Properties

Label 4805.2.a.y.1.17
Level $4805$
Weight $2$
Character 4805.1
Self dual yes
Analytic conductor $38.368$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4805,2,Mod(1,4805)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4805.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4805, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4805 = 5 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4805.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-1,4,15,-20,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.3681181712\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} - 27 x^{18} + 29 x^{17} + 298 x^{16} - 343 x^{15} - 1729 x^{14} + 2127 x^{13} + 5634 x^{12} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 155)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Root \(-2.09217\) of defining polynomial
Character \(\chi\) \(=\) 4805.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.09217 q^{2} -1.52922 q^{3} +2.37719 q^{4} -1.00000 q^{5} -3.19940 q^{6} +3.03261 q^{7} +0.789144 q^{8} -0.661478 q^{9} -2.09217 q^{10} +6.10532 q^{11} -3.63525 q^{12} +5.76122 q^{13} +6.34475 q^{14} +1.52922 q^{15} -3.10335 q^{16} +5.74835 q^{17} -1.38393 q^{18} -2.04231 q^{19} -2.37719 q^{20} -4.63754 q^{21} +12.7734 q^{22} -6.12364 q^{23} -1.20678 q^{24} +1.00000 q^{25} +12.0535 q^{26} +5.59922 q^{27} +7.20909 q^{28} -5.75211 q^{29} +3.19940 q^{30} -8.07104 q^{32} -9.33639 q^{33} +12.0266 q^{34} -3.03261 q^{35} -1.57246 q^{36} -2.36580 q^{37} -4.27287 q^{38} -8.81019 q^{39} -0.789144 q^{40} +0.924914 q^{41} -9.70253 q^{42} +4.26449 q^{43} +14.5135 q^{44} +0.661478 q^{45} -12.8117 q^{46} +1.56258 q^{47} +4.74571 q^{48} +2.19673 q^{49} +2.09217 q^{50} -8.79051 q^{51} +13.6955 q^{52} +2.87837 q^{53} +11.7145 q^{54} -6.10532 q^{55} +2.39317 q^{56} +3.12315 q^{57} -12.0344 q^{58} +0.194720 q^{59} +3.63525 q^{60} +9.68296 q^{61} -2.00601 q^{63} -10.6793 q^{64} -5.76122 q^{65} -19.5333 q^{66} +6.44649 q^{67} +13.6649 q^{68} +9.36440 q^{69} -6.34475 q^{70} +0.958977 q^{71} -0.522002 q^{72} +1.07913 q^{73} -4.94966 q^{74} -1.52922 q^{75} -4.85496 q^{76} +18.5151 q^{77} -18.4325 q^{78} +9.64623 q^{79} +3.10335 q^{80} -6.57801 q^{81} +1.93508 q^{82} -7.99699 q^{83} -11.0243 q^{84} -5.74835 q^{85} +8.92205 q^{86} +8.79626 q^{87} +4.81798 q^{88} -10.6879 q^{89} +1.38393 q^{90} +17.4716 q^{91} -14.5570 q^{92} +3.26919 q^{94} +2.04231 q^{95} +12.3424 q^{96} +2.42074 q^{97} +4.59595 q^{98} -4.03853 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - q^{2} + 4 q^{3} + 15 q^{4} - 20 q^{5} + 4 q^{6} + q^{7} + 9 q^{8} + 8 q^{9} + q^{10} + 17 q^{11} - 13 q^{12} + 9 q^{13} + 6 q^{14} - 4 q^{15} + 9 q^{16} - 20 q^{17} - 28 q^{18} - 7 q^{19} - 15 q^{20}+ \cdots + 53 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.09217 1.47939 0.739695 0.672942i \(-0.234970\pi\)
0.739695 + 0.672942i \(0.234970\pi\)
\(3\) −1.52922 −0.882897 −0.441449 0.897287i \(-0.645535\pi\)
−0.441449 + 0.897287i \(0.645535\pi\)
\(4\) 2.37719 1.18859
\(5\) −1.00000 −0.447214
\(6\) −3.19940 −1.30615
\(7\) 3.03261 1.14622 0.573110 0.819479i \(-0.305737\pi\)
0.573110 + 0.819479i \(0.305737\pi\)
\(8\) 0.789144 0.279005
\(9\) −0.661478 −0.220493
\(10\) −2.09217 −0.661603
\(11\) 6.10532 1.84082 0.920411 0.390952i \(-0.127854\pi\)
0.920411 + 0.390952i \(0.127854\pi\)
\(12\) −3.63525 −1.04941
\(13\) 5.76122 1.59788 0.798938 0.601413i \(-0.205396\pi\)
0.798938 + 0.601413i \(0.205396\pi\)
\(14\) 6.34475 1.69571
\(15\) 1.52922 0.394844
\(16\) −3.10335 −0.775838
\(17\) 5.74835 1.39418 0.697090 0.716983i \(-0.254478\pi\)
0.697090 + 0.716983i \(0.254478\pi\)
\(18\) −1.38393 −0.326195
\(19\) −2.04231 −0.468538 −0.234269 0.972172i \(-0.575270\pi\)
−0.234269 + 0.972172i \(0.575270\pi\)
\(20\) −2.37719 −0.531556
\(21\) −4.63754 −1.01199
\(22\) 12.7734 2.72329
\(23\) −6.12364 −1.27687 −0.638433 0.769677i \(-0.720417\pi\)
−0.638433 + 0.769677i \(0.720417\pi\)
\(24\) −1.20678 −0.246332
\(25\) 1.00000 0.200000
\(26\) 12.0535 2.36388
\(27\) 5.59922 1.07757
\(28\) 7.20909 1.36239
\(29\) −5.75211 −1.06814 −0.534070 0.845440i \(-0.679338\pi\)
−0.534070 + 0.845440i \(0.679338\pi\)
\(30\) 3.19940 0.584128
\(31\) 0 0
\(32\) −8.07104 −1.42677
\(33\) −9.33639 −1.62526
\(34\) 12.0266 2.06254
\(35\) −3.03261 −0.512605
\(36\) −1.57246 −0.262076
\(37\) −2.36580 −0.388935 −0.194468 0.980909i \(-0.562298\pi\)
−0.194468 + 0.980909i \(0.562298\pi\)
\(38\) −4.27287 −0.693150
\(39\) −8.81019 −1.41076
\(40\) −0.789144 −0.124775
\(41\) 0.924914 0.144447 0.0722236 0.997388i \(-0.476990\pi\)
0.0722236 + 0.997388i \(0.476990\pi\)
\(42\) −9.70253 −1.49713
\(43\) 4.26449 0.650328 0.325164 0.945658i \(-0.394580\pi\)
0.325164 + 0.945658i \(0.394580\pi\)
\(44\) 14.5135 2.18799
\(45\) 0.661478 0.0986073
\(46\) −12.8117 −1.88898
\(47\) 1.56258 0.227926 0.113963 0.993485i \(-0.463645\pi\)
0.113963 + 0.993485i \(0.463645\pi\)
\(48\) 4.74571 0.684985
\(49\) 2.19673 0.313819
\(50\) 2.09217 0.295878
\(51\) −8.79051 −1.23092
\(52\) 13.6955 1.89923
\(53\) 2.87837 0.395375 0.197687 0.980265i \(-0.436657\pi\)
0.197687 + 0.980265i \(0.436657\pi\)
\(54\) 11.7145 1.59415
\(55\) −6.10532 −0.823241
\(56\) 2.39317 0.319801
