Properties

Label 7742.2.a.bp.1.7
Level $7742$
Weight $2$
Character 7742.1
Self dual yes
Analytic conductor $61.820$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7742,2,Mod(1,7742)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7742.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7742, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7742 = 2 \cdot 7^{2} \cdot 79 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7742.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,12,0,12,0,0,0,12,12,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8201812449\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 24x^{10} + 205x^{8} - 738x^{6} + 1016x^{4} - 380x^{2} + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(0.149562\) of defining polynomial
Character \(\chi\) \(=\) 7742.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.149562 q^{3} +1.00000 q^{4} +1.63746 q^{5} +0.149562 q^{6} +1.00000 q^{8} -2.97763 q^{9} +1.63746 q^{10} +4.31135 q^{11} +0.149562 q^{12} +1.29177 q^{13} +0.244902 q^{15} +1.00000 q^{16} +6.73549 q^{17} -2.97763 q^{18} +4.24063 q^{19} +1.63746 q^{20} +4.31135 q^{22} -3.22991 q^{23} +0.149562 q^{24} -2.31873 q^{25} +1.29177 q^{26} -0.894028 q^{27} +3.58715 q^{29} +0.244902 q^{30} -10.4431 q^{31} +1.00000 q^{32} +0.644815 q^{33} +6.73549 q^{34} -2.97763 q^{36} +2.47930 q^{37} +4.24063 q^{38} +0.193200 q^{39} +1.63746 q^{40} -2.30405 q^{41} +12.5010 q^{43} +4.31135 q^{44} -4.87575 q^{45} -3.22991 q^{46} +4.47801 q^{47} +0.149562 q^{48} -2.31873 q^{50} +1.00737 q^{51} +1.29177 q^{52} +1.27579 q^{53} -0.894028 q^{54} +7.05966 q^{55} +0.634238 q^{57} +3.58715 q^{58} +6.37900 q^{59} +0.244902 q^{60} -1.55958 q^{61} -10.4431 q^{62} +1.00000 q^{64} +2.11522 q^{65} +0.644815 q^{66} -1.37043 q^{67} +6.73549 q^{68} -0.483072 q^{69} -0.700690 q^{71} -2.97763 q^{72} -8.02726 q^{73} +2.47930 q^{74} -0.346794 q^{75} +4.24063 q^{76} +0.193200 q^{78} +1.00000 q^{79} +1.63746 q^{80} +8.79918 q^{81} -2.30405 q^{82} -1.65710 q^{83} +11.0291 q^{85} +12.5010 q^{86} +0.536502 q^{87} +4.31135 q^{88} -4.55511 q^{89} -4.87575 q^{90} -3.22991 q^{92} -1.56190 q^{93} +4.47801 q^{94} +6.94386 q^{95} +0.149562 q^{96} -11.2404 q^{97} -12.8376 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{2} + 12 q^{4} + 12 q^{8} + 12 q^{9} + 12 q^{11} + 8 q^{15} + 12 q^{16} + 12 q^{18} + 12 q^{22} + 16 q^{23} + 24 q^{25} + 12 q^{29} + 8 q^{30} + 12 q^{32} + 12 q^{36} + 16 q^{37} + 28 q^{39}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.149562 0.0863498 0.0431749 0.999068i \(-0.486253\pi\)
0.0431749 + 0.999068i \(0.486253\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.63746 0.732294 0.366147 0.930557i \(-0.380677\pi\)
0.366147 + 0.930557i \(0.380677\pi\)
\(6\) 0.149562 0.0610585
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −2.97763 −0.992544
\(10\) 1.63746 0.517810
\(11\) 4.31135 1.29992 0.649961 0.759968i \(-0.274785\pi\)
0.649961 + 0.759968i \(0.274785\pi\)
\(12\) 0.149562 0.0431749
\(13\) 1.29177 0.358272 0.179136 0.983824i \(-0.442670\pi\)
0.179136 + 0.983824i \(0.442670\pi\)
\(14\) 0 0
\(15\) 0.244902 0.0632334
\(16\) 1.00000 0.250000
\(17\) 6.73549 1.63360 0.816798 0.576924i \(-0.195747\pi\)
0.816798 + 0.576924i \(0.195747\pi\)
\(18\) −2.97763 −0.701834
\(19\) 4.24063 0.972868 0.486434 0.873717i \(-0.338297\pi\)
0.486434 + 0.873717i \(0.338297\pi\)
\(20\) 1.63746 0.366147
\(21\) 0 0
\(22\) 4.31135 0.919184
\(23\) −3.22991 −0.673482 −0.336741 0.941597i \(-0.609325\pi\)
−0.336741 + 0.941597i \(0.609325\pi\)
\(24\) 0.149562 0.0305293
\(25\) −2.31873 −0.463746
\(26\) 1.29177 0.253337
\(27\) −0.894028 −0.172056
\(28\) 0 0
\(29\) 3.58715 0.666116 0.333058 0.942906i \(-0.391919\pi\)
0.333058 + 0.942906i \(0.391919\pi\)
\(30\) 0.244902 0.0447128
\(31\) −10.4431 −1.87564 −0.937821 0.347118i \(-0.887160\pi\)
−0.937821 + 0.347118i \(0.887160\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.644815 0.112248
\(34\) 6.73549 1.15513
\(35\) 0 0
\(36\) −2.97763 −0.496272
\(37\) 2.47930 0.407595 0.203798 0.979013i \(-0.434672\pi\)
0.203798 + 0.979013i \(0.434672\pi\)
\(38\) 4.24063 0.687921
\(39\) 0.193200 0.0309367
\(40\) 1.63746 0.258905
\(41\) −2.30405 −0.359832 −0.179916 0.983682i \(-0.557583\pi\)
−0.179916 + 0.983682i \(0.557583\pi\)
\(42\) 0 0
\(43\) 12.5010 1.90639 0.953194 0.302360i \(-0.0977746\pi\)
0.953194 + 0.302360i \(0.0977746\pi\)
\(44\) 4.31135 0.649961
\(45\) −4.87575 −0.726834
\(46\) −3.22991 −0.476224
\(47\) 4.47801 0.653185 0.326592 0.945165i \(-0.394100\pi\)
0.326592 + 0.945165i \(0.394100\pi\)
\(48\) 0.149562 0.0215874
\(49\) 0 0
\(50\) −2.31873 −0.327918
\(51\) 1.00737 0.141061
\(52\) 1.29177 0.179136
\(53\) 1.27579 0.175244 0.0876219 0.996154i \(-0.472073\pi\)
0.0876219 + 0.996154i \(0.472073\pi\)
\(54\) −0.894028 −0.121662
\(55\) 7.05966 0.951925
\(56\) 0 0
\(57\) 0.634238 0.0840069
\(58\) 3.58715 0.471015
\(59\) 6.37900 0.830475 0.415237 0.909713i \(-0.363699\pi\)
