Properties

Label 768.6.a.bd.1.5
Level $768$
Weight $6$
Character 768.1
Self dual yes
Analytic conductor $123.175$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,6,Mod(1,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 768.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,45,0,50,0,98,0,405,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(123.174773616\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 65x^{3} + 85x^{2} + 856x - 1692 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 24)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(6.79075\) of defining polynomial
Character \(\chi\) \(=\) 768.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} +100.204 q^{5} -154.395 q^{7} +81.0000 q^{9} -85.0809 q^{11} +812.927 q^{13} +901.832 q^{15} +1275.57 q^{17} -393.875 q^{19} -1389.55 q^{21} -2533.66 q^{23} +6915.74 q^{25} +729.000 q^{27} -254.097 q^{29} +1801.33 q^{31} -765.728 q^{33} -15470.9 q^{35} +686.112 q^{37} +7316.35 q^{39} +13255.9 q^{41} -13936.2 q^{43} +8116.48 q^{45} +11557.4 q^{47} +7030.74 q^{49} +11480.1 q^{51} +8023.45 q^{53} -8525.40 q^{55} -3544.88 q^{57} +7967.95 q^{59} -15828.6 q^{61} -12506.0 q^{63} +81458.2 q^{65} +33836.9 q^{67} -22803.0 q^{69} +72786.0 q^{71} +717.727 q^{73} +62241.7 q^{75} +13136.0 q^{77} +32844.2 q^{79} +6561.00 q^{81} +46129.8 q^{83} +127816. q^{85} -2286.88 q^{87} +15255.6 q^{89} -125512. q^{91} +16211.9 q^{93} -39467.7 q^{95} -173584. q^{97} -6891.55 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 45 q^{3} + 50 q^{5} + 98 q^{7} + 405 q^{9} + 676 q^{13} + 450 q^{15} - 202 q^{17} + 716 q^{19} + 882 q^{21} - 836 q^{23} + 4683 q^{25} + 3645 q^{27} + 5046 q^{29} + 9346 q^{31} + 436 q^{35} + 10952 q^{37}+ \cdots + 29686 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) 100.204 1.79249 0.896247 0.443554i \(-0.146283\pi\)
0.896247 + 0.443554i \(0.146283\pi\)
\(6\) 0 0
\(7\) −154.395 −1.19093 −0.595467 0.803380i \(-0.703033\pi\)
−0.595467 + 0.803380i \(0.703033\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −85.0809 −0.212007 −0.106003 0.994366i \(-0.533805\pi\)
−0.106003 + 0.994366i \(0.533805\pi\)
\(12\) 0 0
\(13\) 812.927 1.33412 0.667058 0.745006i \(-0.267553\pi\)
0.667058 + 0.745006i \(0.267553\pi\)
\(14\) 0 0
\(15\) 901.832 1.03490
\(16\) 0 0
\(17\) 1275.57 1.07049 0.535244 0.844698i \(-0.320220\pi\)
0.535244 + 0.844698i \(0.320220\pi\)
\(18\) 0 0
\(19\) −393.875 −0.250308 −0.125154 0.992137i \(-0.539943\pi\)
−0.125154 + 0.992137i \(0.539943\pi\)
\(20\) 0 0
\(21\) −1389.55 −0.687586
\(22\) 0 0
\(23\) −2533.66 −0.998686 −0.499343 0.866404i \(-0.666425\pi\)
−0.499343 + 0.866404i \(0.666425\pi\)
