Newspace parameters
| Level: | \( N \) | \(=\) | \( 775 = 5^{2} \cdot 31 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 775.ck (of order \(30\), degree \(8\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.18840615665\) |
| Analytic rank: | \(0\) |
| Dimension: | \(80\) |
| Relative dimension: | \(10\) over \(\Q(\zeta_{30})\) |
| Twist minimal: | no (minimal twist has level 155) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{30}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 49.1 | −1.26139 | − | 1.73615i | 0.138074 | + | 0.310120i | −0.805084 | + | 2.47779i | 0 | 0.364249 | − | 0.630898i | −1.83635 | + | 1.65346i | 1.23541 | − | 0.401408i | 1.93028 | − | 2.14380i | 0 | ||||
| 49.2 | −1.04097 | − | 1.43277i | −0.449533 | − | 1.00967i | −0.351182 | + | 1.08083i | 0 | −0.978673 | + | 1.69511i | −1.31785 | + | 1.18660i | −1.45450 | + | 0.472596i | 1.19004 | − | 1.32168i | 0 | ||||
| 49.3 | −0.866342 | − | 1.19242i | −1.18190 | − | 2.65459i | −0.0532763 | + | 0.163968i | 0 | −2.14145 | + | 3.70910i | 2.57003 | − | 2.31407i | −2.56187 | + | 0.832401i | −3.64256 | + | 4.04548i | 0 | ||||
| 49.4 | −0.276293 | − | 0.380285i | 0.673286 | + | 1.51222i | 0.549755 | − | 1.69197i | 0 | 0.389052 | − | 0.673858i | 3.07510 | − | 2.76883i | −1.68943 | + | 0.548929i | 0.173882 | − | 0.193116i | 0 | ||||
| 49.5 | −0.0238549 | − | 0.0328335i | −0.860841 | − | 1.93348i | 0.617525 | − | 1.90055i | 0 | −0.0429476 | + | 0.0743875i | −0.719636 | + | 0.647963i | −0.154329 | + | 0.0501445i | −0.989905 | + | 1.09940i | 0 | ||||
| 49.6 | 0.0238549 | + | 0.0328335i | 0.860841 | + | 1.93348i | 0.617525 | − | 1.90055i | 0 | −0.0429476 | + | 0.0743875i | 0.719636 | − | 0.647963i | 0.154329 | − | 0.0501445i | −0.989905 | + | 1.09940i | 0 | ||||
| 49.7 | 0.276293 | + | 0.380285i | −0.673286 | − | 1.51222i | 0.549755 | − | 1.69197i | 0 | 0.389052 | − | 0.673858i | −3.07510 | + | 2.76883i | 1.68943 | − | 0.548929i | 0.173882 | − | 0.193116i | 0 | ||||
| 49.8 | 0.866342 | + | 1.19242i | 1.18190 | + | 2.65459i | −0.0532763 | + | 0.163968i | 0 | −2.14145 | + | 3.70910i | −2.57003 | + | 2.31407i | 2.56187 | − | 0.832401i | −3.64256 | + | 4.04548i | 0 | ||||
| 49.9 | 1.04097 | + | 1.43277i | 0.449533 | + | 1.00967i | −0.351182 | + | 1.08083i | 0 | −0.978673 | + | 1.69511i | 1.31785 | − | 1.18660i | 1.45450 | − | 0.472596i | 1.19004 | − | 1.32168i | 0 | ||||
| 49.10 | 1.26139 | + | 1.73615i | −0.138074 | − | 0.310120i | −0.805084 | + | 2.47779i | 0 | 0.364249 | − | 0.630898i | 1.83635 | − | 1.65346i | −1.23541 | + | 0.401408i | 1.93028 | − | 2.14380i | 0 | ||||
| 174.1 | −1.26139 | + | 1.73615i | 0.138074 | − | 0.310120i | −0.805084 | − | 2.47779i | 0 | 0.364249 | + | 0.630898i | −1.83635 | − | 1.65346i | 1.23541 | + | 0.401408i | 1.93028 | + | 2.14380i | 0 | ||||
| 174.2 | −1.04097 | + | 1.43277i | −0.449533 | + | 1.00967i | −0.351182 | − | 1.08083i | 0 | −0.978673 | − | 1.69511i | −1.31785 | − | 1.18660i | −1.45450 | − | 0.472596i | 1.19004 | + | 1.32168i | 0 | ||||
