Newspace parameters
| Level: | \( N \) | \(=\) | \( 775 = 5^{2} \cdot 31 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 775.bl (of order \(15\), degree \(8\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.18840615665\) |
| Analytic rank: | \(0\) |
| Dimension: | \(40\) |
| Relative dimension: | \(5\) over \(\Q(\zeta_{15})\) |
| Twist minimal: | no (minimal twist has level 155) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{15}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 51.1 | −0.646517 | − | 1.98977i | −1.02325 | − | 1.13643i | −1.92319 | + | 1.39728i | 0 | −1.59970 | + | 2.77076i | 0.316994 | + | 3.01600i | 0.638431 | + | 0.463847i | 0.0691433 | − | 0.657854i | 0 | ||||
| 51.2 | −0.322946 | − | 0.993927i | 0.608786 | + | 0.676125i | 0.734438 | − | 0.533600i | 0 | 0.475414 | − | 0.823441i | −0.0578457 | − | 0.550365i | −2.45851 | − | 1.78621i | 0.227060 | − | 2.16033i | 0 | ||||
| 51.3 | 0.102407 | + | 0.315176i | 2.23911 | + | 2.48678i | 1.52919 | − | 1.11102i | 0 | −0.554473 | + | 0.960376i | 0.215933 | + | 2.05447i | 1.04297 | + | 0.757765i | −0.856892 | + | 8.15278i | 0 | ||||
| 51.4 | 0.260242 | + | 0.800942i | −1.08404 | − | 1.20394i | 1.04425 | − | 0.758693i | 0 | 0.682177 | − | 1.18157i | −0.454442 | − | 4.32373i | 2.24207 | + | 1.62896i | 0.0392388 | − | 0.373333i | 0 | ||||
| 51.5 | 0.542213 | + | 1.66876i | −0.0714789 | − | 0.0793853i | −0.872728 | + | 0.634074i | 0 | 0.0937182 | − | 0.162325i | 0.352980 | + | 3.35838i | 1.30774 | + | 0.950129i | 0.312393 | − | 2.97222i | 0 | ||||
| 76.1 | −0.646517 | + | 1.98977i | −1.02325 | + | 1.13643i | −1.92319 | − | 1.39728i | 0 | −1.59970 | − | 2.77076i | 0.316994 | − | 3.01600i | 0.638431 | − | 0.463847i | 0.0691433 | + | 0.657854i | 0 | ||||
| 76.2 | −0.322946 | + | 0.993927i | 0.608786 | − | 0.676125i | 0.734438 | + | 0.533600i | 0 | 0.475414 | + | 0.823441i | −0.0578457 | + | 0.550365i | −2.45851 | + | 1.78621i | 0.227060 | + | 2.16033i | 0 | ||||
| 76.3 | 0.102407 | − | 0.315176i | 2.23911 | − | 2.48678i | 1.52919 | + | 1.11102i | 0 | −0.554473 | − | 0.960376i | 0.215933 | − | 2.05447i | 1.04297 | − | 0.757765i | −0.856892 | − | 8.15278i | 0 | ||||
| 76.4 | 0.260242 | − | 0.800942i | −1.08404 | + | 1.20394i | 1.04425 | + | 0.758693i | 0 | 0.682177 | + | 1.18157i | −0.454442 | + | 4.32373i | 2.24207 | − | 1.62896i | 0.0392388 | + | 0.373333i | 0 | ||||
| 76.5 | 0.542213 | − | 1.66876i | −0.0714789 | + | 0.0793853i | −0.872728 | − | 0.634074i | 0 | 0.0937182 | + | 0.162325i | 0.352980 | − | 3.35838i | 1.30774 | − | 0.950129i | 0.312393 | + | 2.97222i | 0 | ||||
| 226.1 | −0.756580 | + | 2.32851i | −1.41886 | − | 0.301589i | −3.23153 | − | 2.34784i | 0 | 1.77574 | − | 3.07567i | −0.504362 | + | 0.224557i | 3.95039 | − | 2.87013i | −0.818419 | − | 0.364384i | 0 | ||||
| 226.2 | −0.319323 | + | 0.982776i | 0.636758 | + | 0.135347i | 0.754152 | + | 0.547924i | 0 | −0.336348 | + | 0.582571i | −2.42078 | + | 1.07780i | −2.45130 | + | 1.78098i | −2.35349 | − | 1.04784i | 0 | ||||