\(57\) 3.12315 0.413671
\(58\) −12.0344 −1.58020
\(59\) 0.194720 0.0253504 0.0126752 0.999920i \(-0.495965\pi\)
0.0126752 + 0.999920i \(0.495965\pi\)
\(60\) 3.63525 0.469309
\(61\) 9.68296 1.23978 0.619888 0.784690i \(-0.287178\pi\)
0.619888 + 0.784690i \(0.287178\pi\)
\(62\) 0 0
\(63\) −2.00601 −0.252733
\(64\) −10.6793 −1.33491
\(65\) −5.76122 −0.714592
\(66\) −19.5333 −2.40439
\(67\) 6.44649 0.787564 0.393782 0.919204i \(-0.371167\pi\)
0.393782 + 0.919204i \(0.371167\pi\)
\(68\) 13.6649 1.65712
\(69\) 9.36440 1.12734
\(70\) −6.34475 −0.758343
\(71\) 0.958977 0.113810 0.0569048 0.998380i \(-0.481877\pi\)
0.0569048 + 0.998380i \(0.481877\pi\)
\(72\) −0.522002 −0.0615185
\(73\) 1.07913 0.126303 0.0631515 0.998004i \(-0.479885\pi\)
0.0631515 + 0.998004i \(0.479885\pi\)
\(74\) −4.94966 −0.575387
\(75\) −1.52922 −0.176579
\(76\) −4.85496 −0.556902
\(77\) 18.5151 2.10999
\(78\) −18.4325 −2.08706
\(79\) 9.64623 1.08529 0.542643 0.839963i \(-0.317424\pi\)
0.542643 + 0.839963i \(0.317424\pi\)
\(80\) 3.10335 0.346965
\(81\) −6.57801 −0.730890
\(82\) 1.93508 0.213694
\(83\) −7.99699 −0.877783 −0.438892 0.898540i \(-0.644629\pi\)
−0.438892 + 0.898540i \(0.644629\pi\)
\(84\) −11.0243 −1.20285
\(85\) −5.74835 −0.623497
\(86\) 8.92205 0.962089
\(87\) 8.79626 0.943058
\(88\) 4.81798 0.513598
\(89\) −10.6879 −1.13292 −0.566458 0.824091i \(-0.691686\pi\)
−0.566458 + 0.824091i \(0.691686\pi\)
\(90\) 1.38393 0.145879
\(91\) 17.4716 1.83152
\(92\) −14.5570 −1.51768
\(93\) 0 0
\(94\) 3.26919 0.337191
\(95\) 2.04231 0.209537
\(96\) 12.3424 1.25969
\(97\) 2.42074 0.245789 0.122895 0.992420i \(-0.460782\pi\)
0.122895 + 0.992420i \(0.460782\pi\)
\(98\) 4.59595 0.464261
\(99\) −4.03853 −0.405888
\(100\) 2.37719 0.237719
\(101\) −1.17406 −0.116824 −0.0584119 0.998293i \(-0.518604\pi\)
−0.0584119 + 0.998293i \(0.518604\pi\)
\(102\) −18.3913 −1.82101
\(103\) 12.0361 1.18595 0.592977 0.805219i \(-0.297952\pi\)
0.592977 + 0.805219i \(0.297952\pi\)
\(104\) 4.54644 0.445815
\(105\) 4.63754 0.452577
\(106\) 6.02205 0.584913
\(107\) −3.65289 −0.353138 −0.176569 0.984288i \(-0.556500\pi\)
−0.176569 + 0.984288i \(0.556500\pi\)
\(108\) 13.3104 1.28079
\(109\) −2.91891 −0.279581 −0.139790 0.990181i \(-0.544643\pi\)
−0.139790 + 0.990181i \(0.544643\pi\)
\(110\) −12.7734 −1.21789
\(111\) 3.61783 0.343390
\(112\) −9.41126 −0.889280
\(113\) 17.2796 1.62553 0.812765 0.582592i \(-0.197961\pi\)
0.812765 + 0.582592i \(0.197961\pi\)
\(114\) 6.53416 0.611980
\(115\) 6.12364 0.571032
\(116\) −13.6739 −1.26959
\(117\) −3.81092 −0.352320
\(118\) 0.407388 0.0375031
\(119\) 17.4325 1.59804
\(120\) 1.20678 0.110163
\(121\) 26.2749 2.38863
\(122\) 20.2584 1.83411
\(123\) −1.41440 −0.127532
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) −4.19691 −0.373891
\(127\) 9.93372 0.881475 0.440738 0.897636i \(-0.354717\pi\)
0.440738 + 0.897636i \(0.354717\pi\)
\(128\) −6.20088 −0.548086
\(129\) −6.52135 −0.574173
\(130\) −12.0535 −1.05716
\(131\) 5.95405 0.520208 0.260104 0.965581i \(-0.416243\pi\)
0.260104 + 0.965581i \(0.416243\pi\)
\(132\) −22.1944 −1.93177
\(133\) −6.19353 −0.537047
\(134\) 13.4872 1.16511
\(135\) −5.59922 −0.481904
\(136\) 4.53628 0.388983
\(137\) 22.3422 1.90882 0.954410 0.298498i \(-0.0964857\pi\)
0.954410 + 0.298498i \(0.0964857\pi\)
\(138\) 19.5920 1.66778
\(139\) 6.76957 0.574188 0.287094 0.957902i \(-0.407311\pi\)
0.287094 + 0.957902i \(0.407311\pi\)
\(140\) −7.20909 −0.609279
\(141\) −2.38953 −0.201235
\(142\) 2.00635 0.168369
\(143\) 35.1741 2.94141
\(144\) 2.05280 0.171067
\(145\) 5.75211 0.477687
\(146\) 2.25773 0.186851
\(147\) −3.35929 −0.277070
\(148\) −5.62395 −0.462286
\(149\) −21.4057 −1.75362 −0.876812 0.480833i \(-0.840334\pi\)
−0.876812 + 0.480833i \(0.840334\pi\)
\(150\) −3.19940 −0.261230
\(151\) 3.40039 0.276720 0.138360 0.990382i \(-0.455817\pi\)
0.138360 + 0.990382i \(0.455817\pi\)
\(152\) −1.61168 −0.130724
\(153\) −3.80241 −0.307407
\(154\) 38.7367 3.12149
\(155\) 0 0
\(156\) −20.9435 −1.67682
\(157\) 9.41684 0.751545 0.375773 0.926712i \(-0.377377\pi\)
0.375773 + 0.926712i \(0.377377\pi\)
\(158\) 20.1816 1.60556
\(159\) −4.40167 −0.349075
\(160\) 8.07104 0.638071
\(161\) −18.5706 −1.46357
\(162\) −13.7623 −1.08127
\(163\) −11.4367 −0.895788 −0.447894 0.894087i \(-0.647826\pi\)
−0.447894 + 0.894087i \(0.647826\pi\)
\(164\) 2.19870 0.171689
\(165\) 9.33639 0.726837
\(166\) −16.7311 −1.29858
\(167\) −7.71810 −0.597245 −0.298622 0.954371i \(-0.596527\pi\)
−0.298622 + 0.954371i \(0.596527\pi\)
\(168\) −3.65969 −0.282351
\(169\) 20.1917 1.55321
\(170\) −12.0266 −0.922394
\(171\) 1.35094 0.103309
\(172\) 10.1375 0.772977
\(173\) −4.65205 −0.353689 −0.176844 0.984239i \(-0.556589\pi\)
−0.176844 + 0.984239i \(0.556589\pi\)
\(174\) 18.4033 1.39515
\(175\) 3.03261 0.229244
\(176\) −18.9469 −1.42818
\(177\) −0.297770 −0.0223818
\(178\) −22.3609 −1.67602
\(179\) 5.68439 0.424871 0.212436 0.977175i \(-0.431860\pi\)
0.212436 + 0.977175i \(0.431860\pi\)
\(180\) 1.57246 0.117204
\(181\) 1.13672 0.0844915 0.0422457 0.999107i \(-0.486549\pi\)
0.0422457 + 0.999107i \(0.486549\pi\)
\(182\) 36.5535 2.70953
\(183\) −14.8074 −1.09459
\(184\) −4.83243 −0.356252