0.415237 + 0.909713i \(0.363699\pi\)
\(60\) 0.244902 0.0316167
\(61\) −1.55958 −0.199684 −0.0998420 0.995003i \(-0.531834\pi\)
−0.0998420 + 0.995003i \(0.531834\pi\)
\(62\) −10.4431 −1.32628
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.11522 0.262360
\(66\) 0.644815 0.0793713
\(67\) −1.37043 −0.167425 −0.0837124 0.996490i \(-0.526678\pi\)
−0.0837124 + 0.996490i \(0.526678\pi\)
\(68\) 6.73549 0.816798
\(69\) −0.483072 −0.0581550
\(70\) 0 0
\(71\) −0.700690 −0.0831566 −0.0415783 0.999135i \(-0.513239\pi\)
−0.0415783 + 0.999135i \(0.513239\pi\)
\(72\) −2.97763 −0.350917
\(73\) −8.02726 −0.939519 −0.469760 0.882794i \(-0.655659\pi\)
−0.469760 + 0.882794i \(0.655659\pi\)
\(74\) 2.47930 0.288213
\(75\) −0.346794 −0.0400443
\(76\) 4.24063 0.486434
\(77\) 0 0
\(78\) 0.193200 0.0218756
\(79\) 1.00000 0.112509
\(80\) 1.63746 0.183073
\(81\) 8.79918 0.977687
\(82\) −2.30405 −0.254440
\(83\) −1.65710 −0.181890 −0.0909449 0.995856i \(-0.528989\pi\)
−0.0909449 + 0.995856i \(0.528989\pi\)
\(84\) 0 0
\(85\) 11.0291 1.19627
\(86\) 12.5010 1.34802
\(87\) 0.536502 0.0575190
\(88\) 4.31135 0.459592
\(89\) −4.55511 −0.482840 −0.241420 0.970421i \(-0.577613\pi\)
−0.241420 + 0.970421i \(0.577613\pi\)
\(90\) −4.87575 −0.513949
\(91\) 0 0
\(92\) −3.22991 −0.336741
\(93\) −1.56190 −0.161961
\(94\) 4.47801 0.461871
\(95\) 6.94386 0.712425
\(96\) 0.149562 0.0152646
\(97\) −11.2404 −1.14129 −0.570646 0.821196i \(-0.693307\pi\)
−0.570646 + 0.821196i \(0.693307\pi\)
\(98\) 0 0
\(99\) −12.8376 −1.29023
\(100\) −2.31873 −0.231873
\(101\) 9.13815 0.909280 0.454640 0.890675i \(-0.349768\pi\)
0.454640 + 0.890675i \(0.349768\pi\)
\(102\) 1.00737 0.0997449
\(103\) −11.2019 −1.10376 −0.551879 0.833924i \(-0.686089\pi\)
−0.551879 + 0.833924i \(0.686089\pi\)
\(104\) 1.29177 0.126668
\(105\) 0 0
\(106\) 1.27579 0.123916
\(107\) −4.54576 −0.439455 −0.219727 0.975561i \(-0.570517\pi\)
−0.219727 + 0.975561i \(0.570517\pi\)
\(108\) −0.894028 −0.0860278
\(109\) 7.50517 0.718865 0.359433 0.933171i \(-0.382970\pi\)
0.359433 + 0.933171i \(0.382970\pi\)
\(110\) 7.05966 0.673113
\(111\) 0.370810 0.0351957
\(112\) 0 0
\(113\) 14.2326 1.33889 0.669445 0.742861i \(-0.266532\pi\)
0.669445 + 0.742861i \(0.266532\pi\)
\(114\) 0.634238 0.0594018
\(115\) −5.28884 −0.493187
\(116\) 3.58715 0.333058
\(117\) −3.84641 −0.355601
\(118\) 6.37900 0.587234
\(119\) 0 0
\(120\) 0.244902 0.0223564
\(121\) 7.58777 0.689797
\(122\) −1.55958 −0.141198
\(123\) −0.344598 −0.0310714
\(124\) −10.4431 −0.937821
\(125\) −11.9841 −1.07189
\(126\) 0 0
\(127\) 3.00737 0.266861 0.133431 0.991058i \(-0.457401\pi\)
0.133431 + 0.991058i \(0.457401\pi\)
\(128\) 1.00000 0.0883883
\(129\) 1.86968 0.164616
\(130\) 2.11522 0.185517
\(131\) −3.25012 −0.283965 −0.141982 0.989869i \(-0.545348\pi\)
−0.141982 + 0.989869i \(0.545348\pi\)
\(132\) 0.644815 0.0561240
\(133\) 0 0
\(134\) −1.37043 −0.118387
\(135\) −1.46393 −0.125995
\(136\) 6.73549 0.577563
\(137\) 9.17429 0.783813 0.391906 0.920005i \(-0.371816\pi\)
0.391906 + 0.920005i \(0.371816\pi\)
\(138\) −0.483072 −0.0411218
\(139\) −0.547234 −0.0464157 −0.0232079 0.999731i \(-0.507388\pi\)
−0.0232079 + 0.999731i \(0.507388\pi\)
\(140\) 0 0
\(141\) 0.669741 0.0564023
\(142\) −0.700690 −0.0588006
\(143\) 5.56927 0.465726
\(144\) −2.97763 −0.248136
\(145\) 5.87381 0.487793
\(146\) −8.02726 −0.664341
\(147\) 0 0
\(148\) 2.47930 0.203798
\(149\) 3.78328 0.309939 0.154969 0.987919i \(-0.450472\pi\)
0.154969 + 0.987919i \(0.450472\pi\)
\(150\) −0.346794 −0.0283156
\(151\) 10.6845 0.869491 0.434746 0.900553i \(-0.356838\pi\)
0.434746 + 0.900553i \(0.356838\pi\)
\(152\) 4.24063 0.343961
\(153\) −20.0558 −1.62142
\(154\) 0 0
\(155\) −17.1002 −1.37352
\(156\) 0.193200 0.0154684
\(157\) 3.15493 0.251791 0.125895 0.992044i \(-0.459820\pi\)
0.125895 + 0.992044i \(0.459820\pi\)
\(158\) 1.00000 0.0795557
\(159\) 0.190810 0.0151323
\(160\) 1.63746 0.129452
\(161\) 0 0
\(162\) 8.79918 0.691329
\(163\) −13.8450 −1.08442 −0.542212 0.840242i \(-0.682413\pi\)
−0.542212 + 0.840242i \(0.682413\pi\)
\(164\) −2.30405 −0.179916
\(165\) 1.05586 0.0821985
\(166\) −1.65710 −0.128616
\(167\) 15.6896 1.21410 0.607050 0.794664i \(-0.292353\pi\)
0.607050 + 0.794664i \(0.292353\pi\)
\(168\) 0 0
\(169\) −11.3313 −0.871641
\(170\) 11.0291 0.845892
\(171\) −12.6270 −0.965614
\(172\) 12.5010 0.953194
\(173\) −5.18749 −0.394397 −0.197199 0.980364i \(-0.563184\pi\)
−0.197199 + 0.980364i \(0.563184\pi\)
\(174\) 0.536502 0.0406721
\(175\) 0 0
\(176\) 4.31135 0.324980
\(177\) 0.954057 0.0717113
\(178\) −4.55511 −0.341420
\(179\) 22.3348 1.66938 0.834691 0.550719i \(-0.185646\pi\)
0.834691 + 0.550719i \(0.185646\pi\)
\(180\) −4.87575 −0.363417
\(181\) −3.96844 −0.294972 −0.147486 0.989064i \(-0.547118\pi\)
−0.147486 + 0.989064i \(0.547118\pi\)
\(182\) 0 0
\(183\) −0.233255 −0.0172427
\(184\) −3.22991 −0.238112
\(185\) 4.05976 0.298479
\(186\) −1.56190 −0.114524
