Properties

Label 7742.2.a.bp.1.6
Level $7742$
Weight $2$
Character 7742.1
Self dual yes
Analytic conductor $61.820$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7742,2,Mod(1,7742)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7742.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7742, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7742 = 2 \cdot 7^{2} \cdot 79 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7742.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,12,0,12,0,0,0,12,12,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8201812449\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 24x^{10} + 205x^{8} - 738x^{6} + 1016x^{4} - 380x^{2} + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.149562\) of defining polynomial
Character \(\chi\) \(=\) 7742.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -0.149562 q^{3} +1.00000 q^{4} -1.63746 q^{5} -0.149562 q^{6} +1.00000 q^{8} -2.97763 q^{9} -1.63746 q^{10} +4.31135 q^{11} -0.149562 q^{12} -1.29177 q^{13} +0.244902 q^{15} +1.00000 q^{16} -6.73549 q^{17} -2.97763 q^{18} -4.24063 q^{19} -1.63746 q^{20} +4.31135 q^{22} -3.22991 q^{23} -0.149562 q^{24} -2.31873 q^{25} -1.29177 q^{26} +0.894028 q^{27} +3.58715 q^{29} +0.244902 q^{30} +10.4431 q^{31} +1.00000 q^{32} -0.644815 q^{33} -6.73549 q^{34} -2.97763 q^{36} +2.47930 q^{37} -4.24063 q^{38} +0.193200 q^{39} -1.63746 q^{40} +2.30405 q^{41} +12.5010 q^{43} +4.31135 q^{44} +4.87575 q^{45} -3.22991 q^{46} -4.47801 q^{47} -0.149562 q^{48} -2.31873 q^{50} +1.00737 q^{51} -1.29177 q^{52} +1.27579 q^{53} +0.894028 q^{54} -7.05966 q^{55} +0.634238 q^{57} +3.58715 q^{58} -6.37900 q^{59} +0.244902 q^{60} +1.55958 q^{61} +10.4431 q^{62} +1.00000 q^{64} +2.11522 q^{65} -0.644815 q^{66} -1.37043 q^{67} -6.73549 q^{68} +0.483072 q^{69} -0.700690 q^{71} -2.97763 q^{72} +8.02726 q^{73} +2.47930 q^{74} +0.346794 q^{75} -4.24063 q^{76} +0.193200 q^{78} +1.00000 q^{79} -1.63746 q^{80} +8.79918 q^{81} +2.30405 q^{82} +1.65710 q^{83} +11.0291 q^{85} +12.5010 q^{86} -0.536502 q^{87} +4.31135 q^{88} +4.55511 q^{89} +4.87575 q^{90} -3.22991 q^{92} -1.56190 q^{93} -4.47801 q^{94} +6.94386 q^{95} -0.149562 q^{96} +11.2404 q^{97} -12.8376 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{2} + 12 q^{4} + 12 q^{8} + 12 q^{9} + 12 q^{11} + 8 q^{15} + 12 q^{16} + 12 q^{18} + 12 q^{22} + 16 q^{23} + 24 q^{25} + 12 q^{29} + 8 q^{30} + 12 q^{32} + 12 q^{36} + 16 q^{37} + 28 q^{39}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.149562 −0.0863498 −0.0431749 0.999068i \(-0.513747\pi\)
−0.0431749 + 0.999068i \(0.513747\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.63746 −0.732294 −0.366147 0.930557i \(-0.619323\pi\)
−0.366147 + 0.930557i \(0.619323\pi\)
\(6\) −0.149562 −0.0610585
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −2.97763 −0.992544
\(10\) −1.63746 −0.517810
\(11\) 4.31135 1.29992 0.649961 0.759968i \(-0.274785\pi\)
0.649961 + 0.759968i \(0.274785\pi\)
\(12\) −0.149562 −0.0431749
\(13\) −1.29177 −0.358272 −0.179136 0.983824i \(-0.557330\pi\)
−0.179136 + 0.983824i \(0.557330\pi\)
\(14\) 0 0
\(15\) 0.244902 0.0632334
\(16\) 1.00000 0.250000
\(17\) −6.73549 −1.63360 −0.816798 0.576924i \(-0.804253\pi\)
−0.816798 + 0.576924i \(0.804253\pi\)
\(18\) −2.97763 −0.701834
\(19\) −4.24063 −0.972868 −0.486434 0.873717i \(-0.661703\pi\)
−0.486434 + 0.873717i \(0.661703\pi\)
\(20\) −1.63746 −0.366147
\(21\) 0 0
\(22\) 4.31135 0.919184
\(23\) −3.22991 −0.673482 −0.336741 0.941597i \(-0.609325\pi\)
−0.336741 + 0.941597i \(0.609325\pi\)
\(24\) −0.149562 −0.0305293
\(25\) −2.31873 −0.463746
\(26\) −1.29177 −0.253337
\(27\) 0.894028 0.172056
\(28\) 0 0
\(29\) 3.58715 0.666116 0.333058 0.942906i \(-0.391919\pi\)
0.333058 + 0.942906i \(0.391919\pi\)
\(30\) 0.244902 0.0447128
\(31\) 10.4431 1.87564 0.937821 0.347118i \(-0.112840\pi\)
0.937821 + 0.347118i \(0.112840\pi\)
\(32\) 1.00000 0.176777
\(33\) −0.644815 −0.112248
\(34\) −6.73549 −1.15513
\(35\) 0 0
\(36\) −2.97763 −0.496272
\(37\) 2.47930 0.407595 0.203798 0.979013i \(-0.434672\pi\)
0.203798 + 0.979013i \(0.434672\pi\)
\(38\) −4.24063 −0.687921
\(39\) 0.193200 0.0309367
\(40\) −1.63746 −0.258905
\(41\) 2.30405 0.359832 0.179916 0.983682i \(-0.442417\pi\)
0.179916 + 0.983682i \(0.442417\pi\)
\(42\) 0 0
\(43\) 12.5010 1.90639 0.953194 0.302360i \(-0.0977746\pi\)
0.953194 + 0.302360i \(0.0977746\pi\)
\(44\) 4.31135 0.649961
\(45\) 4.87575 0.726834
\(46\) −3.22991 −0.476224
\(47\) −4.47801 −0.653185 −0.326592 0.945165i \(-0.605900\pi\)
−0.326592 + 0.945165i \(0.605900\pi\)
\(48\) −0.149562 −0.0215874
\(49\) 0 0
\(50\) −2.31873 −0.327918
\(51\) 1.00737 0.141061
\(52\) −1.29177 −0.179136
\(53\) 1.27579 0.175244 0.0876219 0.996154i \(-0.472073\pi\)
0.0876219 + 0.996154i \(0.472073\pi\)
\(54\) 0.894028 0.121662
\(55\) −7.05966 −0.951925
\(56\) 0 0
\(57\) 0.634238 0.0840069
\(58\) 3.58715 0.471015
\(59\) −6.37900 −0.830475 −0.415237 0.909713i \(-0.636301\pi\)