| 174.3 | −0.866342 | + | 1.19242i | −1.18190 | + | 2.65459i | −0.0532763 | − | 0.163968i | 0 | −2.14145 | − | 3.70910i | 2.57003 | + | 2.31407i | −2.56187 | − | 0.832401i | −3.64256 | − | 4.04548i | 0 | ||||
| 174.4 | −0.276293 | + | 0.380285i | 0.673286 | − | 1.51222i | 0.549755 | + | 1.69197i | 0 | 0.389052 | + | 0.673858i | 3.07510 | + | 2.76883i | −1.68943 | − | 0.548929i | 0.173882 | + | 0.193116i | 0 | ||||
| 174.5 | −0.0238549 | + | 0.0328335i | −0.860841 | + | 1.93348i | 0.617525 | + | 1.90055i | 0 | −0.0429476 | − | 0.0743875i | −0.719636 | − | 0.647963i | −0.154329 | − | 0.0501445i | −0.989905 | − | 1.09940i | 0 | ||||
| 174.6 | 0.0238549 | − | 0.0328335i | 0.860841 | − | 1.93348i | 0.617525 | + | 1.90055i | 0 | −0.0429476 | − | 0.0743875i | 0.719636 | + | 0.647963i | 0.154329 | + | 0.0501445i | −0.989905 | − | 1.09940i | 0 | ||||
| 174.7 | 0.276293 | − | 0.380285i | −0.673286 | + | 1.51222i | 0.549755 | + | 1.69197i | 0 | 0.389052 | + | 0.673858i | −3.07510 | − | 2.76883i | 1.68943 | + | 0.548929i | 0.173882 | + | 0.193116i | 0 | ||||
| 174.8 | 0.866342 | − | 1.19242i | 1.18190 | − | 2.65459i | −0.0532763 | − | 0.163968i | 0 | −2.14145 | − | 3.70910i | −2.57003 | − | 2.31407i | 2.56187 | + | 0.832401i | −3.64256 | − | 4.04548i | 0 | ||||
| 174.9 | 1.04097 | − | 1.43277i | 0.449533 | − | 1.00967i | −0.351182 | − | 1.08083i | 0 | −0.978673 | − | 1.69511i | 1.31785 | + | 1.18660i | 1.45450 | + | 0.472596i | 1.19004 | + | 1.32168i | 0 | ||||
| 174.10 | 1.26139 | − | 1.73615i | −0.138074 | + | 0.310120i | −0.805084 | − | 2.47779i | 0 | 0.364249 | + | 0.630898i | 1.83635 | + | 1.65346i | −1.23541 | − | 0.401408i | 1.93028 | + | 2.14380i | 0 | ||||
| See all 80 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
| 31.g | even | 15 | 1 | inner |
| 155.u | even | 30 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 775.2.ck.c | 80 | |
| 5.b | even | 2 | 1 | inner | 775.2.ck.c | 80 | |
| 5.c | odd | 4 | 1 | 155.2.q.a | ✓ | 40 | |
| 5.c | odd | 4 | 1 | 775.2.bl.c | 40 | ||
| 31.g | even | 15 | 1 | inner | 775.2.ck.c | 80 | |
| 155.u | even | 30 | 1 | inner | 775.2.ck.c | 80 | |
| 155.w | odd | 60 | 1 | 155.2.q.a | ✓ | 40 | |
| 155.w | odd | 60 | 1 | 775.2.bl.c | 40 | ||
| 155.w | odd | 60 | 1 | 4805.2.a.x | 20 | ||
| 155.x | even | 60 | 1 | 4805.2.a.y | 20 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 155.2.q.a | ✓ | 40 | 5.c | odd | 4 | 1 | |
| 155.2.q.a | ✓ | 40 | 155.w | odd | 60 | 1 | |
| 775.2.bl.c | 40 | 5.c | odd | 4 | 1 | ||
| 775.2.bl.c | 40 | 155.w | odd | 60 | 1 | ||
| 775.2.ck.c | 80 | 1.a | even | 1 | 1 | trivial | |
| 775.2.ck.c | 80 | 5.b | even | 2 | 1 | inner | |
| 775.2.ck.c | 80 | 31.g | even | 15 | 1 | inner | |
| 775.2.ck.c | 80 | 155.u | even | 30 | 1 | inner | |
| 4805.2.a.x | 20 | 155.w | odd | 60 | 1 | ||
| 4805.2.a.y | 20 | 155.x | even | 60 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{80} - 30 T_{2}^{78} + 501 T_{2}^{76} - 6191 T_{2}^{74} + 64256 T_{2}^{72} - 573961 T_{2}^{70} + \cdots + 1 \)
acting on \(S_{2}^{\mathrm{new}}(775, [\chi])\).