\(187\) 29.0391 2.12355
\(188\) 4.47801 0.326592
\(189\) 0 0
\(190\) 6.94386 0.503761
\(191\) −9.93970 −0.719212 −0.359606 0.933104i \(-0.617089\pi\)
−0.359606 + 0.933104i \(0.617089\pi\)
\(192\) 0.149562 0.0107937
\(193\) 7.12634 0.512965 0.256483 0.966549i \(-0.417436\pi\)
0.256483 + 0.966549i \(0.417436\pi\)
\(194\) −11.2404 −0.807016
\(195\) 0.316356 0.0226548
\(196\) 0 0
\(197\) −13.9000 −0.990336 −0.495168 0.868797i \(-0.664893\pi\)
−0.495168 + 0.868797i \(0.664893\pi\)
\(198\) −12.8376 −0.912330
\(199\) 16.8913 1.19740 0.598698 0.800975i \(-0.295685\pi\)
0.598698 + 0.800975i \(0.295685\pi\)
\(200\) −2.31873 −0.163959
\(201\) −0.204965 −0.0144571
\(202\) 9.13815 0.642958
\(203\) 0 0
\(204\) 1.00737 0.0705303
\(205\) −3.77278 −0.263503
\(206\) −11.2019 −0.780475
\(207\) 9.61747 0.668461
\(208\) 1.29177 0.0895680
\(209\) 18.2829 1.26465
\(210\) 0 0
\(211\) −5.45746 −0.375707 −0.187854 0.982197i \(-0.560153\pi\)
−0.187854 + 0.982197i \(0.560153\pi\)
\(212\) 1.27579 0.0876219
\(213\) −0.104797 −0.00718055
\(214\) −4.54576 −0.310741
\(215\) 20.4699 1.39604
\(216\) −0.894028 −0.0608309
\(217\) 0 0
\(218\) 7.50517 0.508315
\(219\) −1.20057 −0.0811273
\(220\) 7.05966 0.475962
\(221\) 8.70069 0.585272
\(222\) 0.370810 0.0248872
\(223\) 8.15306 0.545969 0.272985 0.962018i \(-0.411989\pi\)
0.272985 + 0.962018i \(0.411989\pi\)
\(224\) 0 0
\(225\) 6.90432 0.460288
\(226\) 14.2326 0.946738
\(227\) −15.3046 −1.01580 −0.507902 0.861415i \(-0.669579\pi\)
−0.507902 + 0.861415i \(0.669579\pi\)
\(228\) 0.634238 0.0420034
\(229\) −14.2977 −0.944819 −0.472409 0.881379i \(-0.656616\pi\)
−0.472409 + 0.881379i \(0.656616\pi\)
\(230\) −5.28884 −0.348736
\(231\) 0 0
\(232\) 3.58715 0.235508
\(233\) 16.7256 1.09573 0.547866 0.836566i \(-0.315440\pi\)
0.547866 + 0.836566i \(0.315440\pi\)
\(234\) −3.84641 −0.251448
\(235\) 7.33256 0.478323
\(236\) 6.37900 0.415237
\(237\) 0.149562 0.00971511
\(238\) 0 0
\(239\) −6.83839 −0.442339 −0.221169 0.975235i \(-0.570987\pi\)
−0.221169 + 0.975235i \(0.570987\pi\)
\(240\) 0.244902 0.0158084
\(241\) −6.57847 −0.423757 −0.211878 0.977296i \(-0.567958\pi\)
−0.211878 + 0.977296i \(0.567958\pi\)
\(242\) 7.58777 0.487760
\(243\) 3.99811 0.256479
\(244\) −1.55958 −0.0998420
\(245\) 0 0
\(246\) −0.344598 −0.0219708
\(247\) 5.47791 0.348551
\(248\) −10.4431 −0.663140
\(249\) −0.247839 −0.0157061
\(250\) −11.9841 −0.757942
\(251\) 0.450755 0.0284514 0.0142257 0.999899i \(-0.495472\pi\)
0.0142257 + 0.999899i \(0.495472\pi\)
\(252\) 0 0
\(253\) −13.9253 −0.875474
\(254\) 3.00737 0.188699
\(255\) 1.64953 0.103298
\(256\) 1.00000 0.0625000
\(257\) 27.4267 1.71083 0.855414 0.517944i \(-0.173303\pi\)
0.855414 + 0.517944i \(0.173303\pi\)
\(258\) 1.86968 0.116401
\(259\) 0 0
\(260\) 2.11522 0.131180
\(261\) −10.6812 −0.661150
\(262\) −3.25012 −0.200793
\(263\) 30.2619 1.86603 0.933015 0.359837i \(-0.117168\pi\)
0.933015 + 0.359837i \(0.117168\pi\)
\(264\) 0.644815 0.0396856
\(265\) 2.08906 0.128330
\(266\) 0 0
\(267\) −0.681272 −0.0416932
\(268\) −1.37043 −0.0837124
\(269\) −3.83647 −0.233914 −0.116957 0.993137i \(-0.537314\pi\)
−0.116957 + 0.993137i \(0.537314\pi\)
\(270\) −1.46393 −0.0890922
\(271\) 2.19360 0.133252 0.0666258 0.997778i \(-0.478777\pi\)
0.0666258 + 0.997778i \(0.478777\pi\)
\(272\) 6.73549 0.408399
\(273\) 0 0
\(274\) 9.17429 0.554239
\(275\) −9.99686 −0.602833
\(276\) −0.483072 −0.0290775
\(277\) 13.9553 0.838490 0.419245 0.907873i \(-0.362295\pi\)
0.419245 + 0.907873i \(0.362295\pi\)
\(278\) −0.547234 −0.0328209
\(279\) 31.0958 1.86166
\(280\) 0 0
\(281\) 13.6254 0.812823 0.406412 0.913690i \(-0.366780\pi\)
0.406412 + 0.913690i \(0.366780\pi\)
\(282\) 0.669741 0.0398825
\(283\) 2.20731 0.131211 0.0656055 0.997846i \(-0.479102\pi\)
0.0656055 + 0.997846i \(0.479102\pi\)
\(284\) −0.700690 −0.0415783
\(285\) 1.03854 0.0615177
\(286\) 5.56927 0.329318
\(287\) 0 0
\(288\) −2.97763 −0.175459
\(289\) 28.3668 1.66864
\(290\) 5.87381 0.344922
\(291\) −1.68114 −0.0985504
\(292\) −8.02726 −0.469760
\(293\) −0.387196 −0.0226203 −0.0113101 0.999936i \(-0.503600\pi\)
−0.0113101 + 0.999936i \(0.503600\pi\)
\(294\) 0 0
\(295\) 10.4453 0.608152
\(296\) 2.47930 0.144107
\(297\) −3.85447 −0.223659
\(298\) 3.78328 0.219160
\(299\) −4.17229 −0.241290
\(300\) −0.346794 −0.0200222
\(301\) 0 0
\(302\) 10.6845 0.614823
\(303\) 1.36672 0.0785161
\(304\) 4.24063 0.243217
\(305\) −2.55375 −0.146227
\(306\) −20.0558 −1.14651
\(307\) −28.7476 −1.64071 −0.820356 0.571853i \(-0.806225\pi\)
−0.820356 + 0.571853i \(0.806225\pi\)
\(308\) 0 0
\(309\) −1.67538 −0.0953093
\(310\) −17.1002 −0.971227
\(311\) 21.0553 1.19394 0.596969 0.802265i \(-0.296372\pi\)
0.596969 + 0.802265i \(0.296372\pi\)
\(312\) 0.193200 0.0109378
\(313\) −15.1952 −0.858885 −0.429442 0.903094i \(-0.641290\pi\)
−0.429442 + 0.903094i \(0.641290\pi\)
\(314\) 3.15493 0.178043
\(315\) 0 0
\(316\) 1.00000 0.0562544
\(317\) 11.5366 0.647959 0.323979 0.946064i \(-0.394979\pi\)