−0.415237 + 0.909713i \(0.636301\pi\)
\(60\) 0.244902 0.0316167
\(61\) 1.55958 0.199684 0.0998420 0.995003i \(-0.468166\pi\)
0.0998420 + 0.995003i \(0.468166\pi\)
\(62\) 10.4431 1.32628
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.11522 0.262360
\(66\) −0.644815 −0.0793713
\(67\) −1.37043 −0.167425 −0.0837124 0.996490i \(-0.526678\pi\)
−0.0837124 + 0.996490i \(0.526678\pi\)
\(68\) −6.73549 −0.816798
\(69\) 0.483072 0.0581550
\(70\) 0 0
\(71\) −0.700690 −0.0831566 −0.0415783 0.999135i \(-0.513239\pi\)
−0.0415783 + 0.999135i \(0.513239\pi\)
\(72\) −2.97763 −0.350917
\(73\) 8.02726 0.939519 0.469760 0.882794i \(-0.344341\pi\)
0.469760 + 0.882794i \(0.344341\pi\)
\(74\) 2.47930 0.288213
\(75\) 0.346794 0.0400443
\(76\) −4.24063 −0.486434
\(77\) 0 0
\(78\) 0.193200 0.0218756
\(79\) 1.00000 0.112509
\(80\) −1.63746 −0.183073
\(81\) 8.79918 0.977687
\(82\) 2.30405 0.254440
\(83\) 1.65710 0.181890 0.0909449 0.995856i \(-0.471011\pi\)
0.0909449 + 0.995856i \(0.471011\pi\)
\(84\) 0 0
\(85\) 11.0291 1.19627
\(86\) 12.5010 1.34802
\(87\) −0.536502 −0.0575190
\(88\) 4.31135 0.459592
\(89\) 4.55511 0.482840 0.241420 0.970421i \(-0.422387\pi\)
0.241420 + 0.970421i \(0.422387\pi\)
\(90\) 4.87575 0.513949
\(91\) 0 0
\(92\) −3.22991 −0.336741
\(93\) −1.56190 −0.161961
\(94\) −4.47801 −0.461871
\(95\) 6.94386 0.712425
\(96\) −0.149562 −0.0152646
\(97\) 11.2404 1.14129 0.570646 0.821196i \(-0.306693\pi\)
0.570646 + 0.821196i \(0.306693\pi\)
\(98\) 0 0
\(99\) −12.8376 −1.29023
\(100\) −2.31873 −0.231873
\(101\) −9.13815 −0.909280 −0.454640 0.890675i \(-0.650232\pi\)
−0.454640 + 0.890675i \(0.650232\pi\)
\(102\) 1.00737 0.0997449
\(103\) 11.2019 1.10376 0.551879 0.833924i \(-0.313911\pi\)
0.551879 + 0.833924i \(0.313911\pi\)
\(104\) −1.29177 −0.126668
\(105\) 0 0
\(106\) 1.27579 0.123916
\(107\) −4.54576 −0.439455 −0.219727 0.975561i \(-0.570517\pi\)
−0.219727 + 0.975561i \(0.570517\pi\)
\(108\) 0.894028 0.0860278
\(109\) 7.50517 0.718865 0.359433 0.933171i \(-0.382970\pi\)
0.359433 + 0.933171i \(0.382970\pi\)
\(110\) −7.05966 −0.673113
\(111\) −0.370810 −0.0351957
\(112\) 0 0
\(113\) 14.2326 1.33889 0.669445 0.742861i \(-0.266532\pi\)
0.669445 + 0.742861i \(0.266532\pi\)
\(114\) 0.634238 0.0594018
\(115\) 5.28884 0.493187
\(116\) 3.58715 0.333058
\(117\) 3.84641 0.355601
\(118\) −6.37900 −0.587234
\(119\) 0 0
\(120\) 0.244902 0.0223564
\(121\) 7.58777 0.689797
\(122\) 1.55958 0.141198
\(123\) −0.344598 −0.0310714
\(124\) 10.4431 0.937821
\(125\) 11.9841 1.07189
\(126\) 0 0
\(127\) 3.00737 0.266861 0.133431 0.991058i \(-0.457401\pi\)
0.133431 + 0.991058i \(0.457401\pi\)
\(128\) 1.00000 0.0883883
\(129\) −1.86968 −0.164616
\(130\) 2.11522 0.185517
\(131\) 3.25012 0.283965 0.141982 0.989869i \(-0.454652\pi\)
0.141982 + 0.989869i \(0.454652\pi\)
\(132\) −0.644815 −0.0561240
\(133\) 0 0
\(134\) −1.37043 −0.118387
\(135\) −1.46393 −0.125995
\(136\) −6.73549 −0.577563
\(137\) 9.17429 0.783813 0.391906 0.920005i \(-0.371816\pi\)
0.391906 + 0.920005i \(0.371816\pi\)
\(138\) 0.483072 0.0411218
\(139\) 0.547234 0.0464157 0.0232079 0.999731i \(-0.492612\pi\)
0.0232079 + 0.999731i \(0.492612\pi\)
\(140\) 0 0
\(141\) 0.669741 0.0564023
\(142\) −0.700690 −0.0588006
\(143\) −5.56927 −0.465726
\(144\) −2.97763 −0.248136
\(145\) −5.87381 −0.487793
\(146\) 8.02726 0.664341
\(147\) 0 0
\(148\) 2.47930 0.203798
\(149\) 3.78328 0.309939 0.154969 0.987919i \(-0.450472\pi\)
0.154969 + 0.987919i \(0.450472\pi\)
\(150\) 0.346794 0.0283156
\(151\) 10.6845 0.869491 0.434746 0.900553i \(-0.356838\pi\)
0.434746 + 0.900553i \(0.356838\pi\)
\(152\) −4.24063 −0.343961
\(153\) 20.0558 1.62142
\(154\) 0 0
\(155\) −17.1002 −1.37352
\(156\) 0.193200 0.0154684
\(157\) −3.15493 −0.251791 −0.125895 0.992044i \(-0.540180\pi\)
−0.125895 + 0.992044i \(0.540180\pi\)
\(158\) 1.00000 0.0795557
\(159\) −0.190810 −0.0151323
\(160\) −1.63746 −0.129452
\(161\) 0 0
\(162\) 8.79918 0.691329
\(163\) −13.8450 −1.08442 −0.542212 0.840242i \(-0.682413\pi\)
−0.542212 + 0.840242i \(0.682413\pi\)
\(164\) 2.30405 0.179916
\(165\) 1.05586 0.0821985
\(166\) 1.65710 0.128616
\(167\) −15.6896 −1.21410 −0.607050 0.794664i \(-0.707647\pi\)
−0.607050 + 0.794664i \(0.707647\pi\)
\(168\) 0 0
\(169\) −11.3313 −0.871641
\(170\) 11.0291 0.845892
\(171\) 12.6270 0.965614
\(172\) 12.5010 0.953194
\(173\) 5.18749 0.394397 0.197199 0.980364i \(-0.436816\pi\)
0.197199 + 0.980364i \(0.436816\pi\)
\(174\) −0.536502 −0.0406721
\(175\) 0 0
\(176\) 4.31135 0.324980
\(177\) 0.954057 0.0717113
\(178\) 4.55511 0.341420
\(179\) 22.3348 1.66938 0.834691 0.550719i \(-0.185646\pi\)
0.834691 + 0.550719i \(0.185646\pi\)
\(180\) 4.87575 0.363417
\(181\) 3.96844 0.294972 0.147486 0.989064i \(-0.452882\pi\)
0.147486 + 0.989064i \(0.452882\pi\)
\(182\) 0 0
\(183\) −0.233255 −0.0172427
\(184\) −3.22991 −0.238112
\(185\) −4.05976 −0.298479
\(186\) −1.56190 −0.114524
\(187\) −29.0391 −2.12355
