(832\) 30.7629 + 53.2830i 1.06651 + 1.84725i
\(833\) −10.2159 + 7.42232i −0.353961 + 0.257168i
\(834\) −14.4924 16.0955i −0.501831 0.557340i
\(835\) 0 0
\(836\) 29.6410 1.02516
\(837\) −26.6985 16.0959i −0.922835 0.556356i
\(838\) −8.85580 −0.305918
\(839\) −11.8376 36.4324i −0.408680 1.25779i −0.917783 0.397082i \(-0.870023\pi\)
0.509104 0.860705i \(-0.329977\pi\)
\(840\) 0 0
\(841\) −3.30631 + 2.40217i −0.114011 + 0.0828336i
\(842\) 0.859040 + 1.48790i 0.0296045 + 0.0512764i
\(843\) −3.27188 + 5.66707i −0.112690 + 0.195184i
\(844\) −4.03838 38.4226i −0.139007 1.32256i
\(845\) 0 0
\(846\) 0.226043 2.15065i 0.00777150 0.0739409i
\(847\) −53.3174 + 59.2149i −1.83201 + 2.03465i
\(848\) −8.16033 3.63322i −0.280227 0.124765i
\(849\) 30.7671 + 6.53974i 1.05592 + 0.224443i
\(850\) 0 0
\(851\) 13.2348 5.89252i 0.453683 0.201993i
\(852\) −1.07727 + 3.31550i −0.0369067 + 0.113587i
\(853\) −3.44891 + 10.6147i −0.118089 + 0.363439i −0.992579 0.121604i \(-0.961196\pi\)
0.874490 + 0.485043i \(0.161196\pi\)
\(854\) −56.1245 + 24.9883i −1.92054 + 0.855080i
\(855\) 0 0
\(856\) 2.81966 + 0.599337i 0.0963740 + 0.0204849i
\(857\) 35.8317 + 15.9533i 1.22399 + 0.544955i 0.913973 0.405776i \(-0.132999\pi\)
0.310017 + 0.950731i \(0.399665\pi\)
\(858\) −75.3013 + 83.6305i −2.57074 + 2.85510i
\(859\) 2.95115 28.0783i 0.100692 0.958020i −0.821218 0.570615i \(-0.806705\pi\)
0.921910 0.387405i \(-0.126628\pi\)
\(860\) 0 0
\(861\) −0.448356 4.26583i −0.0152799 0.145379i
\(862\) 38.4850 66.6580i 1.31080 2.27038i
\(863\) −13.9747 24.2050i −0.475706 0.823947i 0.523907 0.851776i \(-0.324474\pi\)
−0.999613 + 0.0278288i \(0.991141\pi\)
\(864\) −36.5607 + 26.5629i −1.24382 + 0.903688i
\(865\) 0 0
\(866\) −5.41592 16.6685i −0.184041 0.566419i
\(867\) −24.5342 −0.833225
\(868\) 17.0171 36.3527i 0.577598 1.23389i
\(869\) 58.8933 1.99782
\(870\) 0 0
\(871\) −24.8513 27.6001i −0.842054 0.935195i
\(872\) −1.86352 + 1.35393i −0.0631068 + 0.0458498i
\(873\) −0.800634 1.38674i −0.0270974 0.0469340i
\(874\) 13.0827 22.6600i 0.442530 0.766485i
\(875\) 0 0
\(876\) 3.17371 + 2.30584i 0.107230 + 0.0779070i
\(877\) −4.38832 + 41.7521i −0.148183 + 1.40987i 0.627437 + 0.778668i \(0.284104\pi\)
−0.775620 + 0.631200i \(0.782563\pi\)
\(878\) 53.6882 59.6268i 1.81189 2.01231i
\(879\) −9.15015 4.07391i −0.308627 0.137410i
\(880\) 0 0
\(881\) 51.0170 10.8440i 1.71881 0.365344i 0.760115 0.649789i \(-0.225143\pi\)
0.958692 + 0.284445i \(0.0918095\pi\)
\(882\) 2.77729 1.23653i 0.0935161 0.0416360i
\(883\) 2.45425 7.55342i 0.0825923 0.254193i −0.901230 0.433342i \(-0.857334\pi\)
0.983822 + 0.179149i \(0.0573344\pi\)
\(884\) 24.3279 74.8735i 0.818235 2.51827i
\(885\) 0 0
\(886\) −28.3102 + 6.01752i −0.951100 + 0.202163i
\(887\) 7.87730 + 1.67437i 0.264494 + 0.0562199i 0.338250 0.941056i \(-0.390165\pi\)
−0.0737558 + 0.997276i \(0.523499\pi\)
\(888\) −2.60817 1.16123i −0.0875243 0.0389684i
\(889\) −20.1576 + 22.3873i −0.676066 + 0.750847i
\(890\) 0 0
\(891\) −32.4908 23.6060i −1.08848 0.790829i
