Properties

Label 7742.2
Level 7742
Weight 2
Dimension 586630
Nonzero newspaces 40
Sturm bound 7338240

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 7742 = 2 \cdot 7^{2} \cdot 79 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 40 \)
Sturm bound: \(7338240\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(7742))\).

Total New Old
Modular forms 1843920 586630 1257290
Cusp forms 1825201 586630 1238571
Eisenstein series 18719 0 18719

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(7742))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
7742.2.a \(\chi_{7742}(1, \cdot)\) 7742.2.a.a 1 1
7742.2.a.b 1
7742.2.a.c 1
7742.2.a.d 1
7742.2.a.e 1
7742.2.a.f 1
7742.2.a.g 1
7742.2.a.h 1
7742.2.a.i 1
7742.2.a.j 1
7742.2.a.k 1
7742.2.a.l 1
7742.2.a.m 1
7742.2.a.n 1
7742.2.a.o 2
7742.2.a.p 2
7742.2.a.q 2
7742.2.a.r 2
7742.2.a.s 2
7742.2.a.t 2
7742.2.a.u 3
7742.2.a.v 3
7742.2.a.w 3
7742.2.a.x 4
7742.2.a.y 4
7742.2.a.z 4
7742.2.a.ba 4
7742.2.a.bb 6
7742.2.a.bc 6
7742.2.a.bd 6
7742.2.a.be 7
7742.2.a.bf 7
7742.2.a.bg 8
7742.2.a.bh 8
7742.2.a.bi 8
7742.2.a.bj 9
7742.2.a.bk 12
7742.2.a.bl 12
7742.2.a.bm 12
7742.2.a.bn 12
7742.2.a.bo 12
7742.2.a.bp 12
7742.2.a.bq 12
7742.2.a.br 13
7742.2.a.bs 13
7742.2.a.bt 16
7742.2.a.bu 24
7742.2.d \(\chi_{7742}(7741, \cdot)\) n/a 264 1
7742.2.e \(\chi_{7742}(687, \cdot)\) n/a 548 2
7742.2.f \(\chi_{7742}(949, \cdot)\) n/a 520 2
7742.2.g \(\chi_{7742}(1635, \cdot)\) n/a 532 2
7742.2.h \(\chi_{7742}(655, \cdot)\) n/a 532 2
7742.2.k \(\chi_{7742}(5213, \cdot)\) n/a 536 2
7742.2.l \(\chi_{7742}(293, \cdot)\) n/a 536 2
7742.2.m \(\chi_{7742}(5507, \cdot)\) n/a 532 2
7742.2.t \(\chi_{7742}(4527, \cdot)\) n/a 532 2
7742.2.u \(\chi_{7742}(1107, \cdot)\) n/a 2184 6
7742.2.v \(\chi_{7742}(1079, \cdot)\) n/a 3264 12
7742.2.w \(\chi_{7742}(1105, \cdot)\) n/a 2256 6
7742.2.z \(\chi_{7742}(1003, \cdot)\) n/a 4488 12
7742.2.ba \(\chi_{7742}(23, \cdot)\) n/a 4488 12
7742.2.bb \(\chi_{7742}(317, \cdot)\) n/a 4368 12
7742.2.bc \(\chi_{7742}(813, \cdot)\) n/a 4464 12
7742.2.bd \(\chi_{7742}(489, \cdot)\) n/a 3168 12
7742.2.bg \(\chi_{7742}(263, \cdot)\) n/a 6384 24
7742.2.bh \(\chi_{7742}(177, \cdot)\) n/a 6384 24
7742.2.bi \(\chi_{7742}(67, \cdot)\) n/a 6432 24
7742.2.bj \(\chi_{7742}(99, \cdot)\) n/a 6576 24
7742.2.bk \(\chi_{7742}(103, \cdot)\) n/a 4488 12
7742.2.br \(\chi_{7742}(577, \cdot)\) n/a 4488 12
7742.2.bs \(\chi_{7742}(419, \cdot)\) n/a 4464 12
7742.2.bt \(\chi_{7742}(157, \cdot)\) n/a 4464 12
7742.2.bw \(\chi_{7742}(509, \cdot)\) n/a 6384 24
7742.2.cd \(\chi_{7742}(423, \cdot)\) n/a 6384 24
7742.2.ce \(\chi_{7742}(195, \cdot)\) n/a 6432 24
7742.2.cf \(\chi_{7742}(215, \cdot)\) n/a 6432 24
7742.2.ci \(\chi_{7742}(141, \cdot)\) n/a 27072 72
7742.2.cl \(\chi_{7742}(27, \cdot)\) n/a 27072 72
7742.2.cm \(\chi_{7742}(155, \cdot)\) n/a 53568 144
7742.2.cn \(\chi_{7742}(65, \cdot)\) n/a 53568 144
7742.2.co \(\chi_{7742}(9, \cdot)\) n/a 53856 144
7742.2.cp \(\chi_{7742}(11, \cdot)\) n/a 53856 144
7742.2.cs \(\chi_{7742}(17, \cdot)\) n/a 53568 144
7742.2.ct \(\chi_{7742}(139, \cdot)\) n/a 53568 144
7742.2.cu \(\chi_{7742}(3, \cdot)\) n/a 53856 144
7742.2.db \(\chi_{7742}(145, \cdot)\) n/a 53856 144

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(7742))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(7742)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(79))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(158))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(553))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1106))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3871))\)\(^{\oplus 2}\)