\(188\) −4.47801 −0.326592
\(189\) 0 0
\(190\) 6.94386 0.503761
\(191\) −9.93970 −0.719212 −0.359606 0.933104i \(-0.617089\pi\)
−0.359606 + 0.933104i \(0.617089\pi\)
\(192\) −0.149562 −0.0107937
\(193\) 7.12634 0.512965 0.256483 0.966549i \(-0.417436\pi\)
0.256483 + 0.966549i \(0.417436\pi\)
\(194\) 11.2404 0.807016
\(195\) −0.316356 −0.0226548
\(196\) 0 0
\(197\) −13.9000 −0.990336 −0.495168 0.868797i \(-0.664893\pi\)
−0.495168 + 0.868797i \(0.664893\pi\)
\(198\) −12.8376 −0.912330
\(199\) −16.8913 −1.19740 −0.598698 0.800975i \(-0.704315\pi\)
−0.598698 + 0.800975i \(0.704315\pi\)
\(200\) −2.31873 −0.163959
\(201\) 0.204965 0.0144571
\(202\) −9.13815 −0.642958
\(203\) 0 0
\(204\) 1.00737 0.0705303
\(205\) −3.77278 −0.263503
\(206\) 11.2019 0.780475
\(207\) 9.61747 0.668461
\(208\) −1.29177 −0.0895680
\(209\) −18.2829 −1.26465
\(210\) 0 0
\(211\) −5.45746 −0.375707 −0.187854 0.982197i \(-0.560153\pi\)
−0.187854 + 0.982197i \(0.560153\pi\)
\(212\) 1.27579 0.0876219
\(213\) 0.104797 0.00718055
\(214\) −4.54576 −0.310741
\(215\) −20.4699 −1.39604
\(216\) 0.894028 0.0608309
\(217\) 0 0
\(218\) 7.50517 0.508315
\(219\) −1.20057 −0.0811273
\(220\) −7.05966 −0.475962
\(221\) 8.70069 0.585272
\(222\) −0.370810 −0.0248872
\(223\) −8.15306 −0.545969 −0.272985 0.962018i \(-0.588011\pi\)
−0.272985 + 0.962018i \(0.588011\pi\)
\(224\) 0 0
\(225\) 6.90432 0.460288
\(226\) 14.2326 0.946738
\(227\) 15.3046 1.01580 0.507902 0.861415i \(-0.330421\pi\)
0.507902 + 0.861415i \(0.330421\pi\)
\(228\) 0.634238 0.0420034
\(229\) 14.2977 0.944819 0.472409 0.881379i \(-0.343384\pi\)
0.472409 + 0.881379i \(0.343384\pi\)
\(230\) 5.28884 0.348736
\(231\) 0 0
\(232\) 3.58715 0.235508
\(233\) 16.7256 1.09573 0.547866 0.836566i \(-0.315440\pi\)
0.547866 + 0.836566i \(0.315440\pi\)
\(234\) 3.84641 0.251448
\(235\) 7.33256 0.478323
\(236\) −6.37900 −0.415237
\(237\) −0.149562 −0.00971511
\(238\) 0 0
\(239\) −6.83839 −0.442339 −0.221169 0.975235i \(-0.570987\pi\)
−0.221169 + 0.975235i \(0.570987\pi\)
\(240\) 0.244902 0.0158084
\(241\) 6.57847 0.423757 0.211878 0.977296i \(-0.432042\pi\)
0.211878 + 0.977296i \(0.432042\pi\)
\(242\) 7.58777 0.487760
\(243\) −3.99811 −0.256479
\(244\) 1.55958 0.0998420
\(245\) 0 0
\(246\) −0.344598 −0.0219708
\(247\) 5.47791 0.348551
\(248\) 10.4431 0.663140
\(249\) −0.247839 −0.0157061
\(250\) 11.9841 0.757942
\(251\) −0.450755 −0.0284514 −0.0142257 0.999899i \(-0.504528\pi\)
−0.0142257 + 0.999899i \(0.504528\pi\)
\(252\) 0 0
\(253\) −13.9253 −0.875474
\(254\) 3.00737 0.188699
\(255\) −1.64953 −0.103298
\(256\) 1.00000 0.0625000
\(257\) −27.4267 −1.71083 −0.855414 0.517944i \(-0.826697\pi\)
−0.855414 + 0.517944i \(0.826697\pi\)
\(258\) −1.86968 −0.116401
\(259\) 0 0
\(260\) 2.11522 0.131180
\(261\) −10.6812 −0.661150
\(262\) 3.25012 0.200793
\(263\) 30.2619 1.86603 0.933015 0.359837i \(-0.117168\pi\)
0.933015 + 0.359837i \(0.117168\pi\)
\(264\) −0.644815 −0.0396856
\(265\) −2.08906 −0.128330
\(266\) 0 0
\(267\) −0.681272 −0.0416932
\(268\) −1.37043 −0.0837124
\(269\) 3.83647 0.233914 0.116957 0.993137i \(-0.462686\pi\)
0.116957 + 0.993137i \(0.462686\pi\)
\(270\) −1.46393 −0.0890922
\(271\) −2.19360 −0.133252 −0.0666258 0.997778i \(-0.521223\pi\)
−0.0666258 + 0.997778i \(0.521223\pi\)
\(272\) −6.73549 −0.408399
\(273\) 0 0
\(274\) 9.17429 0.554239
\(275\) −9.99686 −0.602833
\(276\) 0.483072 0.0290775
\(277\) 13.9553 0.838490 0.419245 0.907873i \(-0.362295\pi\)
0.419245 + 0.907873i \(0.362295\pi\)
\(278\) 0.547234 0.0328209
\(279\) −31.0958 −1.86166
\(280\) 0 0
\(281\) 13.6254 0.812823 0.406412 0.913690i \(-0.366780\pi\)
0.406412 + 0.913690i \(0.366780\pi\)
\(282\) 0.669741 0.0398825
\(283\) −2.20731 −0.131211 −0.0656055 0.997846i \(-0.520898\pi\)
−0.0656055 + 0.997846i \(0.520898\pi\)
\(284\) −0.700690 −0.0415783
\(285\) −1.03854 −0.0615177
\(286\) −5.56927 −0.329318
\(287\) 0 0
\(288\) −2.97763 −0.175459
\(289\) 28.3668 1.66864
\(290\) −5.87381 −0.344922
\(291\) −1.68114 −0.0985504
\(292\) 8.02726 0.469760
\(293\) 0.387196 0.0226203 0.0113101 0.999936i \(-0.496400\pi\)
0.0113101 + 0.999936i \(0.496400\pi\)
\(294\) 0 0
\(295\) 10.4453 0.608152
\(296\) 2.47930 0.144107
\(297\) 3.85447 0.223659
\(298\) 3.78328 0.219160
\(299\) 4.17229 0.241290
\(300\) 0.346794 0.0200222
\(301\) 0 0
\(302\) 10.6845 0.614823
\(303\) 1.36672 0.0785161
\(304\) −4.24063 −0.243217
\(305\) −2.55375 −0.146227
\(306\) 20.0558 1.14651
\(307\) 28.7476 1.64071 0.820356 0.571853i \(-0.193775\pi\)
0.820356 + 0.571853i \(0.193775\pi\)
\(308\) 0 0
\(309\) −1.67538 −0.0953093
\(310\) −17.1002 −0.971227
\(311\) −21.0553 −1.19394 −0.596969 0.802265i \(-0.703628\pi\)
−0.596969 + 0.802265i \(0.703628\pi\)
\(312\) 0.193200 0.0109378
\(313\) 15.1952 0.858885 0.429442 0.903094i \(-0.358710\pi\)
0.429442 + 0.903094i \(0.358710\pi\)
\(314\) −3.15493 −0.178043
\(315\) 0 0
\(316\) 1.00000 0.0562544
\(317\) 11.5366 0.647959 0.323979 0.946064i \(-0.394979\pi\)