0.323979 + 0.946064i \(0.394979\pi\)
\(318\) 0.190810 0.0107001
\(319\) 15.4655 0.865899
\(320\) 1.63746 0.0915367
\(321\) −0.679873 −0.0379468
\(322\) 0 0
\(323\) 28.5627 1.58927
\(324\) 8.79918 0.488843
\(325\) −2.99526 −0.166147
\(326\) −13.8450 −0.766803
\(327\) 1.12249 0.0620739
\(328\) −2.30405 −0.127220
\(329\) 0 0
\(330\) 1.05586 0.0581231
\(331\) −11.3004 −0.621129 −0.310564 0.950552i \(-0.600518\pi\)
−0.310564 + 0.950552i \(0.600518\pi\)
\(332\) −1.65710 −0.0909449
\(333\) −7.38245 −0.404556
\(334\) 15.6896 0.858498
\(335\) −2.24402 −0.122604
\(336\) 0 0
\(337\) −26.5410 −1.44578 −0.722890 0.690963i \(-0.757187\pi\)
−0.722890 + 0.690963i \(0.757187\pi\)
\(338\) −11.3313 −0.616343
\(339\) 2.12866 0.115613
\(340\) 11.0291 0.598136
\(341\) −45.0241 −2.43819
\(342\) −12.6270 −0.682792
\(343\) 0 0
\(344\) 12.5010 0.674010
\(345\) −0.791011 −0.0425866
\(346\) −5.18749 −0.278881
\(347\) 2.28670 0.122757 0.0613783 0.998115i \(-0.480450\pi\)
0.0613783 + 0.998115i \(0.480450\pi\)
\(348\) 0.536502 0.0287595
\(349\) 13.3598 0.715131 0.357566 0.933888i \(-0.383607\pi\)
0.357566 + 0.933888i \(0.383607\pi\)
\(350\) 0 0
\(351\) −1.15488 −0.0616427
\(352\) 4.31135 0.229796
\(353\) −23.6970 −1.26126 −0.630632 0.776082i \(-0.717204\pi\)
−0.630632 + 0.776082i \(0.717204\pi\)
\(354\) 0.954057 0.0507076
\(355\) −1.14735 −0.0608950
\(356\) −4.55511 −0.241420
\(357\) 0 0
\(358\) 22.3348 1.18043
\(359\) 9.21369 0.486280 0.243140 0.969991i \(-0.421823\pi\)
0.243140 + 0.969991i \(0.421823\pi\)
\(360\) −4.87575 −0.256975
\(361\) −1.01705 −0.0535287
\(362\) −3.96844 −0.208576
\(363\) 1.13484 0.0595638
\(364\) 0 0
\(365\) −13.1443 −0.688004
\(366\) −0.233255 −0.0121924
\(367\) −6.85127 −0.357633 −0.178817 0.983882i \(-0.557227\pi\)
−0.178817 + 0.983882i \(0.557227\pi\)
\(368\) −3.22991 −0.168371
\(369\) 6.86061 0.357149
\(370\) 4.05976 0.211057
\(371\) 0 0
\(372\) −1.56190 −0.0809807
\(373\) 11.0110 0.570129 0.285064 0.958508i \(-0.407985\pi\)
0.285064 + 0.958508i \(0.407985\pi\)
\(374\) 29.0391 1.50157
\(375\) −1.79237 −0.0925576
\(376\) 4.47801 0.230936
\(377\) 4.63376 0.238651
\(378\) 0 0
\(379\) 11.0021 0.565140 0.282570 0.959247i \(-0.408813\pi\)
0.282570 + 0.959247i \(0.408813\pi\)
\(380\) 6.94386 0.356213
\(381\) 0.449790 0.0230434
\(382\) −9.93970 −0.508559
\(383\) −26.2214 −1.33985 −0.669927 0.742427i \(-0.733674\pi\)
−0.669927 + 0.742427i \(0.733674\pi\)
\(384\) 0.149562 0.00763231
\(385\) 0 0
\(386\) 7.12634 0.362721
\(387\) −37.2234 −1.89217
\(388\) −11.2404 −0.570646
\(389\) −4.14765 −0.210294 −0.105147 0.994457i \(-0.533531\pi\)
−0.105147 + 0.994457i \(0.533531\pi\)
\(390\) 0.316356 0.0160193
\(391\) −21.7550 −1.10020
\(392\) 0 0
\(393\) −0.486096 −0.0245203
\(394\) −13.9000 −0.700273
\(395\) 1.63746 0.0823895
\(396\) −12.8376 −0.645115
\(397\) 5.18688 0.260322 0.130161 0.991493i \(-0.458451\pi\)
0.130161 + 0.991493i \(0.458451\pi\)
\(398\) 16.8913 0.846686
\(399\) 0 0
\(400\) −2.31873 −0.115936
\(401\) −0.357823 −0.0178688 −0.00893441 0.999960i \(-0.502844\pi\)
−0.00893441 + 0.999960i \(0.502844\pi\)
\(402\) −0.204965 −0.0102227
\(403\) −13.4901 −0.671990
\(404\) 9.13815 0.454640
\(405\) 14.4083 0.715954
\(406\) 0 0
\(407\) 10.6892 0.529842
\(408\) 1.00737 0.0498725
\(409\) −24.7058 −1.22162 −0.610810 0.791777i \(-0.709156\pi\)
−0.610810 + 0.791777i \(0.709156\pi\)
\(410\) −3.77278 −0.186325
\(411\) 1.37213 0.0676821
\(412\) −11.2019 −0.551879
\(413\) 0 0
\(414\) 9.61747 0.472673
\(415\) −2.71343 −0.133197
\(416\) 1.29177 0.0633341
\(417\) −0.0818454 −0.00400799
\(418\) 18.2829 0.894244
\(419\) 2.91163 0.142243 0.0711213 0.997468i \(-0.477342\pi\)
0.0711213 + 0.997468i \(0.477342\pi\)
\(420\) 0 0
\(421\) 7.11481 0.346754 0.173377 0.984855i \(-0.444532\pi\)
0.173377 + 0.984855i \(0.444532\pi\)
\(422\) −5.45746 −0.265665
\(423\) −13.3339 −0.648314
\(424\) 1.27579 0.0619580
\(425\) −15.6178 −0.757573
\(426\) −0.104797 −0.00507742
\(427\) 0 0
\(428\) −4.54576 −0.219727
\(429\) 0.832952 0.0402153
\(430\) 20.4699 0.987146
\(431\) 23.3100 1.12280 0.561402 0.827543i \(-0.310262\pi\)
0.561402 + 0.827543i \(0.310262\pi\)
\(432\) −0.894028 −0.0430139
\(433\) −32.1346 −1.54429 −0.772145 0.635446i \(-0.780816\pi\)
−0.772145 + 0.635446i \(0.780816\pi\)
\(434\) 0 0
\(435\) 0.878499 0.0421208
\(436\) 7.50517 0.359433
\(437\) −13.6968 −0.655209
\(438\) −1.20057 −0.0573657
\(439\) −30.4288 −1.45229 −0.726143 0.687543i \(-0.758689\pi\)
−0.726143 + 0.687543i \(0.758689\pi\)
\(440\) 7.05966 0.336556
\(441\) 0 0
\(442\) 8.70069 0.413850
\(443\) −18.6950 −0.888228 −0.444114 0.895970i \(-0.646481\pi\)
−0.444114 + 0.895970i \(0.646481\pi\)
\(444\) 0.370810 0.0175979
\(445\) −7.45880 −0.353581
\(446\) 8.15306 0.386059
\(447\) 0.565836 0.0267631
\(448\) 0 0
\(449\) 20.5950 0.971939 0.485969 0.873976i \(-0.338467\pi\)
0.485969 + 0.873976i \(0.338467\pi\)
\(450\) 6.90432 0.325473
\(451\) −9.93357 −0.467753