\(185\) 2.36580 0.173937
\(186\) 0 0
\(187\) 35.0955 2.56644
\(188\) 3.71455 0.270911
\(189\) 16.9802 1.23513
\(190\) 4.27287 0.309986
\(191\) −19.4059 −1.40416 −0.702079 0.712099i \(-0.747745\pi\)
−0.702079 + 0.712099i \(0.747745\pi\)
\(192\) 16.3310 1.17859
\(193\) −16.1656 −1.16363 −0.581813 0.813322i \(-0.697657\pi\)
−0.581813 + 0.813322i \(0.697657\pi\)
\(194\) 5.06461 0.363618
\(195\) 8.81019 0.630911
\(196\) 5.22205 0.373004
\(197\) 7.73728 0.551258 0.275629 0.961264i \(-0.411114\pi\)
0.275629 + 0.961264i \(0.411114\pi\)
\(198\) −8.44931 −0.600466
\(199\) −26.5342 −1.88096 −0.940481 0.339847i \(-0.889625\pi\)
−0.940481 + 0.339847i \(0.889625\pi\)
\(200\) 0.789144 0.0558009
\(201\) −9.85811 −0.695338
\(202\) −2.45634 −0.172828
\(203\) −17.4439 −1.22432
\(204\) −20.8967 −1.46306
\(205\) −0.924914 −0.0645988
\(206\) 25.1817 1.75449
\(207\) 4.05065 0.281540
\(208\) −17.8791 −1.23969
\(209\) −12.4689 −0.862495
\(210\) 9.70253 0.669538
\(211\) 16.2521 1.11884 0.559419 0.828885i \(-0.311024\pi\)
0.559419 + 0.828885i \(0.311024\pi\)
\(212\) 6.84243 0.469940
\(213\) −1.46649 −0.100482
\(214\) −7.64247 −0.522428
\(215\) −4.26449 −0.290836
\(216\) 4.41859 0.300647
\(217\) 0 0
\(218\) −6.10686 −0.413609
\(219\) −1.65024 −0.111513
\(220\) −14.5135 −0.978499
\(221\) 33.1176 2.22773
\(222\) 7.56914 0.508007
\(223\) 4.85815 0.325326 0.162663 0.986682i \(-0.447992\pi\)
0.162663 + 0.986682i \(0.447992\pi\)
\(224\) −24.4763 −1.63539
\(225\) −0.661478 −0.0440985
\(226\) 36.1519 2.40479
\(227\) 4.88513 0.324237 0.162119 0.986771i \(-0.448167\pi\)
0.162119 + 0.986771i \(0.448167\pi\)
\(228\) 7.42431 0.491687
\(229\) −3.42385 −0.226254 −0.113127 0.993581i \(-0.536087\pi\)
−0.113127 + 0.993581i \(0.536087\pi\)
\(230\) 12.8117 0.844779
\(231\) −28.3136 −1.86290
\(232\) −4.53925 −0.298016
\(233\) 14.9111 0.976861 0.488431 0.872603i \(-0.337569\pi\)
0.488431 + 0.872603i \(0.337569\pi\)
\(234\) −7.97311 −0.521219
\(235\) −1.56258 −0.101932
\(236\) 0.462886 0.0301313
\(237\) −14.7512 −0.958196
\(238\) 36.4719 2.36412
\(239\) 7.50199 0.485264 0.242632 0.970118i \(-0.421989\pi\)
0.242632 + 0.970118i \(0.421989\pi\)
\(240\) −4.74571 −0.306335
\(241\) 6.09736 0.392765 0.196383 0.980527i \(-0.437081\pi\)
0.196383 + 0.980527i \(0.437081\pi\)
\(242\) 54.9716 3.53371
\(243\) −6.73840 −0.432269
\(244\) 23.0182 1.47359
\(245\) −2.19673 −0.140344
\(246\) −2.95917 −0.188670
\(247\) −11.7662 −0.748666
\(248\) 0 0
\(249\) 12.2292 0.774992
\(250\) −2.09217 −0.132321
\(251\) −5.29608 −0.334285 −0.167143 0.985933i \(-0.553454\pi\)
−0.167143 + 0.985933i \(0.553454\pi\)
\(252\) −4.76866 −0.300397
\(253\) −37.3867 −2.35048
\(254\) 20.7831 1.30405
\(255\) 8.79051 0.550483
\(256\) 8.38529 0.524081
\(257\) −7.33587 −0.457599 −0.228800 0.973474i \(-0.573480\pi\)
−0.228800 + 0.973474i \(0.573480\pi\)
\(258\) −13.6438 −0.849426
\(259\) −7.17455 −0.445805
\(260\) −13.6955 −0.849360
\(261\) 3.80490 0.235517
\(262\) 12.4569 0.769590
\(263\) 17.6857 1.09055 0.545274 0.838258i \(-0.316426\pi\)
0.545274 + 0.838258i \(0.316426\pi\)
\(264\) −7.36776 −0.453454
\(265\) −2.87837 −0.176817
\(266\) −12.9579 −0.794502
\(267\) 16.3442 1.00025
\(268\) 15.3245 0.936094
\(269\) 14.7535 0.899535 0.449767 0.893146i \(-0.351507\pi\)
0.449767 + 0.893146i \(0.351507\pi\)
\(270\) −11.7145 −0.712923
\(271\) −11.7078 −0.711200 −0.355600 0.934638i \(-0.615723\pi\)
−0.355600 + 0.934638i \(0.615723\pi\)
\(272\) −17.8392 −1.08166
\(273\) −26.7179 −1.61704
\(274\) 46.7437 2.82389
\(275\) 6.10532 0.368164
\(276\) 22.2610 1.33995
\(277\) 10.2231 0.614244 0.307122 0.951670i \(-0.400634\pi\)
0.307122 + 0.951670i \(0.400634\pi\)
\(278\) 14.1631 0.849448
\(279\) 0 0
\(280\) −2.39317 −0.143019
\(281\) −4.27915 −0.255272 −0.127636 0.991821i \(-0.540739\pi\)
−0.127636 + 0.991821i \(0.540739\pi\)
\(282\) −4.99932 −0.297705
\(283\) −20.5689 −1.22269 −0.611347 0.791363i \(-0.709372\pi\)
−0.611347 + 0.791363i \(0.709372\pi\)
\(284\) 2.27967 0.135274
\(285\) −3.12315 −0.184999
\(286\) 73.5903 4.35149
\(287\) 2.80490 0.165568
\(288\) 5.33881 0.314593
\(289\) 16.0436 0.943740
\(290\) 12.0344 0.706685
\(291\) −3.70186 −0.217007
\(292\) 2.56530 0.150123
\(293\) −6.54979 −0.382643 −0.191321 0.981527i \(-0.561277\pi\)
−0.191321 + 0.981527i \(0.561277\pi\)
\(294\) −7.02823 −0.409894
\(295\) −0.194720 −0.0113370
\(296\) −1.86696 −0.108515
\(297\) 34.1850 1.98361
\(298\) −44.7845 −2.59429
\(299\) −35.2796 −2.04027
\(300\) −3.63525 −0.209881
\(301\) 12.9325 0.745419
\(302\) 7.11420 0.409376
\(303\) 1.79541 0.103143
\(304\) 6.33800 0.363509
\(305\) −9.68296 −0.554445
\(306\) −7.95530 −0.454774
\(307\) −31.4457 −1.79470 −0.897351 0.441317i \(-0.854512\pi\)
−0.897351 + 0.441317i \(0.854512\pi\)
\(308\) 44.0138 2.50792
\(309\) −18.4059 −1.04708
\(310\) 0 0
\(311\) 1.01917 0.0577920 0.0288960 0.999582i \(-0.490801\pi\)
0.0288960 + 0.999582i \(0.490801\pi\)
\(312\) −6.95251 −0.393609
\(313\) 1.77163 0.100138 0.0500692 0.998746i \(-0.484056\pi\)
0.0500692 + 0.998746i \(0.484056\pi\)
\(314\) 19.7017 1.11183
\(315\) 2.00601 0.113026
\(316\) 22.9309 1.28996
\(317\) −20.3671 −1.14393 −0.571966 0.820277i \(-0.693819\pi\)
−0.571966 + 0.820277i \(0.693819\pi\)