\(24\) 0 0
\(25\) 6915.74 2.21304
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −254.097 −0.0561055 −0.0280527 0.999606i \(-0.508931\pi\)
−0.0280527 + 0.999606i \(0.508931\pi\)
\(30\) 0 0
\(31\) 1801.33 0.336658 0.168329 0.985731i \(-0.446163\pi\)
0.168329 + 0.985731i \(0.446163\pi\)
\(32\) 0 0
\(33\) −765.728 −0.122402
\(34\) 0 0
\(35\) −15470.9 −2.13474
\(36\) 0 0
\(37\) 686.112 0.0823930 0.0411965 0.999151i \(-0.486883\pi\)
0.0411965 + 0.999151i \(0.486883\pi\)
\(38\) 0 0
\(39\) 7316.35 0.770252
\(40\) 0 0
\(41\) 13255.9 1.23154 0.615772 0.787924i \(-0.288844\pi\)
0.615772 + 0.787924i \(0.288844\pi\)
\(42\) 0 0
\(43\) −13936.2 −1.14940 −0.574701 0.818363i \(-0.694882\pi\)
−0.574701 + 0.818363i \(0.694882\pi\)
\(44\) 0 0
\(45\) 8116.48 0.597498
\(46\) 0 0
\(47\) 11557.4 0.763158 0.381579 0.924336i \(-0.375380\pi\)
0.381579 + 0.924336i \(0.375380\pi\)
\(48\) 0 0
\(49\) 7030.74 0.418322
\(50\) 0 0
\(51\) 11480.1 0.618046
\(52\) 0 0
\(53\) 8023.45 0.392348 0.196174 0.980569i \(-0.437148\pi\)
0.196174 + 0.980569i \(0.437148\pi\)
\(54\) 0 0
\(55\) −8525.40 −0.380021
\(56\) 0 0
\(57\) −3544.88 −0.144515
\(58\) 0 0
\(59\) 7967.95 0.298000 0.149000 0.988837i \(-0.452395\pi\)
0.149000 + 0.988837i \(0.452395\pi\)
\(60\) 0 0
\(61\) −15828.6 −0.544651 −0.272326 0.962205i \(-0.587793\pi\)
−0.272326 + 0.962205i \(0.587793\pi\)
\(62\) 0 0
\(63\) −12506.0 −0.396978
\(64\) 0 0
\(65\) 81458.2 2.39140
\(66\) 0 0
\(67\) 33836.9 0.920881 0.460440 0.887691i \(-0.347691\pi\)
0.460440 + 0.887691i \(0.347691\pi\)
\(68\) 0 0
\(69\) −22803.0 −0.576592
\(70\) 0 0
\(71\) 72786.0 1.71357 0.856786 0.515672i \(-0.172458\pi\)
0.856786 + 0.515672i \(0.172458\pi\)
\(72\) 0 0
\(73\) 717.727 0.0157635 0.00788174 0.999969i \(-0.497491\pi\)
0.00788174 + 0.999969i \(0.497491\pi\)
\(74\) 0 0
\(75\) 62241.7 1.27770
\(76\) 0 0
\(77\) 13136.0 0.252486
\(78\) 0 0
\(79\) 32844.2 0.592094 0.296047 0.955173i \(-0.404331\pi\)
0.296047 + 0.955173i \(0.404331\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 46129.8 0.734998 0.367499 0.930024i \(-0.380214\pi\)
0.367499 + 0.930024i \(0.380214\pi\)
\(84\) 0 0
\(85\) 127816. 1.91884
\(86\) 0 0
\(87\) −2286.88 −0.0323925
\(88\) 0 0
\(89\) 15255.6 0.204152 0.102076 0.994777i \(-0.467451\pi\)
0.102076 + 0.994777i \(0.467451\pi\)
\(90\) 0 0
\(91\) −125512. −1.58884
\(92\) 0 0
\(93\) 16211.9 0.194369
\(94\) 0 0
\(95\) −39467.7 −0.448676
\(96\) 0 0
\(97\) −173584. −1.87318 −0.936591 0.350426i \(-0.886037\pi\)
−0.936591 + 0.350426i \(0.886037\pi\)
\(98\) 0 0
\(99\) −6891.55 −0.0706690
\(100\) 0 0
\(101\) −76270.0 −0.743961 −0.371981 0.928240i \(-0.621321\pi\)