\(452\) 14.2326 0.669445
\(453\) 1.59800 0.0750804
\(454\) −15.3046 −0.718282
\(455\) 0 0
\(456\) 0.634238 0.0297009
\(457\) −18.5056 −0.865657 −0.432828 0.901476i \(-0.642484\pi\)
−0.432828 + 0.901476i \(0.642484\pi\)
\(458\) −14.2977 −0.668088
\(459\) −6.02171 −0.281070
\(460\) −5.28884 −0.246594
\(461\) 30.1943 1.40629 0.703143 0.711048i \(-0.251779\pi\)
0.703143 + 0.711048i \(0.251779\pi\)
\(462\) 0 0
\(463\) 18.8763 0.877256 0.438628 0.898669i \(-0.355465\pi\)
0.438628 + 0.898669i \(0.355465\pi\)
\(464\) 3.58715 0.166529
\(465\) −2.55754 −0.118603
\(466\) 16.7256 0.774799
\(467\) −38.3593 −1.77506 −0.887529 0.460753i \(-0.847580\pi\)
−0.887529 + 0.460753i \(0.847580\pi\)
\(468\) −3.84641 −0.177800
\(469\) 0 0
\(470\) 7.33256 0.338226
\(471\) 0.471858 0.0217421
\(472\) 6.37900 0.293617
\(473\) 53.8963 2.47815
\(474\) 0.149562 0.00686962
\(475\) −9.83287 −0.451163
\(476\) 0 0
\(477\) −3.79884 −0.173937
\(478\) −6.83839 −0.312781
\(479\) 40.5172 1.85128 0.925640 0.378407i \(-0.123528\pi\)
0.925640 + 0.378407i \(0.123528\pi\)
\(480\) 0.244902 0.0111782
\(481\) 3.20269 0.146030
\(482\) −6.57847 −0.299641
\(483\) 0 0
\(484\) 7.58777 0.344899
\(485\) −18.4057 −0.835762
\(486\) 3.99811 0.181358
\(487\) 13.2186 0.598993 0.299496 0.954097i \(-0.403181\pi\)
0.299496 + 0.954097i \(0.403181\pi\)
\(488\) −1.55958 −0.0705990
\(489\) −2.07069 −0.0936397
\(490\) 0 0
\(491\) −4.37529 −0.197454 −0.0987270 0.995115i \(-0.531477\pi\)
−0.0987270 + 0.995115i \(0.531477\pi\)
\(492\) −0.344598 −0.0155357
\(493\) 24.1612 1.08817
\(494\) 5.47791 0.246463
\(495\) −21.0211 −0.944827
\(496\) −10.4431 −0.468911
\(497\) 0 0
\(498\) −0.247839 −0.0111059
\(499\) −14.9041 −0.667198 −0.333599 0.942715i \(-0.608263\pi\)
−0.333599 + 0.942715i \(0.608263\pi\)
\(500\) −11.9841 −0.535946
\(501\) 2.34657 0.104837
\(502\) 0.450755 0.0201182
\(503\) −17.1623 −0.765228 −0.382614 0.923908i \(-0.624976\pi\)
−0.382614 + 0.923908i \(0.624976\pi\)
\(504\) 0 0
\(505\) 14.9634 0.665860
\(506\) −13.9253 −0.619054
\(507\) −1.69474 −0.0752660
\(508\) 3.00737 0.133431
\(509\) 24.1821 1.07185 0.535927 0.844264i \(-0.319962\pi\)
0.535927 + 0.844264i \(0.319962\pi\)
\(510\) 1.64953 0.0730426
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −3.79124 −0.167387
\(514\) 27.4267 1.20974
\(515\) −18.3427 −0.808275
\(516\) 1.86968 0.0823081
\(517\) 19.3063 0.849089
\(518\) 0 0
\(519\) −0.775852 −0.0340561
\(520\) 2.11522 0.0927584
\(521\) −9.44885 −0.413962 −0.206981 0.978345i \(-0.566364\pi\)
−0.206981 + 0.978345i \(0.566364\pi\)
\(522\) −10.6812 −0.467503
\(523\) 29.5378 1.29160 0.645798 0.763508i \(-0.276525\pi\)
0.645798 + 0.763508i \(0.276525\pi\)
\(524\) −3.25012 −0.141982
\(525\) 0 0
\(526\) 30.2619 1.31948
\(527\) −70.3396 −3.06404
\(528\) 0.644815 0.0280620
\(529\) −12.5677 −0.546422
\(530\) 2.08906 0.0907429
\(531\) −18.9943 −0.824283
\(532\) 0 0
\(533\) −2.97630 −0.128918
\(534\) −0.681272 −0.0294815
\(535\) −7.44349 −0.321810
\(536\) −1.37043 −0.0591936
\(537\) 3.34044 0.144151
\(538\) −3.83647 −0.165402
\(539\) 0 0
\(540\) −1.46393 −0.0629977
\(541\) −29.2741 −1.25859 −0.629296 0.777166i \(-0.716657\pi\)
−0.629296 + 0.777166i \(0.716657\pi\)
\(542\) 2.19360 0.0942231
\(543\) −0.593528 −0.0254707
\(544\) 6.73549 0.288782
\(545\) 12.2894 0.526421
\(546\) 0 0
\(547\) −44.3494 −1.89625 −0.948123 0.317905i \(-0.897021\pi\)
−0.948123 + 0.317905i \(0.897021\pi\)
\(548\) 9.17429 0.391906
\(549\) 4.64386 0.198195
\(550\) −9.99686 −0.426267
\(551\) 15.2118 0.648043
\(552\) −0.483072 −0.0205609
\(553\) 0 0
\(554\) 13.9553 0.592902
\(555\) 0.607187 0.0257736
\(556\) −0.547234 −0.0232079
\(557\) 22.2992 0.944848 0.472424 0.881371i \(-0.343379\pi\)
0.472424 + 0.881371i \(0.343379\pi\)
\(558\) 31.0958 1.31639
\(559\) 16.1484 0.683005
\(560\) 0 0
\(561\) 4.34315 0.183368
\(562\) 13.6254 0.574753
\(563\) −22.5456 −0.950183 −0.475091 0.879936i \(-0.657585\pi\)
−0.475091 + 0.879936i \(0.657585\pi\)
\(564\) 0.669741 0.0282012
\(565\) 23.3053 0.980461
\(566\) 2.20731 0.0927802
\(567\) 0 0
\(568\) −0.700690 −0.0294003
\(569\) −39.4077 −1.65205 −0.826027 0.563630i \(-0.809404\pi\)
−0.826027 + 0.563630i \(0.809404\pi\)
\(570\) 1.03854 0.0434996
\(571\) −13.3566 −0.558958 −0.279479 0.960152i \(-0.590162\pi\)
−0.279479 + 0.960152i \(0.590162\pi\)
\(572\) 5.56927 0.232863
\(573\) −1.48660 −0.0621038
\(574\) 0 0
\(575\) 7.48928 0.312324
\(576\) −2.97763 −0.124068
\(577\) −34.8193 −1.44955 −0.724774 0.688987i \(-0.758056\pi\)
−0.724774 + 0.688987i \(0.758056\pi\)
\(578\) 28.3668 1.17990
\(579\) 1.06583 0.0442944
\(580\) 5.87381 0.243897
\(581\) 0 0
\(582\) −1.68114 −0.0696856
\(583\) 5.50040 0.227803
\(584\) −8.02726 −0.332170
\(585\) −6.29834 −0.260404
\(586\) −0.387196 −0.0159949
\(587\) −37.5665 −1.55054 −0.775268 0.631633i \(-0.782385\pi\)
−0.775268 + 0.631633i \(0.782385\pi\)
\(588\) 0 0
\(589\) −44.2855 −1.82475
\(590\) 10.4453 0.430028
\(591\) −2.07892 −0.0855153