\(318\) −9.20906 −0.516418
\(319\) −35.1185 −1.96626
\(320\) 10.6793 0.596991
\(321\) 5.58608 0.311784
\(322\) −38.8529 −2.16519
\(323\) −11.7399 −0.653227
\(324\) −15.6372 −0.868732
\(325\) 5.76122 0.319575
\(326\) −23.9275 −1.32522
\(327\) 4.46366 0.246841
\(328\) 0.729891 0.0403015
\(329\) 4.73870 0.261253
\(330\) 19.5333 1.07528
\(331\) −17.9721 −0.987835 −0.493917 0.869509i \(-0.664436\pi\)
−0.493917 + 0.869509i \(0.664436\pi\)
\(332\) −19.0103 −1.04333
\(333\) 1.56492 0.0857573
\(334\) −16.1476 −0.883558
\(335\) −6.44649 −0.352209
\(336\) 14.3919 0.785143
\(337\) −9.06753 −0.493940 −0.246970 0.969023i \(-0.579435\pi\)
−0.246970 + 0.969023i \(0.579435\pi\)
\(338\) 42.2445 2.29780
\(339\) −26.4244 −1.43518
\(340\) −13.6649 −0.741084
\(341\) 0 0
\(342\) 2.82641 0.152835
\(343\) −14.5664 −0.786514
\(344\) 3.36530 0.181445
\(345\) −9.36440 −0.504163
\(346\) −9.73289 −0.523244
\(347\) 9.60134 0.515427 0.257714 0.966221i \(-0.417031\pi\)
0.257714 + 0.966221i \(0.417031\pi\)
\(348\) 20.9104 1.12091
\(349\) 9.09027 0.486591 0.243295 0.969952i \(-0.421772\pi\)
0.243295 + 0.969952i \(0.421772\pi\)
\(350\) 6.34475 0.339141
\(351\) 32.2583 1.72182
\(352\) −49.2762 −2.62643
\(353\) 1.21444 0.0646382 0.0323191 0.999478i \(-0.489711\pi\)
0.0323191 + 0.999478i \(0.489711\pi\)
\(354\) −0.622987 −0.0331114
\(355\) −0.958977 −0.0508972
\(356\) −25.4072 −1.34658
\(357\) −26.6582 −1.41090
\(358\) 11.8927 0.628550
\(359\) 1.57185 0.0829593 0.0414797 0.999139i \(-0.486793\pi\)
0.0414797 + 0.999139i \(0.486793\pi\)
\(360\) 0.522002 0.0275119
\(361\) −14.8290 −0.780472
\(362\) 2.37821 0.124996
\(363\) −40.1802 −2.10891
\(364\) 41.5332 2.17693
\(365\) −1.07913 −0.0564844
\(366\) −30.9796 −1.61933
\(367\) −2.31454 −0.120818 −0.0604091 0.998174i \(-0.519241\pi\)
−0.0604091 + 0.998174i \(0.519241\pi\)
\(368\) 19.0038 0.990641
\(369\) −0.611810 −0.0318496
\(370\) 4.94966 0.257321
\(371\) 8.72898 0.453186
\(372\) 0 0
\(373\) −30.7941 −1.59446 −0.797230 0.603676i \(-0.793702\pi\)
−0.797230 + 0.603676i \(0.793702\pi\)
\(374\) 73.4259 3.79676
\(375\) 1.52922 0.0789687
\(376\) 1.23310 0.0635924
\(377\) −33.1392 −1.70676
\(378\) 35.5256 1.82724
\(379\) −1.99947 −0.102706 −0.0513528 0.998681i \(-0.516353\pi\)
−0.0513528 + 0.998681i \(0.516353\pi\)
\(380\) 4.85496 0.249054
\(381\) −15.1909 −0.778252
\(382\) −40.6004 −2.07730
\(383\) −15.2148 −0.777441 −0.388721 0.921356i \(-0.627083\pi\)
−0.388721 + 0.921356i \(0.627083\pi\)
\(384\) 9.48253 0.483903
\(385\) −18.5151 −0.943615
\(386\) −33.8213 −1.72146
\(387\) −2.82087 −0.143393
\(388\) 5.75456 0.292144
\(389\) 22.0976 1.12039 0.560195 0.828361i \(-0.310726\pi\)
0.560195 + 0.828361i \(0.310726\pi\)
\(390\) 18.4325 0.933364
\(391\) −35.2008 −1.78018
\(392\) 1.73354 0.0875570
\(393\) −9.10507 −0.459290
\(394\) 16.1877 0.815526
\(395\) −9.64623 −0.485355
\(396\) −9.60036 −0.482436
\(397\) −5.91908 −0.297070 −0.148535 0.988907i \(-0.547456\pi\)
−0.148535 + 0.988907i \(0.547456\pi\)
\(398\) −55.5142 −2.78267
\(399\) 9.47129 0.474158
\(400\) −3.10335 −0.155168
\(401\) −22.0363 −1.10044 −0.550220 0.835020i \(-0.685456\pi\)
−0.550220 + 0.835020i \(0.685456\pi\)
\(402\) −20.6249 −1.02868
\(403\) 0 0
\(404\) −2.79097 −0.138856
\(405\) 6.57801 0.326864
\(406\) −36.4957 −1.81125
\(407\) −14.4440 −0.715960
\(408\) −6.93698 −0.343432
\(409\) 31.5501 1.56005 0.780026 0.625748i \(-0.215206\pi\)
0.780026 + 0.625748i \(0.215206\pi\)
\(410\) −1.93508 −0.0955668
\(411\) −34.1662 −1.68529
\(412\) 28.6121 1.40962
\(413\) 0.590510 0.0290571
\(414\) 8.47466 0.416507
\(415\) 7.99699 0.392557
\(416\) −46.4990 −2.27980
\(417\) −10.3522 −0.506949
\(418\) −26.0872 −1.27597
\(419\) 4.23282 0.206787 0.103393 0.994641i \(-0.467030\pi\)
0.103393 + 0.994641i \(0.467030\pi\)
\(420\) 11.0243 0.537931
\(421\) 0.821194 0.0400225 0.0200113 0.999800i \(-0.493630\pi\)
0.0200113 + 0.999800i \(0.493630\pi\)
\(422\) 34.0022 1.65520
\(423\) −1.03361 −0.0502560
\(424\) 2.27145 0.110311
\(425\) 5.74835 0.278836
\(426\) −3.06815 −0.148652
\(427\) 29.3647 1.42106
\(428\) −8.68360 −0.419738
\(429\) −53.7890 −2.59696
\(430\) −8.92205 −0.430259
\(431\) 36.7895 1.77209 0.886044 0.463602i \(-0.153443\pi\)
0.886044 + 0.463602i \(0.153443\pi\)
\(432\) −17.3763 −0.836019
\(433\) 8.37708 0.402577 0.201288 0.979532i \(-0.435487\pi\)
0.201288 + 0.979532i \(0.435487\pi\)
\(434\) 0 0
\(435\) −8.79626 −0.421749
\(436\) −6.93880 −0.332308
\(437\) 12.5064 0.598261
\(438\) −3.45258 −0.164971
\(439\) −38.3505 −1.83037 −0.915184 0.403036i \(-0.867955\pi\)
−0.915184 + 0.403036i \(0.867955\pi\)
\(440\) −4.81798 −0.229688
\(441\) −1.45309 −0.0691948
\(442\) 69.2877 3.29568
\(443\) 13.8338 0.657263 0.328631 0.944458i \(-0.393413\pi\)
0.328631 + 0.944458i \(0.393413\pi\)
\(444\) 8.60028 0.408151
\(445\) 10.6879 0.506655
\(446\) 10.1641 0.481284
\(447\) 32.7341 1.54827
\(448\) −32.3862 −1.53010
\(449\) −23.7051 −1.11871 −0.559357 0.828927i \(-0.688952\pi\)
−0.559357 + 0.828927i \(0.688952\pi\)
\(450\) −1.38393 −0.0652389
\(451\) 5.64689 0.265902
\(452\) 41.0769 1.93210
\(453\) −5.19995 −0.244315
\(454\) 10.2205 0.479673
\(455\) −17.4716 −0.819079
\(456\) 2.46461 0.115416