−0.371981 + 0.928240i \(0.621321\pi\)
\(102\) 0 0
\(103\) 71216.8 0.661439 0.330719 0.943729i \(-0.392709\pi\)
0.330719 + 0.943729i \(0.392709\pi\)
\(104\) 0 0
\(105\) −139238. −1.23249
\(106\) 0 0
\(107\) 144823. 1.22286 0.611432 0.791297i \(-0.290594\pi\)
0.611432 + 0.791297i \(0.290594\pi\)
\(108\) 0 0
\(109\) −16321.4 −0.131580 −0.0657900 0.997833i \(-0.520957\pi\)
−0.0657900 + 0.997833i \(0.520957\pi\)
\(110\) 0 0
\(111\) 6175.01 0.0475696
\(112\) 0 0
\(113\) −167326. −1.23273 −0.616366 0.787460i \(-0.711396\pi\)
−0.616366 + 0.787460i \(0.711396\pi\)
\(114\) 0 0
\(115\) −253882. −1.79014
\(116\) 0 0
\(117\) 65847.1 0.444705
\(118\) 0 0
\(119\) −196941. −1.27488
\(120\) 0 0
\(121\) −153812. −0.955053
\(122\) 0 0
\(123\) 119303. 0.711032
\(124\) 0 0
\(125\) 379846. 2.17436
\(126\) 0 0
\(127\) 307665. 1.69265 0.846327 0.532663i \(-0.178809\pi\)
0.846327 + 0.532663i \(0.178809\pi\)
\(128\) 0 0
\(129\) −125425. −0.663608
\(130\) 0 0
\(131\) 197124. 1.00360 0.501802 0.864983i \(-0.332671\pi\)
0.501802 + 0.864983i \(0.332671\pi\)
\(132\) 0 0
\(133\) 60812.3 0.298100
\(134\) 0 0
\(135\) 73048.4 0.344966
\(136\) 0 0
\(137\) 41854.6 0.190521 0.0952603 0.995452i \(-0.469632\pi\)
0.0952603 + 0.995452i \(0.469632\pi\)
\(138\) 0 0
\(139\) −447375. −1.96397 −0.981984 0.188965i \(-0.939487\pi\)
−0.981984 + 0.188965i \(0.939487\pi\)
\(140\) 0 0
\(141\) 104016. 0.440610
\(142\) 0 0
\(143\) −69164.6 −0.282842
\(144\) 0 0
\(145\) −25461.5 −0.100569
\(146\) 0 0
\(147\) 63276.6 0.241518
\(148\) 0 0
\(149\) 367279. 1.35529 0.677643 0.735391i \(-0.263001\pi\)
0.677643 + 0.735391i \(0.263001\pi\)
\(150\) 0 0
\(151\) −357113. −1.27457 −0.637285 0.770628i \(-0.719942\pi\)
−0.637285 + 0.770628i \(0.719942\pi\)
\(152\) 0 0
\(153\) 103321. 0.356829
\(154\) 0 0
\(155\) 180499. 0.603457
\(156\) 0 0
\(157\) 256597. 0.830810 0.415405 0.909637i \(-0.363640\pi\)
0.415405 + 0.909637i \(0.363640\pi\)
\(158\) 0 0
\(159\) 72211.1 0.226522
\(160\) 0 0
\(161\) 391184. 1.18937
\(162\) 0 0
\(163\) −560618. −1.65272 −0.826358 0.563145i \(-0.809591\pi\)
−0.826358 + 0.563145i \(0.809591\pi\)
\(164\) 0 0
\(165\) −76728.6 −0.219405
\(166\) 0 0
\(167\) 410936. 1.14021 0.570103 0.821573i \(-0.306903\pi\)
0.570103 + 0.821573i \(0.306903\pi\)
\(168\) 0 0
\(169\) 289558. 0.779864
\(170\) 0 0
\(171\) −31903.9 −0.0834360
\(172\) 0 0
\(173\) −407557. −1.03532 −0.517658 0.855587i \(-0.673196\pi\)
−0.517658 + 0.855587i \(0.673196\pi\)
\(174\) 0 0
\(175\) −1.06775e6 −2.63558
\(176\) 0 0
\(177\) 71711.5 0.172050
\(178\) 0 0
\(179\) 73705.9 0.171937 0.0859686 0.996298i \(-0.472602\pi\)
0.0859686 + 0.996298i \(0.472602\pi\)
\(180\) 0 0