\(892\) −1.20717 11.4855i −0.0404191 0.384562i
\(893\) −1.59564 + 2.76373i −0.0533960 + 0.0924845i
\(894\) 34.2427 + 59.3101i 1.14525 + 1.98363i
\(895\) 0 0
\(896\) −12.5829 13.9747i −0.420366 0.466863i
\(897\) 16.6716 + 51.3099i 0.556648 + 1.71319i
\(898\) −49.5952 −1.65501
\(899\) −24.2017 + 20.9754i −0.807173 + 0.699569i
\(900\) 0 0
\(901\) 5.11296 + 15.7361i 0.170338 + 0.524245i
\(902\) 7.90529 + 8.77972i 0.263218 + 0.292333i
\(903\) −15.9997 + 11.6245i −0.532437 + 0.386838i
\(904\) −6.81805 11.8092i −0.226765 0.392769i
\(905\) 0 0
\(906\) 1.13719 + 10.8196i 0.0377805 + 0.359457i
\(907\) −17.4168 12.6541i −0.578317 0.420172i 0.259800 0.965662i \(-0.416343\pi\)
−0.838117 + 0.545491i \(0.816343\pi\)
\(908\) 1.21388 11.5493i 0.0402839 0.383275i
\(909\) 0.519659 0.577139i 0.0172360 0.0191425i
\(910\) 0 0
\(911\) 5.36767 + 1.14093i 0.177839 + 0.0378008i 0.295970 0.955197i \(-0.404357\pi\)
−0.118131 + 0.992998i \(0.537690\pi\)
\(912\) 9.48042 2.01513i 0.313928 0.0667275i
\(913\) 44.6031 19.8586i 1.47615 0.657222i
\(914\) −18.8925 + 58.1452i −0.624909 + 1.92327i
\(915\) 0 0
\(916\) 7.43547 3.31048i 0.245675 0.109382i
\(917\) 17.6618 3.75412i 0.583242 0.123972i
\(918\) 65.8677 + 14.0006i 2.17396 + 0.462089i
\(919\) −39.3196 17.5062i −1.29703 0.577477i −0.362048 0.932160i \(-0.617922\pi\)
−0.934987 + 0.354683i \(0.884589\pi\)
\(920\) 0 0
\(921\) 5.02652 47.8241i 0.165629 1.57586i
\(922\) −39.6529 28.8095i −1.30590 0.948791i
\(923\) −0.577508 5.49462i −0.0190089 0.180858i
\(924\) 33.6534 58.2895i 1.10712 1.91758i
\(925\) 0 0
\(926\) −40.6654 + 29.5452i −1.33635 + 0.970915i
\(927\) 5.32737 + 5.91664i 0.174974 + 0.194328i
\(928\) 14.3463 + 44.1533i 0.470940 + 1.44940i
\(929\) 1.87481 0.0615104 0.0307552 0.999527i \(-0.490209\pi\)
0.0307552 + 0.999527i \(0.490209\pi\)
\(930\) 0 0
\(931\) −4.48641 −0.147036
\(932\) −10.9536 33.7117i −0.358797 1.10426i
\(933\) −1.04287 1.15822i −0.0341420 0.0379185i
\(934\) 37.9187 27.5496i 1.24074 0.901449i
\(935\) 0 0
\(936\) −1.50368 + 2.60446i −0.0491495 + 0.0851294i
\(937\) −5.69083 54.1446i −0.185911 1.76883i −0.547803 0.836607i \(-0.684536\pi\)
0.361892 0.932220i \(-0.382131\pi\)
\(938\) 33.0899 + 24.0412i 1.08042 + 0.784973i
\(939\) 0.283190 2.69437i 0.00924156 0.0879276i
\(940\) 0 0
\(941\) −22.6214 10.0717i −0.737438 0.328328i 0.00341667 0.999994i \(-0.498912\pi\)
−0.740854 + 0.671666i \(0.765579\pi\)
\(942\) 29.4698 + 6.26401i 0.960179 + 0.204092i
\(943\) 5.54007 1.17758i 0.180409 0.0383472i
\(944\) −0.552041 + 0.245785i −0.0179674 + 0.00799961i
\(945\) 0 0
\(946\) 16.8328 51.8059i 0.547280 1.68435i
\(947\) −13.1677 + 5.86266i −0.427894 + 0.190511i −0.609372 0.792884i \(-0.708579\pi\)
0.181478 + 0.983395i \(0.441912\pi\)
\(948\) −34.3002 + 7.29073i −1.11402 + 0.236792i
\(949\) −6.08127 1.29261i −0.197406 0.0419600i
\(950\) 0 0
\(951\) −20.8407 + 23.1459i −0.675805 + 0.750557i
\(952\) −1.43797 + 13.6814i −0.0466050 + 0.443417i
\(953\) 23.2462 + 16.8894i 0.753018 + 0.547100i 0.896761 0.442515i \(-0.145914\pi\)