\(457\) 29.2220 1.36695 0.683474 0.729975i \(-0.260468\pi\)
0.683474 + 0.729975i \(0.260468\pi\)
\(458\) −7.16329 −0.334718
\(459\) 32.1863 1.50233
\(460\) 14.5570 0.678726
\(461\) 23.4272 1.09111 0.545556 0.838074i \(-0.316318\pi\)
0.545556 + 0.838074i \(0.316318\pi\)
\(462\) −59.2370 −2.75596
\(463\) −24.0254 −1.11655 −0.558277 0.829655i \(-0.688537\pi\)
−0.558277 + 0.829655i \(0.688537\pi\)
\(464\) 17.8508 0.828704
\(465\) 0 0
\(466\) 31.1967 1.44516
\(467\) −22.4026 −1.03667 −0.518334 0.855178i \(-0.673448\pi\)
−0.518334 + 0.855178i \(0.673448\pi\)
\(468\) −9.05928 −0.418766
\(469\) 19.5497 0.902721
\(470\) −3.26919 −0.150797
\(471\) −14.4004 −0.663537
\(472\) 0.153662 0.00707288
\(473\) 26.0361 1.19714
\(474\) −30.8621 −1.41755
\(475\) −2.04231 −0.0937076
\(476\) 41.4404 1.89942
\(477\) −1.90398 −0.0871772
\(478\) 15.6955 0.717894
\(479\) 22.1983 1.01427 0.507134 0.861867i \(-0.330705\pi\)
0.507134 + 0.861867i \(0.330705\pi\)
\(480\) −12.3424 −0.563351
\(481\) −13.6299 −0.621470
\(482\) 12.7567 0.581053
\(483\) 28.3986 1.29218
\(484\) 62.4604 2.83911
\(485\) −2.42074 −0.109920
\(486\) −14.0979 −0.639494
\(487\) 20.9757 0.950498 0.475249 0.879851i \(-0.342358\pi\)
0.475249 + 0.879851i \(0.342358\pi\)
\(488\) 7.64125 0.345903
\(489\) 17.4892 0.790889
\(490\) −4.59595 −0.207624
\(491\) −22.7700 −1.02760 −0.513798 0.857911i \(-0.671762\pi\)
−0.513798 + 0.857911i \(0.671762\pi\)
\(492\) −3.36229 −0.151584
\(493\) −33.0652 −1.48918
\(494\) −24.6169 −1.10757
\(495\) 4.03853 0.181519
\(496\) 0 0
\(497\) 2.90821 0.130451
\(498\) 25.5855 1.14652
\(499\) −6.78106 −0.303562 −0.151781 0.988414i \(-0.548501\pi\)
−0.151781 + 0.988414i \(0.548501\pi\)
\(500\) −2.37719 −0.106311
\(501\) 11.8027 0.527306
\(502\) −11.0803 −0.494538
\(503\) −18.6512 −0.831616 −0.415808 0.909452i \(-0.636501\pi\)
−0.415808 + 0.909452i \(0.636501\pi\)
\(504\) −1.58303 −0.0705137
\(505\) 1.17406 0.0522452
\(506\) −78.2195 −3.47728
\(507\) −30.8776 −1.37132
\(508\) 23.6143 1.04772
\(509\) 19.3528 0.857796 0.428898 0.903353i \(-0.358902\pi\)
0.428898 + 0.903353i \(0.358902\pi\)
\(510\) 18.3913 0.814379
\(511\) 3.27259 0.144771
\(512\) 29.9452 1.32341
\(513\) −11.4353 −0.504882
\(514\) −15.3479 −0.676968
\(515\) −12.0361 −0.530375
\(516\) −15.5025 −0.682459
\(517\) 9.54005 0.419571
\(518\) −15.0104 −0.659519
\(519\) 7.11402 0.312271
\(520\) −4.54644 −0.199374
\(521\) −35.7981 −1.56834 −0.784172 0.620543i \(-0.786912\pi\)
−0.784172 + 0.620543i \(0.786912\pi\)
\(522\) 7.96050 0.348422
\(523\) 16.5770 0.724861 0.362431 0.932011i \(-0.381947\pi\)
0.362431 + 0.932011i \(0.381947\pi\)
\(524\) 14.1539 0.618316
\(525\) −4.63754 −0.202399
\(526\) 37.0016 1.61334
\(527\) 0 0
\(528\) 28.9741 1.26094
\(529\) 14.4989 0.630388
\(530\) −6.02205 −0.261581
\(531\) −0.128803 −0.00558957
\(532\) −14.7232 −0.638332
\(533\) 5.32864 0.230809
\(534\) 34.1949 1.47976
\(535\) 3.65289 0.157928
\(536\) 5.08721 0.219734
\(537\) −8.69270 −0.375118
\(538\) 30.8668 1.33076
\(539\) 13.4118 0.577685
\(540\) −13.3104 −0.572788
\(541\) −20.0984 −0.864096 −0.432048 0.901851i \(-0.642209\pi\)
−0.432048 + 0.901851i \(0.642209\pi\)
\(542\) −24.4948 −1.05214
\(543\) −1.73829 −0.0745973
\(544\) −46.3952 −1.98918
\(545\) 2.91891 0.125032
\(546\) −55.8985 −2.39223
\(547\) 10.4942 0.448700 0.224350 0.974509i \(-0.427974\pi\)
0.224350 + 0.974509i \(0.427974\pi\)
\(548\) 53.1116 2.26881
\(549\) −6.40507 −0.273362
\(550\) 12.7734 0.544659
\(551\) 11.7476 0.500465
\(552\) 7.38987 0.314534
\(553\) 29.2533 1.24398
\(554\) 21.3884 0.908707
\(555\) −3.61783 −0.153569
\(556\) 16.0926 0.682476
\(557\) −30.1350 −1.27686 −0.638431 0.769679i \(-0.720416\pi\)
−0.638431 + 0.769679i \(0.720416\pi\)
\(558\) 0 0
\(559\) 24.5687 1.03914
\(560\) 9.41126 0.397698
\(561\) −53.6689 −2.26590
\(562\) −8.95271 −0.377647
\(563\) 41.1744 1.73530 0.867648 0.497180i \(-0.165631\pi\)
0.867648 + 0.497180i \(0.165631\pi\)
\(564\) −5.68038 −0.239187
\(565\) −17.2796 −0.726959
\(566\) −43.0337 −1.80884
\(567\) −19.9486 −0.837761
\(568\) 0.756772 0.0317534
\(569\) 38.1405 1.59893 0.799466 0.600711i \(-0.205116\pi\)
0.799466 + 0.600711i \(0.205116\pi\)
\(570\) −6.53416 −0.273686
\(571\) −12.7050 −0.531688 −0.265844 0.964016i \(-0.585651\pi\)
−0.265844 + 0.964016i \(0.585651\pi\)
\(572\) 83.6155 3.49614
\(573\) 29.6759 1.23973
\(574\) 5.86835 0.244940
\(575\) −6.12364 −0.255373
\(576\) 7.06413 0.294339
\(577\) −9.63495 −0.401108 −0.200554 0.979683i \(-0.564274\pi\)
−0.200554 + 0.979683i \(0.564274\pi\)
\(578\) 33.5659 1.39616
\(579\) 24.7208 1.02736
\(580\) 13.6739 0.567776
\(581\) −24.2518 −1.00613
\(582\) −7.74492 −0.321037
\(583\) 17.5734 0.727815
\(584\) 0.851592 0.0352391
\(585\) 3.81092 0.157562
\(586\) −13.7033 −0.566078
\(587\) −36.4858 −1.50593 −0.752966 0.658060i \(-0.771378\pi\)
−0.752966 + 0.658060i \(0.771378\pi\)
\(588\) −7.98568 −0.329324
\(589\) 0 0
\(590\) −0.407388 −0.0167719
\(591\) −11.8320 −0.486704
\(592\) 7.34191 0.301751
\(593\) −28.0679 −1.15261 −0.576305 0.817234i \(-0.695506\pi\)
−0.576305 + 0.817234i \(0.695506\pi\)
\(594\) 71.5209 2.93454
\(595\) −17.4325 −0.714664
\(596\) −50.8854 −2.08435
\(597\) 40.5767 1.66070
\(598\) −73.8111 −3.01836