\(181\) 194327. 0.440896 0.220448 0.975399i \(-0.429248\pi\)
0.220448 + 0.975399i \(0.429248\pi\)
\(182\) 0 0
\(183\) −142458. −0.314455
\(184\) 0 0
\(185\) 68750.8 0.147689
\(186\) 0 0
\(187\) −108526. −0.226951
\(188\) 0 0
\(189\) −112554. −0.229195
\(190\) 0 0
\(191\) 171483. 0.340125 0.170063 0.985433i \(-0.445603\pi\)
0.170063 + 0.985433i \(0.445603\pi\)
\(192\) 0 0
\(193\) 774459. 1.49660 0.748299 0.663362i \(-0.230871\pi\)
0.748299 + 0.663362i \(0.230871\pi\)
\(194\) 0 0
\(195\) 733124. 1.38067
\(196\) 0 0
\(197\) 864723. 1.58749 0.793746 0.608250i \(-0.208128\pi\)
0.793746 + 0.608250i \(0.208128\pi\)
\(198\) 0 0
\(199\) 752715. 1.34740 0.673702 0.739003i \(-0.264703\pi\)
0.673702 + 0.739003i \(0.264703\pi\)
\(200\) 0 0
\(201\) 304532. 0.531671
\(202\) 0 0
\(203\) 39231.3 0.0668179
\(204\) 0 0
\(205\) 1.32829e6 2.20754
\(206\) 0 0
\(207\) −205227. −0.332895
\(208\) 0 0
\(209\) 33511.3 0.0530671
\(210\) 0 0
\(211\) 265517. 0.410569 0.205285 0.978702i \(-0.434188\pi\)
0.205285 + 0.978702i \(0.434188\pi\)
\(212\) 0 0
\(213\) 655074. 0.989331
\(214\) 0 0
\(215\) −1.39645e6 −2.06030
\(216\) 0 0
\(217\) −278115. −0.400937
\(218\) 0 0
\(219\) 6459.54 0.00910105
\(220\) 0 0
\(221\) 1.03694e6 1.42815
\(222\) 0 0
\(223\) 209136. 0.281623 0.140811 0.990036i \(-0.455029\pi\)
0.140811 + 0.990036i \(0.455029\pi\)
\(224\) 0 0
\(225\) 560175. 0.737679
\(226\) 0 0
\(227\) 120120. 0.154722 0.0773610 0.997003i \(-0.475351\pi\)
0.0773610 + 0.997003i \(0.475351\pi\)
\(228\) 0 0
\(229\) 440615. 0.555227 0.277613 0.960693i \(-0.410457\pi\)
0.277613 + 0.960693i \(0.410457\pi\)
\(230\) 0 0
\(231\) 118224. 0.145773
\(232\) 0 0
\(233\) −167121. −0.201670 −0.100835 0.994903i \(-0.532151\pi\)
−0.100835 + 0.994903i \(0.532151\pi\)
\(234\) 0 0
\(235\) 1.15809e6 1.36796
\(236\) 0 0
\(237\) 295598. 0.341846
\(238\) 0 0
\(239\) −445757. −0.504781 −0.252391 0.967625i \(-0.581217\pi\)
−0.252391 + 0.967625i \(0.581217\pi\)
\(240\) 0 0
\(241\) 153018. 0.169708 0.0848538 0.996393i \(-0.472958\pi\)
0.0848538 + 0.996393i \(0.472958\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) 704505. 0.749840
\(246\) 0 0
\(247\) −320192. −0.333940
\(248\) 0 0
\(249\) 415168. 0.424351
\(250\) 0 0
\(251\) −693358. −0.694662 −0.347331 0.937743i \(-0.612912\pi\)
−0.347331 + 0.937743i \(0.612912\pi\)
\(252\) 0 0
\(253\) 215566. 0.211728
\(254\) 0 0
\(255\) 1.15035e6 1.10784
\(256\) 0 0
\(257\) −1.71886e6 −1.62334 −0.811668 0.584119i \(-0.801440\pi\)
−0.811668 + 0.584119i \(0.801440\pi\)
\(258\) 0 0
\(259\) −105932. −0.0981246
\(260\) 0 0
\(261\) −20581.9 −0.0187018
\(262\) 0 0
\(263\) 156631. 0.139633 0.0698167 0.997560i \(-0.477759\pi\)