\(592\) 2.47930 0.101899
\(593\) 3.53217 0.145049 0.0725245 0.997367i \(-0.476894\pi\)
0.0725245 + 0.997367i \(0.476894\pi\)
\(594\) −3.85447 −0.158151
\(595\) 0 0
\(596\) 3.78328 0.154969
\(597\) 2.52631 0.103395
\(598\) −4.17229 −0.170618
\(599\) 3.56657 0.145726 0.0728630 0.997342i \(-0.476786\pi\)
0.0728630 + 0.997342i \(0.476786\pi\)
\(600\) −0.346794 −0.0141578
\(601\) 29.5166 1.20401 0.602003 0.798494i \(-0.294370\pi\)
0.602003 + 0.798494i \(0.294370\pi\)
\(602\) 0 0
\(603\) 4.08064 0.166176
\(604\) 10.6845 0.434746
\(605\) 12.4247 0.505134
\(606\) 1.36672 0.0555193
\(607\) 15.7275 0.638360 0.319180 0.947694i \(-0.396592\pi\)
0.319180 + 0.947694i \(0.396592\pi\)
\(608\) 4.24063 0.171980
\(609\) 0 0
\(610\) −2.55375 −0.103398
\(611\) 5.78455 0.234018
\(612\) −20.0558 −0.810708
\(613\) 18.6076 0.751556 0.375778 0.926710i \(-0.377376\pi\)
0.375778 + 0.926710i \(0.377376\pi\)
\(614\) −28.7476 −1.16016
\(615\) −0.564266 −0.0227534
\(616\) 0 0
\(617\) −0.478721 −0.0192726 −0.00963629 0.999954i \(-0.503067\pi\)
−0.00963629 + 0.999954i \(0.503067\pi\)
\(618\) −1.67538 −0.0673938
\(619\) 45.1622 1.81522 0.907611 0.419812i \(-0.137904\pi\)
0.907611 + 0.419812i \(0.137904\pi\)
\(620\) −17.1002 −0.686761
\(621\) 2.88763 0.115876
\(622\) 21.0553 0.844241
\(623\) 0 0
\(624\) 0.193200 0.00773418
\(625\) −8.02986 −0.321194
\(626\) −15.1952 −0.607323
\(627\) 2.73442 0.109202
\(628\) 3.15493 0.125895
\(629\) 16.6993 0.665846
\(630\) 0 0
\(631\) 0.723984 0.0288214 0.0144107 0.999896i \(-0.495413\pi\)
0.0144107 + 0.999896i \(0.495413\pi\)
\(632\) 1.00000 0.0397779
\(633\) −0.816230 −0.0324422
\(634\) 11.5366 0.458176
\(635\) 4.92445 0.195421
\(636\) 0.190810 0.00756613
\(637\) 0 0
\(638\) 15.4655 0.612283
\(639\) 2.08640 0.0825365
\(640\) 1.63746 0.0647262
\(641\) −4.18974 −0.165485 −0.0827423 0.996571i \(-0.526368\pi\)
−0.0827423 + 0.996571i \(0.526368\pi\)
\(642\) −0.679873 −0.0268325
\(643\) 0.452029 0.0178263 0.00891315 0.999960i \(-0.497163\pi\)
0.00891315 + 0.999960i \(0.497163\pi\)
\(644\) 0 0
\(645\) 3.06152 0.120547
\(646\) 28.5627 1.12379
\(647\) −1.93802 −0.0761914 −0.0380957 0.999274i \(-0.512129\pi\)
−0.0380957 + 0.999274i \(0.512129\pi\)
\(648\) 8.79918 0.345664
\(649\) 27.5021 1.07955
\(650\) −2.99526 −0.117484
\(651\) 0 0
\(652\) −13.8450 −0.542212
\(653\) −16.5609 −0.648079 −0.324040 0.946044i \(-0.605041\pi\)
−0.324040 + 0.946044i \(0.605041\pi\)
\(654\) 1.12249 0.0438928
\(655\) −5.32195 −0.207946
\(656\) −2.30405 −0.0899580
\(657\) 23.9022 0.932514
\(658\) 0 0
\(659\) −43.2954 −1.68655 −0.843275 0.537482i \(-0.819376\pi\)
−0.843275 + 0.537482i \(0.819376\pi\)
\(660\) 1.05586 0.0410993
\(661\) 36.2939 1.41167 0.705835 0.708376i \(-0.250572\pi\)
0.705835 + 0.708376i \(0.250572\pi\)
\(662\) −11.3004 −0.439204
\(663\) 1.30129 0.0505381
\(664\) −1.65710 −0.0643078
\(665\) 0 0
\(666\) −7.38245 −0.286064
\(667\) −11.5862 −0.448618
\(668\) 15.6896 0.607050
\(669\) 1.21939 0.0471443
\(670\) −2.24402 −0.0866942
\(671\) −6.72391 −0.259574
\(672\) 0 0
\(673\) 14.3005 0.551244 0.275622 0.961266i \(-0.411116\pi\)
0.275622 + 0.961266i \(0.411116\pi\)
\(674\) −26.5410 −1.02232
\(675\) 2.07301 0.0797901
\(676\) −11.3313 −0.435821
\(677\) −34.3223 −1.31911 −0.659556 0.751655i \(-0.729256\pi\)
−0.659556 + 0.751655i \(0.729256\pi\)
\(678\) 2.12866 0.0817506
\(679\) 0 0
\(680\) 11.0291 0.422946
\(681\) −2.28899 −0.0877145
\(682\) −45.0241 −1.72406
\(683\) 24.6089 0.941634 0.470817 0.882231i \(-0.343959\pi\)
0.470817 + 0.882231i \(0.343959\pi\)
\(684\) −12.6270 −0.482807
\(685\) 15.0225 0.573981
\(686\) 0 0
\(687\) −2.13840 −0.0815849
\(688\) 12.5010 0.476597
\(689\) 1.64803 0.0627849
\(690\) −0.791011 −0.0301133
\(691\) 6.74408 0.256557 0.128279 0.991738i \(-0.459055\pi\)
0.128279 + 0.991738i \(0.459055\pi\)
\(692\) −5.18749 −0.197199
\(693\) 0 0
\(694\) 2.28670 0.0868020
\(695\) −0.896072 −0.0339900
\(696\) 0.536502 0.0203360
\(697\) −15.5189 −0.587820
\(698\) 13.3598 0.505674
\(699\) 2.50152 0.0946162
\(700\) 0 0
\(701\) −31.5348 −1.19105 −0.595526 0.803336i \(-0.703056\pi\)
−0.595526 + 0.803336i \(0.703056\pi\)
\(702\) −1.15488 −0.0435880
\(703\) 10.5138 0.396536
\(704\) 4.31135 0.162490
\(705\) 1.09667 0.0413031
\(706\) −23.6970 −0.891848
\(707\) 0 0
\(708\) 0.954057 0.0358557
\(709\) 45.1319 1.69496 0.847482 0.530824i \(-0.178118\pi\)
0.847482 + 0.530824i \(0.178118\pi\)
\(710\) −1.14735 −0.0430593
\(711\) −2.97763 −0.111670
\(712\) −4.55511 −0.170710
\(713\) 33.7304 1.26321
\(714\) 0 0
\(715\) 9.11945 0.341048
\(716\) 22.3348 0.834691
\(717\) −1.02276 −0.0381959
\(718\) 9.21369 0.343852
\(719\) 38.8023 1.44708 0.723542 0.690281i \(-0.242513\pi\)
0.723542 + 0.690281i \(0.242513\pi\)
\(720\) −4.87575 −0.181708
\(721\) 0 0
\(722\) −1.01705 −0.0378505
\(723\) −0.983891 −0.0365913
\(724\) −3.96844 −0.147486
\(725\) −8.31762 −0.308909
\(726\) 1.13484 0.0421180
\(727\) −44.4176 −1.64736 −0.823678 0.567057i \(-0.808082\pi\)