\(599\) −13.9582 −0.570319 −0.285159 0.958480i \(-0.592047\pi\)
−0.285159 + 0.958480i \(0.592047\pi\)
\(600\) −1.20678 −0.0492665
\(601\) −28.8591 −1.17719 −0.588593 0.808429i \(-0.700318\pi\)
−0.588593 + 0.808429i \(0.700318\pi\)
\(602\) 27.0571 1.10277
\(603\) −4.26421 −0.173652
\(604\) 8.08337 0.328907
\(605\) −26.2749 −1.06823
\(606\) 3.75630 0.152589
\(607\) 16.1794 0.656701 0.328350 0.944556i \(-0.393507\pi\)
0.328350 + 0.944556i \(0.393507\pi\)
\(608\) 16.4836 0.668497
\(609\) 26.6757 1.08095
\(610\) −20.2584 −0.820240
\(611\) 9.00238 0.364197
\(612\) −9.03905 −0.365382
\(613\) −10.0615 −0.406379 −0.203189 0.979139i \(-0.565131\pi\)
−0.203189 + 0.979139i \(0.565131\pi\)
\(614\) −65.7899 −2.65507
\(615\) 1.41440 0.0570341
\(616\) 14.6111 0.588696
\(617\) 31.6993 1.27616 0.638082 0.769968i \(-0.279728\pi\)
0.638082 + 0.769968i \(0.279728\pi\)
\(618\) −38.5084 −1.54903
\(619\) 8.46480 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(620\) 0 0
\(621\) −34.2876 −1.37591
\(622\) 2.13229 0.0854970
\(623\) −32.4122 −1.29857
\(624\) 27.3411 1.09452
\(625\) 1.00000 0.0400000
\(626\) 3.70656 0.148144
\(627\) 19.0678 0.761495
\(628\) 22.3856 0.893283
\(629\) −13.5995 −0.542246
\(630\) 4.19691 0.167209
\(631\) 46.3316 1.84443 0.922216 0.386675i \(-0.126376\pi\)
0.922216 + 0.386675i \(0.126376\pi\)
\(632\) 7.61227 0.302800
\(633\) −24.8530 −0.987820
\(634\) −42.6116 −1.69232
\(635\) −9.93372 −0.394208
\(636\) −10.4636 −0.414909
\(637\) 12.6559 0.501444
\(638\) −73.4739 −2.90886
\(639\) −0.634343 −0.0250942
\(640\) 6.20088 0.245111
\(641\) −27.1226 −1.07128 −0.535639 0.844447i \(-0.679929\pi\)
−0.535639 + 0.844447i \(0.679929\pi\)
\(642\) 11.6870 0.461251
\(643\) −3.28555 −0.129569 −0.0647847 0.997899i \(-0.520636\pi\)
−0.0647847 + 0.997899i \(0.520636\pi\)
\(644\) −44.1459 −1.73959
\(645\) 6.52135 0.256778
\(646\) −24.5619 −0.966377
\(647\) −49.6701 −1.95273 −0.976366 0.216125i \(-0.930658\pi\)
−0.976366 + 0.216125i \(0.930658\pi\)
\(648\) −5.19100 −0.203922
\(649\) 1.18883 0.0466656
\(650\) 12.0535 0.472776
\(651\) 0 0
\(652\) −27.1871 −1.06473
\(653\) −10.9619 −0.428974 −0.214487 0.976727i \(-0.568808\pi\)
−0.214487 + 0.976727i \(0.568808\pi\)
\(654\) 9.33875 0.365174
\(655\) −5.95405 −0.232644
\(656\) −2.87033 −0.112068
\(657\) −0.713823 −0.0278489
\(658\) 9.91419 0.386495
\(659\) 44.7513 1.74326 0.871631 0.490162i \(-0.163062\pi\)
0.871631 + 0.490162i \(0.163062\pi\)
\(660\) 22.1944 0.863914
\(661\) 21.3978 0.832279 0.416140 0.909301i \(-0.363383\pi\)
0.416140 + 0.909301i \(0.363383\pi\)
\(662\) −37.6007 −1.46139
\(663\) −50.6441 −1.96685
\(664\) −6.31078 −0.244906
\(665\) 6.19353 0.240175
\(666\) 3.27409 0.126869
\(667\) 35.2239 1.36387
\(668\) −18.3474 −0.709882
\(669\) −7.42920 −0.287229
\(670\) −13.4872 −0.521055
\(671\) 59.1175 2.28221
\(672\) 37.4297 1.44388
\(673\) 38.2044 1.47267 0.736335 0.676617i \(-0.236555\pi\)
0.736335 + 0.676617i \(0.236555\pi\)
\(674\) −18.9708 −0.730729
\(675\) 5.59922 0.215514
\(676\) 47.9995 1.84613
\(677\) −37.6813 −1.44821 −0.724105 0.689690i \(-0.757747\pi\)
−0.724105 + 0.689690i \(0.757747\pi\)
\(678\) −55.2844 −2.12318
\(679\) 7.34117 0.281728
\(680\) −4.53628 −0.173958
\(681\) −7.47045 −0.286268
\(682\) 0 0
\(683\) 1.48318 0.0567524 0.0283762 0.999597i \(-0.490966\pi\)
0.0283762 + 0.999597i \(0.490966\pi\)
\(684\) 3.21145 0.122793
\(685\) −22.3422 −0.853650
\(686\) −30.4755 −1.16356
\(687\) 5.23583 0.199759
\(688\) −13.2342 −0.504549
\(689\) 16.5829 0.631760
\(690\) −19.5920 −0.745853
\(691\) 32.8917 1.25126 0.625630 0.780120i \(-0.284842\pi\)
0.625630 + 0.780120i \(0.284842\pi\)
\(692\) −11.0588 −0.420392
\(693\) −12.2473 −0.465237
\(694\) 20.0877 0.762518
\(695\) −6.76957 −0.256785
\(696\) 6.94152 0.263118
\(697\) 5.31673 0.201386
\(698\) 19.0184 0.719858
\(699\) −22.8025 −0.862468
\(700\) 7.20909 0.272478
\(701\) 3.37012 0.127288 0.0636438 0.997973i \(-0.479728\pi\)
0.0636438 + 0.997973i \(0.479728\pi\)
\(702\) 67.4900 2.54725
\(703\) 4.83170 0.182231
\(704\) −65.2005 −2.45734
\(705\) 2.38953 0.0899951
\(706\) 2.54082 0.0956251
\(707\) −3.56048 −0.133906
\(708\) −0.707856 −0.0266029
\(709\) 14.6848 0.551498 0.275749 0.961230i \(-0.411074\pi\)
0.275749 + 0.961230i \(0.411074\pi\)
\(710\) −2.00635 −0.0752969
\(711\) −6.38077 −0.239298
\(712\) −8.43430 −0.316089
\(713\) 0 0
\(714\) −55.7736 −2.08727
\(715\) −35.1741 −1.31544
\(716\) 13.5129 0.505000
\(717\) −11.4722 −0.428438
\(718\) 3.28859 0.122729
\(719\) −53.3561 −1.98985 −0.994924 0.100628i \(-0.967915\pi\)
−0.994924 + 0.100628i \(0.967915\pi\)
\(720\) −2.05280 −0.0765033
\(721\) 36.5009 1.35936
\(722\) −31.0248 −1.15462
\(723\) −9.32422 −0.346771
\(724\) 2.70219 0.100426
\(725\) −5.75211 −0.213628
\(726\) −84.0638 −3.11990
\(727\) 25.0988 0.930864 0.465432 0.885084i \(-0.345899\pi\)
0.465432 + 0.885084i \(0.345899\pi\)
\(728\) 13.7876 0.511002
\(729\) 30.0386 1.11254
\(730\) −2.25773 −0.0835625
\(731\) 24.5138 0.906675
\(732\) −35.2000 −1.30103
\(733\) −51.4926 −1.90192 −0.950961 0.309310i \(-0.899902\pi\)
−0.950961 + 0.309310i \(0.899902\pi\)
\(734\) −4.84242 −0.178737
\(735\) 3.35929 0.123909
\(736\) 49.4241 1.82180
\(737\) 39.3578 1.44976