0.323979 + 0.946064i \(0.394979\pi\)
\(318\) −0.190810 −0.0107001
\(319\) 15.4655 0.865899
\(320\) −1.63746 −0.0915367
\(321\) 0.679873 0.0379468
\(322\) 0 0
\(323\) 28.5627 1.58927
\(324\) 8.79918 0.488843
\(325\) 2.99526 0.166147
\(326\) −13.8450 −0.766803
\(327\) −1.12249 −0.0620739
\(328\) 2.30405 0.127220
\(329\) 0 0
\(330\) 1.05586 0.0581231
\(331\) −11.3004 −0.621129 −0.310564 0.950552i \(-0.600518\pi\)
−0.310564 + 0.950552i \(0.600518\pi\)
\(332\) 1.65710 0.0909449
\(333\) −7.38245 −0.404556
\(334\) −15.6896 −0.858498
\(335\) 2.24402 0.122604
\(336\) 0 0
\(337\) −26.5410 −1.44578 −0.722890 0.690963i \(-0.757187\pi\)
−0.722890 + 0.690963i \(0.757187\pi\)
\(338\) −11.3313 −0.616343
\(339\) −2.12866 −0.115613
\(340\) 11.0291 0.598136
\(341\) 45.0241 2.43819
\(342\) 12.6270 0.682792
\(343\) 0 0
\(344\) 12.5010 0.674010
\(345\) −0.791011 −0.0425866
\(346\) 5.18749 0.278881
\(347\) 2.28670 0.122757 0.0613783 0.998115i \(-0.480450\pi\)
0.0613783 + 0.998115i \(0.480450\pi\)
\(348\) −0.536502 −0.0287595
\(349\) −13.3598 −0.715131 −0.357566 0.933888i \(-0.616393\pi\)
−0.357566 + 0.933888i \(0.616393\pi\)
\(350\) 0 0
\(351\) −1.15488 −0.0616427
\(352\) 4.31135 0.229796
\(353\) 23.6970 1.26126 0.630632 0.776082i \(-0.282796\pi\)
0.630632 + 0.776082i \(0.282796\pi\)
\(354\) 0.954057 0.0507076
\(355\) 1.14735 0.0608950
\(356\) 4.55511 0.241420
\(357\) 0 0
\(358\) 22.3348 1.18043
\(359\) 9.21369 0.486280 0.243140 0.969991i \(-0.421823\pi\)
0.243140 + 0.969991i \(0.421823\pi\)
\(360\) 4.87575 0.256975
\(361\) −1.01705 −0.0535287
\(362\) 3.96844 0.208576
\(363\) −1.13484 −0.0595638
\(364\) 0 0
\(365\) −13.1443 −0.688004
\(366\) −0.233255 −0.0121924
\(367\) 6.85127 0.357633 0.178817 0.983882i \(-0.442773\pi\)
0.178817 + 0.983882i \(0.442773\pi\)
\(368\) −3.22991 −0.168371
\(369\) −6.86061 −0.357149
\(370\) −4.05976 −0.211057
\(371\) 0 0
\(372\) −1.56190 −0.0809807
\(373\) 11.0110 0.570129 0.285064 0.958508i \(-0.407985\pi\)
0.285064 + 0.958508i \(0.407985\pi\)
\(374\) −29.0391 −1.50157
\(375\) −1.79237 −0.0925576
\(376\) −4.47801 −0.230936
\(377\) −4.63376 −0.238651
\(378\) 0 0
\(379\) 11.0021 0.565140 0.282570 0.959247i \(-0.408813\pi\)
0.282570 + 0.959247i \(0.408813\pi\)
\(380\) 6.94386 0.356213
\(381\) −0.449790 −0.0230434
\(382\) −9.93970 −0.508559
\(383\) 26.2214 1.33985 0.669927 0.742427i \(-0.266326\pi\)
0.669927 + 0.742427i \(0.266326\pi\)
\(384\) −0.149562 −0.00763231
\(385\) 0 0
\(386\) 7.12634 0.362721
\(387\) −37.2234 −1.89217
\(388\) 11.2404 0.570646
\(389\) −4.14765 −0.210294 −0.105147 0.994457i \(-0.533531\pi\)
−0.105147 + 0.994457i \(0.533531\pi\)
\(390\) −0.316356 −0.0160193
\(391\) 21.7550 1.10020
\(392\) 0 0
\(393\) −0.486096 −0.0245203
\(394\) −13.9000 −0.700273
\(395\) −1.63746 −0.0823895
\(396\) −12.8376 −0.645115
\(397\) −5.18688 −0.260322 −0.130161 0.991493i \(-0.541549\pi\)
−0.130161 + 0.991493i \(0.541549\pi\)
\(398\) −16.8913 −0.846686
\(399\) 0 0
\(400\) −2.31873 −0.115936
\(401\) −0.357823 −0.0178688 −0.00893441 0.999960i \(-0.502844\pi\)
−0.00893441 + 0.999960i \(0.502844\pi\)
\(402\) 0.204965 0.0102227
\(403\) −13.4901 −0.671990
\(404\) −9.13815 −0.454640
\(405\) −14.4083 −0.715954
\(406\) 0 0
\(407\) 10.6892 0.529842
\(408\) 1.00737 0.0498725
\(409\) 24.7058 1.22162 0.610810 0.791777i \(-0.290844\pi\)
0.610810 + 0.791777i \(0.290844\pi\)
\(410\) −3.77278 −0.186325
\(411\) −1.37213 −0.0676821
\(412\) 11.2019 0.551879
\(413\) 0 0
\(414\) 9.61747 0.472673
\(415\) −2.71343 −0.133197
\(416\) −1.29177 −0.0633341
\(417\) −0.0818454 −0.00400799
\(418\) −18.2829 −0.894244
\(419\) −2.91163 −0.142243 −0.0711213 0.997468i \(-0.522658\pi\)
−0.0711213 + 0.997468i \(0.522658\pi\)
\(420\) 0 0
\(421\) 7.11481 0.346754 0.173377 0.984855i \(-0.444532\pi\)
0.173377 + 0.984855i \(0.444532\pi\)
\(422\) −5.45746 −0.265665
\(423\) 13.3339 0.648314
\(424\) 1.27579 0.0619580
\(425\) 15.6178 0.757573
\(426\) 0.104797 0.00507742
\(427\) 0 0
\(428\) −4.54576 −0.219727
\(429\) 0.832952 0.0402153
\(430\) −20.4699 −0.987146
\(431\) 23.3100 1.12280 0.561402 0.827543i \(-0.310262\pi\)
0.561402 + 0.827543i \(0.310262\pi\)
\(432\) 0.894028 0.0430139
\(433\) 32.1346 1.54429 0.772145 0.635446i \(-0.219184\pi\)
0.772145 + 0.635446i \(0.219184\pi\)
\(434\) 0 0
\(435\) 0.878499 0.0421208
\(436\) 7.50517 0.359433
\(437\) 13.6968 0.655209
\(438\) −1.20057 −0.0573657
\(439\) 30.4288 1.45229 0.726143 0.687543i \(-0.241311\pi\)
0.726143 + 0.687543i \(0.241311\pi\)
\(440\) −7.05966 −0.336556
\(441\) 0 0
\(442\) 8.70069 0.413850
\(443\) −18.6950 −0.888228 −0.444114 0.895970i \(-0.646481\pi\)
−0.444114 + 0.895970i \(0.646481\pi\)
\(444\) −0.370810 −0.0175979
\(445\) −7.45880 −0.353581
\(446\) −8.15306 −0.386059
\(447\) −0.565836 −0.0267631
\(448\) 0 0
\(449\) 20.5950 0.971939 0.485969 0.873976i \(-0.338467\pi\)
0.485969 + 0.873976i \(0.338467\pi\)
\(450\) 6.90432 0.325473
\(451\) 9.93357 0.467753
\(452\) 14.2326 0.669445