| 226.3 | 0.132371 | − | 0.407396i | −1.24842 | − | 0.265360i | 1.46958 | + | 1.06772i | 0 | −0.273361 | + | 0.473476i | 2.12201 | − | 0.944779i | 1.32262 | − | 0.960937i | −1.25250 | − | 0.557647i | 0 | ||||
| 226.4 | 0.686411 | − | 2.11256i | −1.89602 | − | 0.403011i | −2.37370 | − | 1.72459i | 0 | −2.15283 | + | 3.72881i | −0.441192 | + | 0.196431i | −1.67853 | + | 1.21953i | 0.691836 | + | 0.308025i | 0 | ||||
| 226.5 | 0.821724 | − | 2.52901i | 2.94840 | + | 0.626702i | −4.10261 | − | 2.98072i | 0 | 4.00770 | − | 6.94154i | 0.988739 | − | 0.440215i | −6.60686 | + | 4.80017i | 5.55966 | + | 2.47532i | 0 | ||||
| 276.1 | −1.25001 | + | 0.908182i | −0.149301 | + | 1.42050i | 0.119685 | − | 0.368352i | 0 | −1.10345 | − | 1.91123i | 0.351398 | − | 0.0746919i | −0.769995 | − | 2.36980i | 0.938900 | + | 0.199569i | 0 | ||||
| 276.2 | −1.16431 | + | 0.845919i | 0.267371 | − | 2.54387i | 0.0220000 | − | 0.0677090i | 0 | 1.84060 | + | 3.18802i | 0.455497 | − | 0.0968189i | −0.857791 | − | 2.64001i | −3.46532 | − | 0.736577i | 0 | ||||
| 276.3 | 0.0856516 | − | 0.0622295i | −0.0569592 | + | 0.541931i | −0.614570 | + | 1.89145i | 0 | 0.0288454 | + | 0.0499618i | −2.44643 | + | 0.520005i | 0.130497 | + | 0.401629i | 2.64400 | + | 0.561999i | 0 | ||||
| 276.4 | 1.78555 | − | 1.29728i | −0.276475 | + | 2.63048i | 0.887232 | − | 2.73062i | 0 | 2.91882 | + | 5.05554i | 3.81001 | − | 0.809843i | −0.594138 | − | 1.82857i | −3.90856 | − | 0.830791i | 0 | ||||
| 276.5 | 2.12578 | − | 1.54447i | 0.110836 | − | 1.05453i | 1.51553 | − | 4.66432i | 0 | −1.39308 | − | 2.41289i | −4.56217 | + | 0.969719i | −2.35827 | − | 7.25800i | 1.83469 | + | 0.389976i | 0 | ||||
| See all 40 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 31.g | even | 15 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 775.2.bl.c | 40 | |
| 5.b | even | 2 | 1 | 155.2.q.a | ✓ | 40 | |
| 5.c | odd | 4 | 2 | 775.2.ck.c | 80 | ||
| 31.g | even | 15 | 1 | inner | 775.2.bl.c | 40 | |
| 155.u | even | 30 | 1 | 155.2.q.a | ✓ | 40 | |
| 155.u | even | 30 | 1 | 4805.2.a.x | 20 | ||
| 155.v | odd | 30 | 1 | 4805.2.a.y | 20 | ||
| 155.w | odd | 60 | 2 | 775.2.ck.c | 80 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 155.2.q.a | ✓ | 40 | 5.b | even | 2 | 1 | |
| 155.2.q.a | ✓ | 40 | 155.u | even | 30 | 1 | |
| 775.2.bl.c | 40 | 1.a | even | 1 | 1 | trivial | |
| 775.2.bl.c | 40 | 31.g | even | 15 | 1 | inner | |
| 775.2.ck.c | 80 | 5.c | odd | 4 | 2 | ||
| 775.2.ck.c | 80 | 155.w | odd | 60 | 2 | ||
| 4805.2.a.x | 20 | 155.u | even | 30 | 1 | ||
| 4805.2.a.y | 20 | 155.v | odd | 30 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{40} - 2 T_{2}^{39} + 17 T_{2}^{38} - 23 T_{2}^{37} + 152 T_{2}^{36} - 133 T_{2}^{35} + 1042 T_{2}^{34} + \cdots + 1 \)
acting on \(S_{2}^{\mathrm{new}}(775, [\chi])\).