\(738\) −1.28001 −0.0471179
\(739\) 38.4925 1.41597 0.707985 0.706228i \(-0.249604\pi\)
0.707985 + 0.706228i \(0.249604\pi\)
\(740\) 5.62395 0.206741
\(741\) 17.9931 0.660995
\(742\) 18.2625 0.670439
\(743\) 14.9183 0.547299 0.273650 0.961829i \(-0.411769\pi\)
0.273650 + 0.961829i \(0.411769\pi\)
\(744\) 0 0
\(745\) 21.4057 0.784245
\(746\) −64.4266 −2.35883
\(747\) 5.28983 0.193545
\(748\) 83.4287 3.05045
\(749\) −11.0778 −0.404773
\(750\) 3.19940 0.116826
\(751\) 4.41599 0.161142 0.0805709 0.996749i \(-0.474326\pi\)
0.0805709 + 0.996749i \(0.474326\pi\)
\(752\) −4.84924 −0.176834
\(753\) 8.09888 0.295140
\(754\) −69.3330 −2.52496
\(755\) −3.40039 −0.123753
\(756\) 40.3652 1.46807
\(757\) −26.0148 −0.945525 −0.472763 0.881190i \(-0.656743\pi\)
−0.472763 + 0.881190i \(0.656743\pi\)
\(758\) −4.18323 −0.151942
\(759\) 57.1727 2.07524
\(760\) 1.61168 0.0584617
\(761\) −40.9330 −1.48382 −0.741911 0.670499i \(-0.766080\pi\)
−0.741911 + 0.670499i \(0.766080\pi\)
\(762\) −31.7819 −1.15134
\(763\) −8.85192 −0.320461
\(764\) −46.1314 −1.66898
\(765\) 3.80241 0.137476
\(766\) −31.8321 −1.15014
\(767\) 1.12183 0.0405068
\(768\) −12.8230 −0.462709
\(769\) 27.6555 0.997282 0.498641 0.866809i \(-0.333833\pi\)
0.498641 + 0.866809i \(0.333833\pi\)
\(770\) −38.7367 −1.39597
\(771\) 11.2182 0.404013
\(772\) −38.4287 −1.38308
\(773\) −31.9791 −1.15021 −0.575103 0.818081i \(-0.695038\pi\)
−0.575103 + 0.818081i \(0.695038\pi\)
\(774\) −5.90174 −0.212134
\(775\) 0 0
\(776\) 1.91032 0.0685763
\(777\) 10.9715 0.393600
\(778\) 46.2319 1.65749
\(779\) −1.88896 −0.0676791
\(780\) 20.9435 0.749897
\(781\) 5.85486 0.209503
\(782\) −73.6462 −2.63358
\(783\) −32.2073 −1.15100
\(784\) −6.81723 −0.243473
\(785\) −9.41684 −0.336101
\(786\) −19.0494 −0.679469
\(787\) 41.9937 1.49692 0.748458 0.663183i \(-0.230795\pi\)
0.748458 + 0.663183i \(0.230795\pi\)
\(788\) 18.3930 0.655222
\(789\) −27.0454 −0.962841
\(790\) −20.1816 −0.718029
\(791\) 52.4024 1.86321
\(792\) −3.18699 −0.113245
\(793\) 55.7857 1.98101
\(794\) −12.3837 −0.439482
\(795\) 4.40167 0.156111
\(796\) −63.0769 −2.23570
\(797\) −23.3624 −0.827540 −0.413770 0.910381i \(-0.635788\pi\)
−0.413770 + 0.910381i \(0.635788\pi\)
\(798\) 19.8156 0.701464
\(799\) 8.98227 0.317770
\(800\) −8.07104 −0.285354
\(801\) 7.06981 0.249799
\(802\) −46.1037 −1.62798
\(803\) 6.58845 0.232501
\(804\) −23.4346 −0.826475
\(805\) 18.5706 0.654528
\(806\) 0 0
\(807\) −22.5613 −0.794197
\(808\) −0.926506 −0.0325944
\(809\) −49.4055 −1.73701 −0.868503 0.495685i \(-0.834917\pi\)
−0.868503 + 0.495685i \(0.834917\pi\)
\(810\) 13.7623 0.483559
\(811\) 30.2735 1.06305 0.531524 0.847043i \(-0.321620\pi\)
0.531524 + 0.847043i \(0.321620\pi\)
\(812\) −41.4675 −1.45522
\(813\) 17.9039 0.627916
\(814\) −30.2193 −1.05918
\(815\) 11.4367 0.400609
\(816\) 27.2800 0.954993
\(817\) −8.70941 −0.304704
\(818\) 66.0082 2.30792
\(819\) −11.5570 −0.403836
\(820\) −2.19870 −0.0767818
\(821\) −11.4745 −0.400463 −0.200231 0.979749i \(-0.564169\pi\)
−0.200231 + 0.979749i \(0.564169\pi\)
\(822\) −71.4815 −2.49320
\(823\) −19.0833 −0.665202 −0.332601 0.943068i \(-0.607926\pi\)
−0.332601 + 0.943068i \(0.607926\pi\)
\(824\) 9.49824 0.330887
\(825\) −9.33639 −0.325051
\(826\) 1.23545 0.0429868
\(827\) 15.7481 0.547614 0.273807 0.961785i \(-0.411717\pi\)
0.273807 + 0.961785i \(0.411717\pi\)
\(828\) 9.62916 0.334637
\(829\) 3.00255 0.104283 0.0521414 0.998640i \(-0.483395\pi\)
0.0521414 + 0.998640i \(0.483395\pi\)
\(830\) 16.7311 0.580744
\(831\) −15.6333 −0.542315
\(832\) −61.5259 −2.13303
\(833\) 12.6276 0.437520
\(834\) −21.6586 −0.749975
\(835\) 7.71810 0.267096
\(836\) −29.6410 −1.02516
\(837\) 0 0
\(838\) 8.85580 0.305918
\(839\) −38.3073 −1.32252 −0.661258 0.750159i \(-0.729977\pi\)
−0.661258 + 0.750159i \(0.729977\pi\)
\(840\) 3.65969 0.126271
\(841\) 4.08682 0.140925
\(842\) 1.71808 0.0592089
\(843\) 6.54377 0.225379
\(844\) 38.6343 1.32985
\(845\) −20.1917 −0.694616
\(846\) −2.16250 −0.0743482
\(847\) 79.6815 2.73789
\(848\) −8.93260 −0.306747
\(849\) 31.4544 1.07951
\(850\) 12.0266 0.412507
\(851\) 14.4873 0.496618
\(852\) −3.48612 −0.119433
\(853\) 11.1609 0.382142 0.191071 0.981576i \(-0.438804\pi\)
0.191071 + 0.981576i \(0.438804\pi\)
\(854\) 61.4359 2.10229
\(855\) −1.35094 −0.0462013
\(856\) −2.88265 −0.0985271
\(857\) −39.2227 −1.33982 −0.669911 0.742441i \(-0.733668\pi\)
−0.669911 + 0.742441i \(0.733668\pi\)
\(858\) −112.536 −3.84191
\(859\) 28.2330 0.963297 0.481648 0.876365i \(-0.340038\pi\)
0.481648 + 0.876365i \(0.340038\pi\)
\(860\) −10.1375 −0.345686
\(861\) −4.28932 −0.146180
\(862\) 76.9700 2.62161
\(863\) 27.9495 0.951412 0.475706 0.879604i \(-0.342193\pi\)
0.475706 + 0.879604i \(0.342193\pi\)
\(864\) −45.1915 −1.53745
\(865\) 4.65205 0.158174
\(866\) 17.5263 0.595568
\(867\) −24.5342 −0.833225
\(868\) 0 0
\(869\) 58.8933 1.99782
\(870\) −18.4033 −0.623931
\(871\) 37.1397 1.25843
\(872\) −2.30344 −0.0780043
\(873\) −1.60127 −0.0541947
\(874\) 26.1655 0.885061
\(875\) −3.03261 −0.102521
\(876\) −3.92292 −0.132543
\(877\) −41.9821 −1.41763 −0.708817 0.705392i \(-0.750771\pi\)
−0.708817 + 0.705392i \(0.750771\pi\)
\(878\) −80.2358 −2.70783