\(453\) −1.59800 −0.0750804
\(454\) 15.3046 0.718282
\(455\) 0 0
\(456\) 0.634238 0.0297009
\(457\) −18.5056 −0.865657 −0.432828 0.901476i \(-0.642484\pi\)
−0.432828 + 0.901476i \(0.642484\pi\)
\(458\) 14.2977 0.668088
\(459\) −6.02171 −0.281070
\(460\) 5.28884 0.246594
\(461\) −30.1943 −1.40629 −0.703143 0.711048i \(-0.748221\pi\)
−0.703143 + 0.711048i \(0.748221\pi\)
\(462\) 0 0
\(463\) 18.8763 0.877256 0.438628 0.898669i \(-0.355465\pi\)
0.438628 + 0.898669i \(0.355465\pi\)
\(464\) 3.58715 0.166529
\(465\) 2.55754 0.118603
\(466\) 16.7256 0.774799
\(467\) 38.3593 1.77506 0.887529 0.460753i \(-0.152420\pi\)
0.887529 + 0.460753i \(0.152420\pi\)
\(468\) 3.84641 0.177800
\(469\) 0 0
\(470\) 7.33256 0.338226
\(471\) 0.471858 0.0217421
\(472\) −6.37900 −0.293617
\(473\) 53.8963 2.47815
\(474\) −0.149562 −0.00686962
\(475\) 9.83287 0.451163
\(476\) 0 0
\(477\) −3.79884 −0.173937
\(478\) −6.83839 −0.312781
\(479\) −40.5172 −1.85128 −0.925640 0.378407i \(-0.876472\pi\)
−0.925640 + 0.378407i \(0.876472\pi\)
\(480\) 0.244902 0.0111782
\(481\) −3.20269 −0.146030
\(482\) 6.57847 0.299641
\(483\) 0 0
\(484\) 7.58777 0.344899
\(485\) −18.4057 −0.835762
\(486\) −3.99811 −0.181358
\(487\) 13.2186 0.598993 0.299496 0.954097i \(-0.403181\pi\)
0.299496 + 0.954097i \(0.403181\pi\)
\(488\) 1.55958 0.0705990
\(489\) 2.07069 0.0936397
\(490\) 0 0
\(491\) −4.37529 −0.197454 −0.0987270 0.995115i \(-0.531477\pi\)
−0.0987270 + 0.995115i \(0.531477\pi\)
\(492\) −0.344598 −0.0155357
\(493\) −24.1612 −1.08817
\(494\) 5.47791 0.246463
\(495\) 21.0211 0.944827
\(496\) 10.4431 0.468911
\(497\) 0 0
\(498\) −0.247839 −0.0111059
\(499\) −14.9041 −0.667198 −0.333599 0.942715i \(-0.608263\pi\)
−0.333599 + 0.942715i \(0.608263\pi\)
\(500\) 11.9841 0.535946
\(501\) 2.34657 0.104837
\(502\) −0.450755 −0.0201182
\(503\) 17.1623 0.765228 0.382614 0.923908i \(-0.375024\pi\)
0.382614 + 0.923908i \(0.375024\pi\)
\(504\) 0 0
\(505\) 14.9634 0.665860
\(506\) −13.9253 −0.619054
\(507\) 1.69474 0.0752660
\(508\) 3.00737 0.133431
\(509\) −24.1821 −1.07185 −0.535927 0.844264i \(-0.680038\pi\)
−0.535927 + 0.844264i \(0.680038\pi\)
\(510\) −1.64953 −0.0730426
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −3.79124 −0.167387
\(514\) −27.4267 −1.20974
\(515\) −18.3427 −0.808275
\(516\) −1.86968 −0.0823081
\(517\) −19.3063 −0.849089
\(518\) 0 0
\(519\) −0.775852 −0.0340561
\(520\) 2.11522 0.0927584
\(521\) 9.44885 0.413962 0.206981 0.978345i \(-0.433636\pi\)
0.206981 + 0.978345i \(0.433636\pi\)
\(522\) −10.6812 −0.467503
\(523\) −29.5378 −1.29160 −0.645798 0.763508i \(-0.723475\pi\)
−0.645798 + 0.763508i \(0.723475\pi\)
\(524\) 3.25012 0.141982
\(525\) 0 0
\(526\) 30.2619 1.31948
\(527\) −70.3396 −3.06404
\(528\) −0.644815 −0.0280620
\(529\) −12.5677 −0.546422
\(530\) −2.08906 −0.0907429
\(531\) 18.9943 0.824283
\(532\) 0 0
\(533\) −2.97630 −0.128918
\(534\) −0.681272 −0.0294815
\(535\) 7.44349 0.321810
\(536\) −1.37043 −0.0591936
\(537\) −3.34044 −0.144151
\(538\) 3.83647 0.165402
\(539\) 0 0
\(540\) −1.46393 −0.0629977
\(541\) −29.2741 −1.25859 −0.629296 0.777166i \(-0.716657\pi\)
−0.629296 + 0.777166i \(0.716657\pi\)
\(542\) −2.19360 −0.0942231
\(543\) −0.593528 −0.0254707
\(544\) −6.73549 −0.288782
\(545\) −12.2894 −0.526421
\(546\) 0 0
\(547\) −44.3494 −1.89625 −0.948123 0.317905i \(-0.897021\pi\)
−0.948123 + 0.317905i \(0.897021\pi\)
\(548\) 9.17429 0.391906
\(549\) −4.64386 −0.198195
\(550\) −9.99686 −0.426267
\(551\) −15.2118 −0.648043
\(552\) 0.483072 0.0205609
\(553\) 0 0
\(554\) 13.9553 0.592902
\(555\) 0.607187 0.0257736
\(556\) 0.547234 0.0232079
\(557\) 22.2992 0.944848 0.472424 0.881371i \(-0.343379\pi\)
0.472424 + 0.881371i \(0.343379\pi\)
\(558\) −31.0958 −1.31639
\(559\) −16.1484 −0.683005
\(560\) 0 0
\(561\) 4.34315 0.183368
\(562\) 13.6254 0.574753
\(563\) 22.5456 0.950183 0.475091 0.879936i \(-0.342415\pi\)
0.475091 + 0.879936i \(0.342415\pi\)
\(564\) 0.669741 0.0282012
\(565\) −23.3053 −0.980461
\(566\) −2.20731 −0.0927802
\(567\) 0 0
\(568\) −0.700690 −0.0294003
\(569\) −39.4077 −1.65205 −0.826027 0.563630i \(-0.809404\pi\)
−0.826027 + 0.563630i \(0.809404\pi\)
\(570\) −1.03854 −0.0434996
\(571\) −13.3566 −0.558958 −0.279479 0.960152i \(-0.590162\pi\)
−0.279479 + 0.960152i \(0.590162\pi\)
\(572\) −5.56927 −0.232863
\(573\) 1.48660 0.0621038
\(574\) 0 0
\(575\) 7.48928 0.312324
\(576\) −2.97763 −0.124068
\(577\) 34.8193 1.44955 0.724774 0.688987i \(-0.241944\pi\)
0.724774 + 0.688987i \(0.241944\pi\)
\(578\) 28.3668 1.17990
\(579\) −1.06583 −0.0442944
\(580\) −5.87381 −0.243897
\(581\) 0 0
\(582\) −1.68114 −0.0696856
\(583\) 5.50040 0.227803
\(584\) 8.02726 0.332170
\(585\) −6.29834 −0.260404
\(586\) 0.387196 0.0159949
\(587\) 37.5665 1.55054 0.775268 0.631633i \(-0.217615\pi\)
0.775268 + 0.631633i \(0.217615\pi\)
\(588\) 0 0
\(589\) −44.2855 −1.82475
\(590\) 10.4453 0.430028
\(591\) 2.07892 0.0855153
\(592\) 2.47930 0.101899