0.0698167 + 0.997560i \(0.477759\pi\)
\(264\) 0 0
\(265\) 803978. 0.703282
\(266\) 0 0
\(267\) 137300. 0.117867
\(268\) 0 0
\(269\) 800001. 0.674078 0.337039 0.941491i \(-0.390575\pi\)
0.337039 + 0.941491i \(0.390575\pi\)
\(270\) 0 0
\(271\) 1.89597e6 1.56823 0.784113 0.620618i \(-0.213118\pi\)
0.784113 + 0.620618i \(0.213118\pi\)
\(272\) 0 0
\(273\) −1.12961e6 −0.917319
\(274\) 0 0
\(275\) −588397. −0.469180
\(276\) 0 0
\(277\) −279803. −0.219105 −0.109553 0.993981i \(-0.534942\pi\)
−0.109553 + 0.993981i \(0.534942\pi\)
\(278\) 0 0
\(279\) 145907. 0.112219
\(280\) 0 0
\(281\) −554219. −0.418712 −0.209356 0.977840i \(-0.567137\pi\)
−0.209356 + 0.977840i \(0.567137\pi\)
\(282\) 0 0
\(283\) 1.57678e6 1.17032 0.585161 0.810917i \(-0.301031\pi\)
0.585161 + 0.810917i \(0.301031\pi\)
\(284\) 0 0
\(285\) −355209. −0.259043
\(286\) 0 0
\(287\) −2.04664e6 −1.46669
\(288\) 0 0
\(289\) 207218. 0.145943
\(290\) 0 0
\(291\) −1.56225e6 −1.08148
\(292\) 0 0
\(293\) −184563. −0.125596 −0.0627979 0.998026i \(-0.520002\pi\)
−0.0627979 + 0.998026i \(0.520002\pi\)
\(294\) 0 0
\(295\) 798416. 0.534164
\(296\) 0 0
\(297\) −62023.9 −0.0408008
\(298\) 0 0
\(299\) −2.05968e6 −1.33236
\(300\) 0 0
\(301\) 2.15167e6 1.36886
\(302\) 0 0
\(303\) −686430. −0.429526
\(304\) 0 0
\(305\) −1.58608e6 −0.976285
\(306\) 0 0
\(307\) −405878. −0.245782 −0.122891 0.992420i \(-0.539217\pi\)
−0.122891 + 0.992420i \(0.539217\pi\)
\(308\) 0 0
\(309\) 640952. 0.381882
\(310\) 0 0
\(311\) −254438. −0.149170 −0.0745849 0.997215i \(-0.523763\pi\)
−0.0745849 + 0.997215i \(0.523763\pi\)
\(312\) 0 0
\(313\) −1.03862e6 −0.599234 −0.299617 0.954060i \(-0.596859\pi\)
−0.299617 + 0.954060i \(0.596859\pi\)
\(314\) 0 0
\(315\) −1.25314e6 −0.711581
\(316\) 0 0
\(317\) 1.39910e6 0.781990 0.390995 0.920393i \(-0.372131\pi\)
0.390995 + 0.920393i \(0.372131\pi\)
\(318\) 0 0
\(319\) 21618.8 0.0118948
\(320\) 0 0
\(321\) 1.30341e6 0.706021
\(322\) 0 0
\(323\) −502415. −0.267952
\(324\) 0 0
\(325\) 5.62200e6 2.95245
\(326\) 0 0
\(327\) −146892. −0.0759678
\(328\) 0 0
\(329\) −1.78440e6 −0.908870
\(330\) 0 0
\(331\) −2.04667e6 −1.02678 −0.513390 0.858156i \(-0.671610\pi\)
−0.513390 + 0.858156i \(0.671610\pi\)
\(332\) 0 0
\(333\) 55575.0 0.0274643
\(334\) 0 0
\(335\) 3.39058e6 1.65067
\(336\) 0 0
\(337\) −3.22090e6 −1.54491 −0.772453 0.635072i \(-0.780970\pi\)
−0.772453 + 0.635072i \(0.780970\pi\)
\(338\) 0 0
\(339\) −1.50594e6 −0.711718
\(340\) 0 0
\(341\) −153258. −0.0713737
\(342\) 0 0
\(343\) 1.50940e6 0.692740
\(344\) 0 0
\(345\) −2.28494e6 −1.03354
\(346\) 0 0
\(347\) 1.80278e6 0.803748 0.401874 0.915695i \(-0.368359\pi\)