\(879\) 10.0161 0.337834
\(880\) 18.9469 0.638701
\(881\) 52.1568 1.75721 0.878603 0.477553i \(-0.158476\pi\)
0.878603 + 0.477553i \(0.158476\pi\)
\(882\) −3.04012 −0.102366
\(883\) 7.94214 0.267274 0.133637 0.991030i \(-0.457334\pi\)
0.133637 + 0.991030i \(0.457334\pi\)
\(884\) 78.7267 2.64786
\(885\) 0.297770 0.0100094
\(886\) 28.9427 0.972348
\(887\) 8.05328 0.270403 0.135201 0.990818i \(-0.456832\pi\)
0.135201 + 0.990818i \(0.456832\pi\)
\(888\) 2.85499 0.0958073
\(889\) 30.1251 1.01036
\(890\) 22.3609 0.749540
\(891\) −40.1608 −1.34544
\(892\) 11.5487 0.386681
\(893\) −3.19128 −0.106792
\(894\) 68.4854 2.29049
\(895\) −5.68439 −0.190008
\(896\) −18.8049 −0.628227
\(897\) 53.9504 1.80135
\(898\) −49.5952 −1.65501
\(899\) 0 0
\(900\) −1.57246 −0.0524153
\(901\) 16.5459 0.551224
\(902\) 11.8143 0.393372
\(903\) −19.7767 −0.658128
\(904\) 13.6361 0.453530
\(905\) −1.13672 −0.0377857
\(906\) −10.8792 −0.361437
\(907\) −21.5284 −0.714839 −0.357419 0.933944i \(-0.616343\pi\)
−0.357419 + 0.933944i \(0.616343\pi\)
\(908\) 11.6129 0.385387
\(909\) 0.776617 0.0257588
\(910\) −36.5535 −1.21174
\(911\) 5.48759 0.181812 0.0909059 0.995859i \(-0.471024\pi\)
0.0909059 + 0.995859i \(0.471024\pi\)
\(912\) −9.69222 −0.320941
\(913\) −48.8241 −1.61584
\(914\) 61.1375 2.02225
\(915\) 14.8074 0.489518
\(916\) −8.13914 −0.268925
\(917\) 18.0563 0.596272
\(918\) 67.3393 2.22253
\(919\) −43.0407 −1.41978 −0.709891 0.704312i \(-0.751256\pi\)
−0.709891 + 0.704312i \(0.751256\pi\)
\(920\) 4.83243 0.159321
\(921\) 48.0875 1.58454
\(922\) 49.0137 1.61418
\(923\) 5.52488 0.181854
\(924\) −67.3069 −2.21423
\(925\) −2.36580 −0.0777870
\(926\) −50.2653 −1.65182
\(927\) −7.96163 −0.261494
\(928\) 46.4255 1.52399
\(929\) −1.87481 −0.0615104 −0.0307552 0.999527i \(-0.509791\pi\)
−0.0307552 + 0.999527i \(0.509791\pi\)
\(930\) 0 0
\(931\) −4.48641 −0.147036
\(932\) 35.4466 1.16109
\(933\) −1.55854 −0.0510244
\(934\) −46.8701 −1.53364
\(935\) −35.0955 −1.14775
\(936\) −3.00737 −0.0982989
\(937\) −54.4428 −1.77857 −0.889285 0.457353i \(-0.848798\pi\)
−0.889285 + 0.457353i \(0.848798\pi\)
\(938\) 40.9013 1.33548
\(939\) −2.70922 −0.0884119
\(940\) −3.71455 −0.121155
\(941\) 24.7622 0.807226 0.403613 0.914930i \(-0.367754\pi\)
0.403613 + 0.914930i \(0.367754\pi\)
\(942\) −30.1282 −0.981630
\(943\) −5.66384 −0.184440
\(944\) −0.604285 −0.0196678
\(945\) −16.9802 −0.552367
\(946\) 54.4719 1.77104
\(947\) −14.4139 −0.468389 −0.234194 0.972190i \(-0.575245\pi\)
−0.234194 + 0.972190i \(0.575245\pi\)
\(948\) −35.0665 −1.13891
\(949\) 6.21713 0.201817
\(950\) −4.27287 −0.138630
\(951\) 31.1459 1.00997
\(952\) 13.7568 0.445860
\(953\) −28.7339 −0.930782 −0.465391 0.885105i \(-0.654086\pi\)
−0.465391 + 0.885105i \(0.654086\pi\)
\(954\) −3.98346 −0.128969
\(955\) 19.4059 0.627959
\(956\) 17.8337 0.576782
\(957\) 53.7040 1.73600
\(958\) 46.4428 1.50050
\(959\) 67.7551 2.18793
\(960\) −16.3310 −0.527082
\(961\) 0 0
\(962\) −28.5161 −0.919397
\(963\) 2.41630 0.0778643
\(964\) 14.4946 0.466839
\(965\) 16.1656 0.520390
\(966\) 59.4148 1.91164
\(967\) −29.9451 −0.962970 −0.481485 0.876454i \(-0.659902\pi\)
−0.481485 + 0.876454i \(0.659902\pi\)
\(968\) 20.7347 0.666438
\(969\) 17.9530 0.576732
\(970\) −5.06461 −0.162615
\(971\) 0.308178 0.00988990 0.00494495 0.999988i \(-0.498426\pi\)
0.00494495 + 0.999988i \(0.498426\pi\)
\(972\) −16.0184 −0.513792
\(973\) 20.5295 0.658145
\(974\) 43.8847 1.40616
\(975\) −8.81019 −0.282152
\(976\) −30.0496 −0.961865
\(977\) −27.3170 −0.873947 −0.436974 0.899474i \(-0.643950\pi\)
−0.436974 + 0.899474i \(0.643950\pi\)
\(978\) 36.5904 1.17003
\(979\) −65.2530 −2.08550
\(980\) −5.22205 −0.166812
\(981\) 1.93079 0.0616455
\(982\) −47.6388 −1.52022
\(983\) −14.6961 −0.468734 −0.234367 0.972148i \(-0.575302\pi\)
−0.234367 + 0.972148i \(0.575302\pi\)
\(984\) −1.11617 −0.0355821
\(985\) −7.73728 −0.246530
\(986\) −69.1781 −2.20308
\(987\) −7.24653 −0.230660
\(988\) −27.9705 −0.889860
\(989\) −26.1142 −0.830383
\(990\) 8.44931 0.268537
\(991\) −23.9105 −0.759542 −0.379771 0.925081i \(-0.623997\pi\)
−0.379771 + 0.925081i \(0.623997\pi\)
\(992\) 0 0
\(993\) 27.4833 0.872157
\(994\) 6.08447 0.192988
\(995\) 26.5342 0.841191
\(996\) 29.0710 0.921151
\(997\) 23.2785 0.737236 0.368618 0.929581i \(-0.379831\pi\)
0.368618 + 0.929581i \(0.379831\pi\)
\(998\) −14.1871 −0.449086
\(999\) −13.2466 −0.419105
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4805.2.a.y.1.17 20
31.12 odd 30 155.2.q.a.51.5 40
31.13 odd 30 155.2.q.a.76.5 yes 40
31.30 odd 2 4805.2.a.x.1.17 20
155.12 even 60 775.2.ck.c.299.1 80
155.13 even 60 775.2.ck.c.324.1 80
155.43 even 60 775.2.ck.c.299.10 80
155.44 odd 30 775.2.bl.c.76.1 40
155.74 odd 30 775.2.bl.c.51.1 40
155.137 even 60 775.2.ck.c.324.10 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
155.2.q.a.51.5 40 31.12 odd 30
155.2.q.a.76.5 yes 40 31.13 odd 30
775.2.bl.c.51.1 40 155.74 odd 30
775.2.bl.c.76.1 40 155.44 odd 30
775.2.ck.c.299.1 80 155.12 even 60
775.2.ck.c.299.10 80 155.43 even 60
775.2.ck.c.324.1 80 155.13 even 60
775.2.ck.c.324.10 80 155.137 even 60
4805.2.a.x.1.17 20 31.30 odd 2
4805.2.a.y.1.17 20 1.1 even 1 trivial