\(593\) −3.53217 −0.145049 −0.0725245 0.997367i \(-0.523106\pi\)
−0.0725245 + 0.997367i \(0.523106\pi\)
\(594\) 3.85447 0.158151
\(595\) 0 0
\(596\) 3.78328 0.154969
\(597\) 2.52631 0.103395
\(598\) 4.17229 0.170618
\(599\) 3.56657 0.145726 0.0728630 0.997342i \(-0.476786\pi\)
0.0728630 + 0.997342i \(0.476786\pi\)
\(600\) 0.346794 0.0141578
\(601\) −29.5166 −1.20401 −0.602003 0.798494i \(-0.705630\pi\)
−0.602003 + 0.798494i \(0.705630\pi\)
\(602\) 0 0
\(603\) 4.08064 0.166176
\(604\) 10.6845 0.434746
\(605\) −12.4247 −0.505134
\(606\) 1.36672 0.0555193
\(607\) −15.7275 −0.638360 −0.319180 0.947694i \(-0.603408\pi\)
−0.319180 + 0.947694i \(0.603408\pi\)
\(608\) −4.24063 −0.171980
\(609\) 0 0
\(610\) −2.55375 −0.103398
\(611\) 5.78455 0.234018
\(612\) 20.0558 0.810708
\(613\) 18.6076 0.751556 0.375778 0.926710i \(-0.377376\pi\)
0.375778 + 0.926710i \(0.377376\pi\)
\(614\) 28.7476 1.16016
\(615\) 0.564266 0.0227534
\(616\) 0 0
\(617\) −0.478721 −0.0192726 −0.00963629 0.999954i \(-0.503067\pi\)
−0.00963629 + 0.999954i \(0.503067\pi\)
\(618\) −1.67538 −0.0673938
\(619\) −45.1622 −1.81522 −0.907611 0.419812i \(-0.862096\pi\)
−0.907611 + 0.419812i \(0.862096\pi\)
\(620\) −17.1002 −0.686761
\(621\) −2.88763 −0.115876
\(622\) −21.0553 −0.844241
\(623\) 0 0
\(624\) 0.193200 0.00773418
\(625\) −8.02986 −0.321194
\(626\) 15.1952 0.607323
\(627\) 2.73442 0.109202
\(628\) −3.15493 −0.125895
\(629\) −16.6993 −0.665846
\(630\) 0 0
\(631\) 0.723984 0.0288214 0.0144107 0.999896i \(-0.495413\pi\)
0.0144107 + 0.999896i \(0.495413\pi\)
\(632\) 1.00000 0.0397779
\(633\) 0.816230 0.0324422
\(634\) 11.5366 0.458176
\(635\) −4.92445 −0.195421
\(636\) −0.190810 −0.00756613
\(637\) 0 0
\(638\) 15.4655 0.612283
\(639\) 2.08640 0.0825365
\(640\) −1.63746 −0.0647262
\(641\) −4.18974 −0.165485 −0.0827423 0.996571i \(-0.526368\pi\)
−0.0827423 + 0.996571i \(0.526368\pi\)
\(642\) 0.679873 0.0268325
\(643\) −0.452029 −0.0178263 −0.00891315 0.999960i \(-0.502837\pi\)
−0.00891315 + 0.999960i \(0.502837\pi\)
\(644\) 0 0
\(645\) 3.06152 0.120547
\(646\) 28.5627 1.12379
\(647\) 1.93802 0.0761914 0.0380957 0.999274i \(-0.487871\pi\)
0.0380957 + 0.999274i \(0.487871\pi\)
\(648\) 8.79918 0.345664
\(649\) −27.5021 −1.07955
\(650\) 2.99526 0.117484
\(651\) 0 0
\(652\) −13.8450 −0.542212
\(653\) −16.5609 −0.648079 −0.324040 0.946044i \(-0.605041\pi\)
−0.324040 + 0.946044i \(0.605041\pi\)
\(654\) −1.12249 −0.0438928
\(655\) −5.32195 −0.207946
\(656\) 2.30405 0.0899580
\(657\) −23.9022 −0.932514
\(658\) 0 0
\(659\) −43.2954 −1.68655 −0.843275 0.537482i \(-0.819376\pi\)
−0.843275 + 0.537482i \(0.819376\pi\)
\(660\) 1.05586 0.0410993
\(661\) −36.2939 −1.41167 −0.705835 0.708376i \(-0.749428\pi\)
−0.705835 + 0.708376i \(0.749428\pi\)
\(662\) −11.3004 −0.439204
\(663\) −1.30129 −0.0505381
\(664\) 1.65710 0.0643078
\(665\) 0 0
\(666\) −7.38245 −0.286064
\(667\) −11.5862 −0.448618
\(668\) −15.6896 −0.607050
\(669\) 1.21939 0.0471443
\(670\) 2.24402 0.0866942
\(671\) 6.72391 0.259574
\(672\) 0 0
\(673\) 14.3005 0.551244 0.275622 0.961266i \(-0.411116\pi\)
0.275622 + 0.961266i \(0.411116\pi\)
\(674\) −26.5410 −1.02232
\(675\) −2.07301 −0.0797901
\(676\) −11.3313 −0.435821
\(677\) 34.3223 1.31911 0.659556 0.751655i \(-0.270744\pi\)
0.659556 + 0.751655i \(0.270744\pi\)
\(678\) −2.12866 −0.0817506
\(679\) 0 0
\(680\) 11.0291 0.422946
\(681\) −2.28899 −0.0877145
\(682\) 45.0241 1.72406
\(683\) 24.6089 0.941634 0.470817 0.882231i \(-0.343959\pi\)
0.470817 + 0.882231i \(0.343959\pi\)
\(684\) 12.6270 0.482807
\(685\) −15.0225 −0.573981
\(686\) 0 0
\(687\) −2.13840 −0.0815849
\(688\) 12.5010 0.476597
\(689\) −1.64803 −0.0627849
\(690\) −0.791011 −0.0301133
\(691\) −6.74408 −0.256557 −0.128279 0.991738i \(-0.540945\pi\)
−0.128279 + 0.991738i \(0.540945\pi\)
\(692\) 5.18749 0.197199
\(693\) 0 0
\(694\) 2.28670 0.0868020
\(695\) −0.896072 −0.0339900
\(696\) −0.536502 −0.0203360
\(697\) −15.5189 −0.587820
\(698\) −13.3598 −0.505674
\(699\) −2.50152 −0.0946162
\(700\) 0 0
\(701\) −31.5348 −1.19105 −0.595526 0.803336i \(-0.703056\pi\)
−0.595526 + 0.803336i \(0.703056\pi\)
\(702\) −1.15488 −0.0435880
\(703\) −10.5138 −0.396536
\(704\) 4.31135 0.162490
\(705\) −1.09667 −0.0413031
\(706\) 23.6970 0.891848
\(707\) 0 0
\(708\) 0.954057 0.0358557
\(709\) 45.1319 1.69496 0.847482 0.530824i \(-0.178118\pi\)
0.847482 + 0.530824i \(0.178118\pi\)
\(710\) 1.14735 0.0430593
\(711\) −2.97763 −0.111670
\(712\) 4.55511 0.170710
\(713\) −33.7304 −1.26321
\(714\) 0 0
\(715\) 9.11945 0.341048
\(716\) 22.3348 0.834691
\(717\) 1.02276 0.0381959
\(718\) 9.21369 0.343852
\(719\) −38.8023 −1.44708 −0.723542 0.690281i \(-0.757487\pi\)
−0.723542 + 0.690281i \(0.757487\pi\)
\(720\) 4.87575 0.181708
\(721\) 0 0
\(722\) −1.01705 −0.0378505
\(723\) −0.983891 −0.0365913
\(724\) 3.96844 0.147486
\(725\) −8.31762 −0.308909
\(726\) −1.13484 −0.0421180
\(727\) 44.4176 1.64736 0.823678 0.567057i \(-0.191918\pi\)