−0.823678 + 0.567057i \(0.808082\pi\)
\(728\) 0 0
\(729\) −25.7996 −0.955540
\(730\) −13.1443 −0.486493
\(731\) 84.2005 3.11427
\(732\) −0.233255 −0.00862134
\(733\) −44.4466 −1.64167 −0.820837 0.571162i \(-0.806493\pi\)
−0.820837 + 0.571162i \(0.806493\pi\)
\(734\) −6.85127 −0.252885
\(735\) 0 0
\(736\) −3.22991 −0.119056
\(737\) −5.90841 −0.217639
\(738\) 6.86061 0.252542
\(739\) −12.8750 −0.473615 −0.236807 0.971557i \(-0.576101\pi\)
−0.236807 + 0.971557i \(0.576101\pi\)
\(740\) 4.05976 0.149240
\(741\) 0.819288 0.0300973
\(742\) 0 0
\(743\) 43.3246 1.58943 0.794713 0.606986i \(-0.207622\pi\)
0.794713 + 0.606986i \(0.207622\pi\)
\(744\) −1.56190 −0.0572620
\(745\) 6.19497 0.226966
\(746\) 11.0110 0.403142
\(747\) 4.93422 0.180534
\(748\) 29.0391 1.06177
\(749\) 0 0
\(750\) −1.79237 −0.0654481
\(751\) 1.84223 0.0672238 0.0336119 0.999435i \(-0.489299\pi\)
0.0336119 + 0.999435i \(0.489299\pi\)
\(752\) 4.47801 0.163296
\(753\) 0.0674158 0.00245677
\(754\) 4.63376 0.168752
\(755\) 17.4954 0.636723
\(756\) 0 0
\(757\) 2.80471 0.101939 0.0509694 0.998700i \(-0.483769\pi\)
0.0509694 + 0.998700i \(0.483769\pi\)
\(758\) 11.0021 0.399615
\(759\) −2.08269 −0.0755970
\(760\) 6.94386 0.251880
\(761\) −51.6534 −1.87243 −0.936217 0.351424i \(-0.885698\pi\)
−0.936217 + 0.351424i \(0.885698\pi\)
\(762\) 0.449790 0.0162942
\(763\) 0 0
\(764\) −9.93970 −0.359606
\(765\) −32.8406 −1.18735
\(766\) −26.2214 −0.947419
\(767\) 8.24018 0.297536
\(768\) 0.149562 0.00539686
\(769\) −49.1469 −1.77228 −0.886141 0.463416i \(-0.846623\pi\)
−0.886141 + 0.463416i \(0.846623\pi\)
\(770\) 0 0
\(771\) 4.10199 0.147730
\(772\) 7.12634 0.256483
\(773\) 35.9481 1.29296 0.646482 0.762929i \(-0.276239\pi\)
0.646482 + 0.762929i \(0.276239\pi\)
\(774\) −37.2234 −1.33797
\(775\) 24.2148 0.869821
\(776\) −11.2404 −0.403508
\(777\) 0 0
\(778\) −4.14765 −0.148701
\(779\) −9.77062 −0.350069
\(780\) 0.316356 0.0113274
\(781\) −3.02092 −0.108097
\(782\) −21.7550 −0.777958
\(783\) −3.20701 −0.114609
\(784\) 0 0
\(785\) 5.16607 0.184385
\(786\) −0.486096 −0.0173385
\(787\) 10.4375 0.372056 0.186028 0.982544i \(-0.440438\pi\)
0.186028 + 0.982544i \(0.440438\pi\)
\(788\) −13.9000 −0.495168
\(789\) 4.52604 0.161131
\(790\) 1.63746 0.0582582
\(791\) 0 0
\(792\) −12.8376 −0.456165
\(793\) −2.01462 −0.0715412
\(794\) 5.18688 0.184075
\(795\) 0.312444 0.0110813
\(796\) 16.8913 0.598698
\(797\) 11.9748 0.424169 0.212084 0.977251i \(-0.431975\pi\)
0.212084 + 0.977251i \(0.431975\pi\)
\(798\) 0 0
\(799\) 30.1616 1.06704
\(800\) −2.31873 −0.0819794
\(801\) 13.5634 0.479240
\(802\) −0.357823 −0.0126352
\(803\) −34.6083 −1.22130
\(804\) −0.204965 −0.00722854
\(805\) 0 0
\(806\) −13.4901 −0.475169
\(807\) −0.573791 −0.0201984
\(808\) 9.13815 0.321479
\(809\) −14.6377 −0.514633 −0.257316 0.966327i \(-0.582838\pi\)
−0.257316 + 0.966327i \(0.582838\pi\)
\(810\) 14.4083 0.506256
\(811\) −19.8307 −0.696350 −0.348175 0.937430i \(-0.613199\pi\)
−0.348175 + 0.937430i \(0.613199\pi\)
\(812\) 0 0
\(813\) 0.328079 0.0115062
\(814\) 10.6892 0.374655
\(815\) −22.6706 −0.794117
\(816\) 1.00737 0.0352652
\(817\) 53.0122 1.85466
\(818\) −24.7058 −0.863816
\(819\) 0 0
\(820\) −3.77278 −0.131751
\(821\) 2.40469 0.0839242 0.0419621 0.999119i \(-0.486639\pi\)
0.0419621 + 0.999119i \(0.486639\pi\)
\(822\) 1.37213 0.0478584
\(823\) −18.5096 −0.645205 −0.322602 0.946535i \(-0.604558\pi\)
−0.322602 + 0.946535i \(0.604558\pi\)
\(824\) −11.2019 −0.390237
\(825\) −1.49515 −0.0520545
\(826\) 0 0
\(827\) −9.16475 −0.318690 −0.159345 0.987223i \(-0.550938\pi\)
−0.159345 + 0.987223i \(0.550938\pi\)
\(828\) 9.61747 0.334230
\(829\) −42.3085 −1.46943 −0.734717 0.678374i \(-0.762685\pi\)
−0.734717 + 0.678374i \(0.762685\pi\)
\(830\) −2.71343 −0.0941844
\(831\) 2.08718 0.0724035
\(832\) 1.29177 0.0447840
\(833\) 0 0
\(834\) −0.0818454 −0.00283408
\(835\) 25.6911 0.889078
\(836\) 18.2829 0.632326
\(837\) 9.33645 0.322715
\(838\) 2.91163 0.100581
\(839\) −1.63763 −0.0565373 −0.0282686 0.999600i \(-0.508999\pi\)
−0.0282686 + 0.999600i \(0.508999\pi\)
\(840\) 0 0
\(841\) −16.1324 −0.556289
\(842\) 7.11481 0.245192
\(843\) 2.03784 0.0701871
\(844\) −5.45746 −0.187854
\(845\) −18.5546 −0.638298
\(846\) −13.3339 −0.458427
\(847\) 0 0
\(848\) 1.27579 0.0438109
\(849\) 0.330130 0.0113300
\(850\) −15.6178 −0.535685
\(851\) −8.00793 −0.274508
\(852\) −0.104797 −0.00359027
\(853\) −28.2165 −0.966115 −0.483058 0.875589i \(-0.660474\pi\)
−0.483058 + 0.875589i \(0.660474\pi\)
\(854\) 0 0
\(855\) −20.6763 −0.707113
\(856\) −4.54576 −0.155371
\(857\) −0.731170 −0.0249763 −0.0124881 0.999922i \(-0.503975\pi\)
−0.0124881 + 0.999922i \(0.503975\pi\)
\(858\) 0.832952 0.0284365
\(859\) −51.4071 −1.75399 −0.876994 0.480502i \(-0.840455\pi\)
−0.876994 + 0.480502i \(0.840455\pi\)
\(860\) 20.4699 0.698018
\(861\) 0 0
\(862\) 23.3100 0.793942
\(863\) −36.8177 −1.25329 −0.626644 0.779306i \(-0.715572\pi\)