−0.143743 + 0.989615i \(0.545914\pi\)
\(954\) −0.416384 3.96163i −0.0134809 0.128263i
\(955\) 0 0
\(956\) 8.91683 + 15.4444i 0.288391 + 0.499507i
\(957\) −43.4474 + 31.5664i −1.40446 + 1.02040i
\(958\) −31.0763 34.5137i −1.00403 1.11509i
\(959\) −20.9375 64.4390i −0.676107 2.08084i
\(960\) 0 0
\(961\) −21.6003 + 22.2357i −0.696785 + 0.717280i
\(962\) 28.5161 0.919397
\(963\) −0.746679 2.29804i −0.0240614 0.0740533i
\(964\) −9.69876 10.7716i −0.312376 0.346929i
\(965\) 0 0
\(966\) −29.7074 51.4547i −0.955820 1.65553i
\(967\) 14.9726 25.9332i 0.481485 0.833956i −0.518289 0.855205i \(-0.673431\pi\)
0.999774 + 0.0212492i \(0.00676434\pi\)
\(968\) 2.16736 + 20.6211i 0.0696617 + 0.662787i
\(969\) −14.5242 10.5525i −0.466586 0.338995i
\(970\) 0 0
\(971\) 0.206211 0.229021i 0.00661763 0.00734963i −0.739827 0.672797i \(-0.765093\pi\)
0.746445 + 0.665448i \(0.231759\pi\)
\(972\) −14.6336 6.51529i −0.469372 0.208978i
\(973\) −20.0809 4.26832i −0.643763 0.136836i
\(974\) 42.9257 9.12414i 1.37543 0.292356i
\(975\) 0 0
\(976\) 9.28584 28.5789i 0.297233 0.914788i
\(977\) 8.44141 25.9800i 0.270065 0.831173i −0.720419 0.693539i \(-0.756050\pi\)
0.990483 0.137634i \(-0.0439497\pi\)
\(978\) 33.4270 14.8827i 1.06888 0.475895i
\(979\) 63.8271 13.5669i 2.03992 0.433599i
\(980\) 0 0
\(981\) 1.76387 + 0.785325i 0.0563160 + 0.0250735i
\(982\) −31.8766 + 35.4025i −1.01722 + 1.12974i
\(983\) 1.53616 14.6156i 0.0489960 0.466166i −0.942325 0.334700i \(-0.891365\pi\)
0.991321 0.131466i \(-0.0419684\pi\)
\(984\) −0.902997 0.656066i −0.0287865 0.0209146i
\(985\) 0 0
\(986\) 34.5891 59.9100i 1.10154 1.90792i
\(987\) 3.62327 + 6.27568i 0.115330 + 0.199757i
\(988\) 22.6286 16.4406i 0.719912 0.523046i
\(989\) −17.4738 19.4066i −0.555634 0.617094i
\(990\) 0 0
\(991\) 23.9105 0.759542 0.379771 0.925081i \(-0.376003\pi\)
0.379771 + 0.925081i \(0.376003\pi\)
\(992\) 17.4973 + 41.3913i 0.555539 + 1.31417i
\(993\) −27.4833 −0.872157
\(994\) 1.88020 + 5.78668i 0.0596365 + 0.183542i
\(995\) 0 0
\(996\) −23.5190 + 17.0875i −0.745227 + 0.541439i
\(997\) 11.6392 + 20.1597i 0.368618 + 0.638465i 0.989350 0.145558i \(-0.0464977\pi\)
−0.620732 + 0.784023i \(0.713164\pi\)
\(998\) 7.09357 12.2864i 0.224543 0.388920i
\(999\) 1.38465 + 13.1741i 0.0438084 + 0.416809i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.bl.c.51.1 40
5.2 odd 4 775.2.ck.c.299.10 80
5.3 odd 4 775.2.ck.c.299.1 80
5.4 even 2 155.2.q.a.51.5 40
31.14 even 15 inner 775.2.bl.c.76.1 40
155.14 even 30 155.2.q.a.76.5 yes 40
155.44 odd 30 4805.2.a.y.1.17 20
155.49 even 30 4805.2.a.x.1.17 20
155.107 odd 60 775.2.ck.c.324.1 80
155.138 odd 60 775.2.ck.c.324.10 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
155.2.q.a.51.5 40 5.4 even 2
155.2.q.a.76.5 yes 40 155.14 even 30
775.2.bl.c.51.1 40 1.1 even 1 trivial
775.2.bl.c.76.1 40 31.14 even 15 inner
775.2.ck.c.299.1 80 5.3 odd 4
775.2.ck.c.299.10 80 5.2 odd 4
775.2.ck.c.324.1 80 155.107 odd 60
775.2.ck.c.324.10 80 155.138 odd 60
4805.2.a.x.1.17 20 155.49 even 30
4805.2.a.y.1.17 20 155.44 odd 30