0.823678 + 0.567057i \(0.191918\pi\)
\(728\) 0 0
\(729\) −25.7996 −0.955540
\(730\) −13.1443 −0.486493
\(731\) −84.2005 −3.11427
\(732\) −0.233255 −0.00862134
\(733\) 44.4466 1.64167 0.820837 0.571162i \(-0.193507\pi\)
0.820837 + 0.571162i \(0.193507\pi\)
\(734\) 6.85127 0.252885
\(735\) 0 0
\(736\) −3.22991 −0.119056
\(737\) −5.90841 −0.217639
\(738\) −6.86061 −0.252542
\(739\) −12.8750 −0.473615 −0.236807 0.971557i \(-0.576101\pi\)
−0.236807 + 0.971557i \(0.576101\pi\)
\(740\) −4.05976 −0.149240
\(741\) −0.819288 −0.0300973
\(742\) 0 0
\(743\) 43.3246 1.58943 0.794713 0.606986i \(-0.207622\pi\)
0.794713 + 0.606986i \(0.207622\pi\)
\(744\) −1.56190 −0.0572620
\(745\) −6.19497 −0.226966
\(746\) 11.0110 0.403142
\(747\) −4.93422 −0.180534
\(748\) −29.0391 −1.06177
\(749\) 0 0
\(750\) −1.79237 −0.0654481
\(751\) 1.84223 0.0672238 0.0336119 0.999435i \(-0.489299\pi\)
0.0336119 + 0.999435i \(0.489299\pi\)
\(752\) −4.47801 −0.163296
\(753\) 0.0674158 0.00245677
\(754\) −4.63376 −0.168752
\(755\) −17.4954 −0.636723
\(756\) 0 0
\(757\) 2.80471 0.101939 0.0509694 0.998700i \(-0.483769\pi\)
0.0509694 + 0.998700i \(0.483769\pi\)
\(758\) 11.0021 0.399615
\(759\) 2.08269 0.0755970
\(760\) 6.94386 0.251880
\(761\) 51.6534 1.87243 0.936217 0.351424i \(-0.114302\pi\)
0.936217 + 0.351424i \(0.114302\pi\)
\(762\) −0.449790 −0.0162942
\(763\) 0 0
\(764\) −9.93970 −0.359606
\(765\) −32.8406 −1.18735
\(766\) 26.2214 0.947419
\(767\) 8.24018 0.297536
\(768\) −0.149562 −0.00539686
\(769\) 49.1469 1.77228 0.886141 0.463416i \(-0.153377\pi\)
0.886141 + 0.463416i \(0.153377\pi\)
\(770\) 0 0
\(771\) 4.10199 0.147730
\(772\) 7.12634 0.256483
\(773\) −35.9481 −1.29296 −0.646482 0.762929i \(-0.723761\pi\)
−0.646482 + 0.762929i \(0.723761\pi\)
\(774\) −37.2234 −1.33797
\(775\) −24.2148 −0.869821
\(776\) 11.2404 0.403508
\(777\) 0 0
\(778\) −4.14765 −0.148701
\(779\) −9.77062 −0.350069
\(780\) −0.316356 −0.0113274
\(781\) −3.02092 −0.108097
\(782\) 21.7550 0.777958
\(783\) 3.20701 0.114609
\(784\) 0 0
\(785\) 5.16607 0.184385
\(786\) −0.486096 −0.0173385
\(787\) −10.4375 −0.372056 −0.186028 0.982544i \(-0.559562\pi\)
−0.186028 + 0.982544i \(0.559562\pi\)
\(788\) −13.9000 −0.495168
\(789\) −4.52604 −0.161131
\(790\) −1.63746 −0.0582582
\(791\) 0 0
\(792\) −12.8376 −0.456165
\(793\) −2.01462 −0.0715412
\(794\) −5.18688 −0.184075
\(795\) 0.312444 0.0110813
\(796\) −16.8913 −0.598698
\(797\) −11.9748 −0.424169 −0.212084 0.977251i \(-0.568025\pi\)
−0.212084 + 0.977251i \(0.568025\pi\)
\(798\) 0 0
\(799\) 30.1616 1.06704
\(800\) −2.31873 −0.0819794
\(801\) −13.5634 −0.479240
\(802\) −0.357823 −0.0126352
\(803\) 34.6083 1.22130
\(804\) 0.204965 0.00722854
\(805\) 0 0
\(806\) −13.4901 −0.475169
\(807\) −0.573791 −0.0201984
\(808\) −9.13815 −0.321479
\(809\) −14.6377 −0.514633 −0.257316 0.966327i \(-0.582838\pi\)
−0.257316 + 0.966327i \(0.582838\pi\)
\(810\) −14.4083 −0.506256
\(811\) 19.8307 0.696350 0.348175 0.937430i \(-0.386801\pi\)
0.348175 + 0.937430i \(0.386801\pi\)
\(812\) 0 0
\(813\) 0.328079 0.0115062
\(814\) 10.6892 0.374655
\(815\) 22.6706 0.794117
\(816\) 1.00737 0.0352652
\(817\) −53.0122 −1.85466
\(818\) 24.7058 0.863816
\(819\) 0 0
\(820\) −3.77278 −0.131751
\(821\) 2.40469 0.0839242 0.0419621 0.999119i \(-0.486639\pi\)
0.0419621 + 0.999119i \(0.486639\pi\)
\(822\) −1.37213 −0.0478584
\(823\) −18.5096 −0.645205 −0.322602 0.946535i \(-0.604558\pi\)
−0.322602 + 0.946535i \(0.604558\pi\)
\(824\) 11.2019 0.390237
\(825\) 1.49515 0.0520545
\(826\) 0 0
\(827\) −9.16475 −0.318690 −0.159345 0.987223i \(-0.550938\pi\)
−0.159345 + 0.987223i \(0.550938\pi\)
\(828\) 9.61747 0.334230
\(829\) 42.3085 1.46943 0.734717 0.678374i \(-0.237315\pi\)
0.734717 + 0.678374i \(0.237315\pi\)
\(830\) −2.71343 −0.0941844
\(831\) −2.08718 −0.0724035
\(832\) −1.29177 −0.0447840
\(833\) 0 0
\(834\) −0.0818454 −0.00283408
\(835\) 25.6911 0.889078
\(836\) −18.2829 −0.632326
\(837\) 9.33645 0.322715
\(838\) −2.91163 −0.100581
\(839\) 1.63763 0.0565373 0.0282686 0.999600i \(-0.491001\pi\)
0.0282686 + 0.999600i \(0.491001\pi\)
\(840\) 0 0
\(841\) −16.1324 −0.556289
\(842\) 7.11481 0.245192
\(843\) −2.03784 −0.0701871
\(844\) −5.45746 −0.187854
\(845\) 18.5546 0.638298
\(846\) 13.3339 0.458427
\(847\) 0 0
\(848\) 1.27579 0.0438109
\(849\) 0.330130 0.0113300
\(850\) 15.6178 0.535685
\(851\) −8.00793 −0.274508
\(852\) 0.104797 0.00359027
\(853\) 28.2165 0.966115 0.483058 0.875589i \(-0.339526\pi\)
0.483058 + 0.875589i \(0.339526\pi\)
\(854\) 0 0
\(855\) −20.6763 −0.707113
\(856\) −4.54576 −0.155371
\(857\) 0.731170 0.0249763 0.0124881 0.999922i \(-0.496025\pi\)
0.0124881 + 0.999922i \(0.496025\pi\)
\(858\) 0.832952 0.0284365
\(859\) 51.4071 1.75399 0.876994 0.480502i \(-0.159545\pi\)
0.876994 + 0.480502i \(0.159545\pi\)
\(860\) −20.4699 −0.698018
\(861\) 0 0
\(862\) 23.3100 0.793942
\(863\) −36.8177 −1.25329 −0.626644 0.779306i \(-0.715572\pi\)