−0.626644 + 0.779306i \(0.715572\pi\)
\(864\) −0.894028 −0.0304154
\(865\) −8.49429 −0.288815
\(866\) −32.1346 −1.09198
\(867\) 4.24260 0.144086
\(868\) 0 0
\(869\) 4.31135 0.146253
\(870\) 0.878499 0.0297839
\(871\) −1.77028 −0.0599836
\(872\) 7.50517 0.254157
\(873\) 33.4699 1.13278
\(874\) −13.6968 −0.463303
\(875\) 0 0
\(876\) −1.20057 −0.0405636
\(877\) −45.4799 −1.53575 −0.767874 0.640601i \(-0.778685\pi\)
−0.767874 + 0.640601i \(0.778685\pi\)
\(878\) −30.4288 −1.02692
\(879\) −0.0579099 −0.00195325
\(880\) 7.05966 0.237981
\(881\) −47.5733 −1.60278 −0.801392 0.598139i \(-0.795907\pi\)
−0.801392 + 0.598139i \(0.795907\pi\)
\(882\) 0 0
\(883\) −2.49964 −0.0841197 −0.0420599 0.999115i \(-0.513392\pi\)
−0.0420599 + 0.999115i \(0.513392\pi\)
\(884\) 8.70069 0.292636
\(885\) 1.56223 0.0525138
\(886\) −18.6950 −0.628072
\(887\) 40.1880 1.34938 0.674691 0.738101i \(-0.264277\pi\)
0.674691 + 0.738101i \(0.264277\pi\)
\(888\) 0.370810 0.0124436
\(889\) 0 0
\(890\) −7.45880 −0.250020
\(891\) 37.9364 1.27092
\(892\) 8.15306 0.272985
\(893\) 18.9896 0.635462
\(894\) 0.565836 0.0189244
\(895\) 36.5723 1.22248
\(896\) 0 0
\(897\) −0.624017 −0.0208353
\(898\) 20.5950 0.687265
\(899\) −37.4611 −1.24940
\(900\) 6.90432 0.230144
\(901\) 8.59309 0.286277
\(902\) −9.93357 −0.330752
\(903\) 0 0
\(904\) 14.2326 0.473369
\(905\) −6.49815 −0.216006
\(906\) 1.59800 0.0530899
\(907\) 41.7973 1.38786 0.693928 0.720044i \(-0.255879\pi\)
0.693928 + 0.720044i \(0.255879\pi\)
\(908\) −15.3046 −0.507902
\(909\) −27.2101 −0.902500
\(910\) 0 0
\(911\) 29.4658 0.976246 0.488123 0.872775i \(-0.337682\pi\)
0.488123 + 0.872775i \(0.337682\pi\)
\(912\) 0.634238 0.0210017
\(913\) −7.14432 −0.236443
\(914\) −18.5056 −0.612112
\(915\) −0.381945 −0.0126267
\(916\) −14.2977 −0.472409
\(917\) 0 0
\(918\) −6.02171 −0.198746
\(919\) −31.1446 −1.02736 −0.513682 0.857980i \(-0.671719\pi\)
−0.513682 + 0.857980i \(0.671719\pi\)
\(920\) −5.28884 −0.174368
\(921\) −4.29956 −0.141675
\(922\) 30.1943 0.994395
\(923\) −0.905128 −0.0297927
\(924\) 0 0
\(925\) −5.74883 −0.189020
\(926\) 18.8763 0.620314
\(927\) 33.3552 1.09553
\(928\) 3.58715 0.117754
\(929\) 34.6550 1.13699 0.568497 0.822685i \(-0.307525\pi\)
0.568497 + 0.822685i \(0.307525\pi\)
\(930\) −2.55754 −0.0838652
\(931\) 0 0
\(932\) 16.7256 0.547866
\(933\) 3.14908 0.103096
\(934\) −38.3593 −1.25516
\(935\) 47.5503 1.55506
\(936\) −3.84641 −0.125724
\(937\) 1.48968 0.0486658 0.0243329 0.999704i \(-0.492254\pi\)
0.0243329 + 0.999704i \(0.492254\pi\)
\(938\) 0 0
\(939\) −2.27263 −0.0741645
\(940\) 7.33256 0.239162
\(941\) 6.61724 0.215716 0.107858 0.994166i \(-0.465601\pi\)
0.107858 + 0.994166i \(0.465601\pi\)
\(942\) 0.471858 0.0153740
\(943\) 7.44186 0.242340
\(944\) 6.37900 0.207619
\(945\) 0 0
\(946\) 53.8963 1.75232
\(947\) 2.24547 0.0729680 0.0364840 0.999334i \(-0.488384\pi\)
0.0364840 + 0.999334i \(0.488384\pi\)
\(948\) 0.149562 0.00485755
\(949\) −10.3694 −0.336603
\(950\) −9.83287 −0.319020
\(951\) 1.72544 0.0559511
\(952\) 0 0
\(953\) 40.3823 1.30811 0.654056 0.756446i \(-0.273066\pi\)
0.654056 + 0.756446i \(0.273066\pi\)
\(954\) −3.79884 −0.122992
\(955\) −16.2759 −0.526674
\(956\) −6.83839 −0.221169
\(957\) 2.31305 0.0747702
\(958\) 40.5172 1.30905
\(959\) 0 0
\(960\) 0.244902 0.00790418
\(961\) 78.0591 2.51804
\(962\) 3.20269 0.103259
\(963\) 13.5356 0.436178
\(964\) −6.57847 −0.211878
\(965\) 11.6691 0.375641
\(966\) 0 0
\(967\) 23.2845 0.748780 0.374390 0.927271i \(-0.377852\pi\)
0.374390 + 0.927271i \(0.377852\pi\)
\(968\) 7.58777 0.243880
\(969\) 4.27190 0.137233
\(970\) −18.4057 −0.590973
\(971\) 44.3411 1.42297 0.711487 0.702700i \(-0.248022\pi\)
0.711487 + 0.702700i \(0.248022\pi\)
\(972\) 3.99811 0.128239
\(973\) 0 0
\(974\) 13.2186 0.423552
\(975\) −0.447977 −0.0143468
\(976\) −1.55958 −0.0499210
\(977\) −48.1226 −1.53958 −0.769789 0.638298i \(-0.779639\pi\)
−0.769789 + 0.638298i \(0.779639\pi\)
\(978\) −2.07069 −0.0662133
\(979\) −19.6387 −0.627655
\(980\) 0 0
\(981\) −22.3476 −0.713505
\(982\) −4.37529 −0.139621
\(983\) 35.1556 1.12129 0.560644 0.828057i \(-0.310554\pi\)
0.560644 + 0.828057i \(0.310554\pi\)
\(984\) −0.344598 −0.0109854
\(985\) −22.7607 −0.725217
\(986\) 24.1612 0.769449
\(987\) 0 0
\(988\) 5.47791 0.174276
\(989\) −40.3771 −1.28392
\(990\) −21.0211 −0.668094
\(991\) 6.75190 0.214481 0.107241 0.994233i \(-0.465798\pi\)
0.107241 + 0.994233i \(0.465798\pi\)
\(992\) −10.4431 −0.331570
\(993\) −1.69012 −0.0536343
\(994\) 0 0
\(995\) 27.6589 0.876845
\(996\) −0.247839 −0.00785307
\(997\) 10.8209 0.342702 0.171351 0.985210i \(-0.445187\pi\)
0.171351 + 0.985210i \(0.445187\pi\)
\(998\) −14.9041 −0.471780
\(999\) −2.21657 −0.0701291
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7742.2.a.bp.1.7 yes 12
7.6 odd 2 inner 7742.2.a.bp.1.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7742.2.a.bp.1.6 12 7.6 odd 2 inner
7742.2.a.bp.1.7 yes 12 1.1 even 1 trivial