−0.626644 + 0.779306i \(0.715572\pi\)
\(864\) 0.894028 0.0304154
\(865\) −8.49429 −0.288815
\(866\) 32.1346 1.09198
\(867\) −4.24260 −0.144086
\(868\) 0 0
\(869\) 4.31135 0.146253
\(870\) 0.878499 0.0297839
\(871\) 1.77028 0.0599836
\(872\) 7.50517 0.254157
\(873\) −33.4699 −1.13278
\(874\) 13.6968 0.463303
\(875\) 0 0
\(876\) −1.20057 −0.0405636
\(877\) −45.4799 −1.53575 −0.767874 0.640601i \(-0.778685\pi\)
−0.767874 + 0.640601i \(0.778685\pi\)
\(878\) 30.4288 1.02692
\(879\) −0.0579099 −0.00195325
\(880\) −7.05966 −0.237981
\(881\) 47.5733 1.60278 0.801392 0.598139i \(-0.204093\pi\)
0.801392 + 0.598139i \(0.204093\pi\)
\(882\) 0 0
\(883\) −2.49964 −0.0841197 −0.0420599 0.999115i \(-0.513392\pi\)
−0.0420599 + 0.999115i \(0.513392\pi\)
\(884\) 8.70069 0.292636
\(885\) −1.56223 −0.0525138
\(886\) −18.6950 −0.628072
\(887\) −40.1880 −1.34938 −0.674691 0.738101i \(-0.735723\pi\)
−0.674691 + 0.738101i \(0.735723\pi\)
\(888\) −0.370810 −0.0124436
\(889\) 0 0
\(890\) −7.45880 −0.250020
\(891\) 37.9364 1.27092
\(892\) −8.15306 −0.272985
\(893\) 18.9896 0.635462
\(894\) −0.565836 −0.0189244
\(895\) −36.5723 −1.22248
\(896\) 0 0
\(897\) −0.624017 −0.0208353
\(898\) 20.5950 0.687265
\(899\) 37.4611 1.24940
\(900\) 6.90432 0.230144
\(901\) −8.59309 −0.286277
\(902\) 9.93357 0.330752
\(903\) 0 0
\(904\) 14.2326 0.473369
\(905\) −6.49815 −0.216006
\(906\) −1.59800 −0.0530899
\(907\) 41.7973 1.38786 0.693928 0.720044i \(-0.255879\pi\)
0.693928 + 0.720044i \(0.255879\pi\)
\(908\) 15.3046 0.507902
\(909\) 27.2101 0.902500
\(910\) 0 0
\(911\) 29.4658 0.976246 0.488123 0.872775i \(-0.337682\pi\)
0.488123 + 0.872775i \(0.337682\pi\)
\(912\) 0.634238 0.0210017
\(913\) 7.14432 0.236443
\(914\) −18.5056 −0.612112
\(915\) 0.381945 0.0126267
\(916\) 14.2977 0.472409
\(917\) 0 0
\(918\) −6.02171 −0.198746
\(919\) −31.1446 −1.02736 −0.513682 0.857980i \(-0.671719\pi\)
−0.513682 + 0.857980i \(0.671719\pi\)
\(920\) 5.28884 0.174368
\(921\) −4.29956 −0.141675
\(922\) −30.1943 −0.994395
\(923\) 0.905128 0.0297927
\(924\) 0 0
\(925\) −5.74883 −0.189020
\(926\) 18.8763 0.620314
\(927\) −33.3552 −1.09553
\(928\) 3.58715 0.117754
\(929\) −34.6550 −1.13699 −0.568497 0.822685i \(-0.692475\pi\)
−0.568497 + 0.822685i \(0.692475\pi\)
\(930\) 2.55754 0.0838652
\(931\) 0 0
\(932\) 16.7256 0.547866
\(933\) 3.14908 0.103096
\(934\) 38.3593 1.25516
\(935\) 47.5503 1.55506
\(936\) 3.84641 0.125724
\(937\) −1.48968 −0.0486658 −0.0243329 0.999704i \(-0.507746\pi\)
−0.0243329 + 0.999704i \(0.507746\pi\)
\(938\) 0 0
\(939\) −2.27263 −0.0741645
\(940\) 7.33256 0.239162
\(941\) −6.61724 −0.215716 −0.107858 0.994166i \(-0.534399\pi\)
−0.107858 + 0.994166i \(0.534399\pi\)
\(942\) 0.471858 0.0153740
\(943\) −7.44186 −0.242340
\(944\) −6.37900 −0.207619
\(945\) 0 0
\(946\) 53.8963 1.75232
\(947\) 2.24547 0.0729680 0.0364840 0.999334i \(-0.488384\pi\)
0.0364840 + 0.999334i \(0.488384\pi\)
\(948\) −0.149562 −0.00485755
\(949\) −10.3694 −0.336603
\(950\) 9.83287 0.319020
\(951\) −1.72544 −0.0559511
\(952\) 0 0
\(953\) 40.3823 1.30811 0.654056 0.756446i \(-0.273066\pi\)
0.654056 + 0.756446i \(0.273066\pi\)
\(954\) −3.79884 −0.122992
\(955\) 16.2759 0.526674
\(956\) −6.83839 −0.221169
\(957\) −2.31305 −0.0747702
\(958\) −40.5172 −1.30905
\(959\) 0 0
\(960\) 0.244902 0.00790418
\(961\) 78.0591 2.51804
\(962\) −3.20269 −0.103259
\(963\) 13.5356 0.436178
\(964\) 6.57847 0.211878
\(965\) −11.6691 −0.375641
\(966\) 0 0
\(967\) 23.2845 0.748780 0.374390 0.927271i \(-0.377852\pi\)
0.374390 + 0.927271i \(0.377852\pi\)
\(968\) 7.58777 0.243880
\(969\) −4.27190 −0.137233
\(970\) −18.4057 −0.590973
\(971\) −44.3411 −1.42297 −0.711487 0.702700i \(-0.751978\pi\)
−0.711487 + 0.702700i \(0.751978\pi\)
\(972\) −3.99811 −0.128239
\(973\) 0 0
\(974\) 13.2186 0.423552
\(975\) −0.447977 −0.0143468
\(976\) 1.55958 0.0499210
\(977\) −48.1226 −1.53958 −0.769789 0.638298i \(-0.779639\pi\)
−0.769789 + 0.638298i \(0.779639\pi\)
\(978\) 2.07069 0.0662133
\(979\) 19.6387 0.627655
\(980\) 0 0
\(981\) −22.3476 −0.713505
\(982\) −4.37529 −0.139621
\(983\) −35.1556 −1.12129 −0.560644 0.828057i \(-0.689446\pi\)
−0.560644 + 0.828057i \(0.689446\pi\)
\(984\) −0.344598 −0.0109854
\(985\) 22.7607 0.725217
\(986\) −24.1612 −0.769449
\(987\) 0 0
\(988\) 5.47791 0.174276
\(989\) −40.3771 −1.28392
\(990\) 21.0211 0.668094
\(991\) 6.75190 0.214481 0.107241 0.994233i \(-0.465798\pi\)
0.107241 + 0.994233i \(0.465798\pi\)
\(992\) 10.4431 0.331570
\(993\) 1.69012 0.0536343
\(994\) 0 0
\(995\) 27.6589 0.876845
\(996\) −0.247839 −0.00785307
\(997\) −10.8209 −0.342702 −0.171351 0.985210i \(-0.554813\pi\)
−0.171351 + 0.985210i \(0.554813\pi\)
\(998\) −14.9041 −0.471780
\(999\) 2.21657 0.0701291
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7742.2.a.bp.1.6 12
7.6 odd 2 inner 7742.2.a.bp.1.7 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7742.2.a.bp.1.6 12 1.1 even 1 trivial
7742.2.a.bp.1.7 yes 12 7.6 odd 2 inner