0.401874 + 0.915695i \(0.368359\pi\)
\(348\) 0 0
\(349\) −3.09976e6 −1.36228 −0.681138 0.732155i \(-0.738515\pi\)
−0.681138 + 0.732155i \(0.738515\pi\)
\(350\) 0 0
\(351\) 592624. 0.256751
\(352\) 0 0
\(353\) 2.54655e6 1.08772 0.543859 0.839177i \(-0.316963\pi\)
0.543859 + 0.839177i \(0.316963\pi\)
\(354\) 0 0
\(355\) 7.29342e6 3.07157
\(356\) 0 0
\(357\) −1.77247e6 −0.736052
\(358\) 0 0
\(359\) 790598. 0.323757 0.161879 0.986811i \(-0.448245\pi\)
0.161879 + 0.986811i \(0.448245\pi\)
\(360\) 0 0
\(361\) −2.32096e6 −0.937346
\(362\) 0 0
\(363\) −1.38431e6 −0.551400
\(364\) 0 0
\(365\) 71918.7 0.0282560
\(366\) 0 0
\(367\) −1.30401e6 −0.505376 −0.252688 0.967548i \(-0.581315\pi\)
−0.252688 + 0.967548i \(0.581315\pi\)
\(368\) 0 0
\(369\) 1.07373e6 0.410515
\(370\) 0 0
\(371\) −1.23878e6 −0.467260
\(372\) 0 0
\(373\) −4.94317e6 −1.83964 −0.919822 0.392337i \(-0.871667\pi\)
−0.919822 + 0.392337i \(0.871667\pi\)
\(374\) 0 0
\(375\) 3.41861e6 1.25537
\(376\) 0 0
\(377\) −206563. −0.0748512
\(378\) 0 0
\(379\) 1.92614e6 0.688795 0.344397 0.938824i \(-0.388083\pi\)
0.344397 + 0.938824i \(0.388083\pi\)
\(380\) 0 0
\(381\) 2.76898e6 0.977255
\(382\) 0 0
\(383\) −4.69380e6 −1.63504 −0.817519 0.575902i \(-0.804651\pi\)
−0.817519 + 0.575902i \(0.804651\pi\)
\(384\) 0 0
\(385\) 1.31628e6 0.452580
\(386\) 0 0
\(387\) −1.12883e6 −0.383134
\(388\) 0 0
\(389\) 2.35028e6 0.787492 0.393746 0.919219i \(-0.371179\pi\)
0.393746 + 0.919219i \(0.371179\pi\)
\(390\) 0 0
\(391\) −3.23186e6 −1.06908
\(392\) 0 0
\(393\) 1.77412e6 0.579430
\(394\) 0 0
\(395\) 3.29110e6 1.06133
\(396\) 0 0
\(397\) −1.84236e6 −0.586675 −0.293338 0.956009i \(-0.594766\pi\)
−0.293338 + 0.956009i \(0.594766\pi\)
\(398\) 0 0
\(399\) 547311. 0.172108
\(400\) 0 0
\(401\) 4.73319e6 1.46992 0.734959 0.678112i \(-0.237201\pi\)
0.734959 + 0.678112i \(0.237201\pi\)
\(402\) 0 0
\(403\) 1.46435e6 0.449140
\(404\) 0 0
\(405\) 657435. 0.199166
\(406\) 0 0
\(407\) −58375.0 −0.0174679
\(408\) 0 0
\(409\) 6.34620e6 1.87588 0.937941 0.346796i \(-0.112730\pi\)
0.937941 + 0.346796i \(0.112730\pi\)
\(410\) 0 0
\(411\) 376692. 0.109997
\(412\) 0 0
\(413\) −1.23021e6 −0.354898
\(414\) 0 0
\(415\) 4.62237e6 1.31748
\(416\) 0 0
\(417\) −4.02637e6 −1.13390
\(418\) 0 0
\(419\) 1.21837e6 0.339034 0.169517 0.985527i \(-0.445779\pi\)
0.169517 + 0.985527i \(0.445779\pi\)
\(420\) 0 0
\(421\) 3.51877e6 0.967579 0.483789 0.875185i \(-0.339260\pi\)
0.483789 + 0.875185i \(0.339260\pi\)
\(422\) 0 0
\(423\) 936147. 0.254386
\(424\) 0 0
\(425\) 8.82151e6 2.36903
\(426\) 0 0
\(427\) 2.44386e6 0.648643
\(428\) 0 0
\(429\) −622481. −0.163299
\(430\) 0 0
\(431\) −3.01231e6 −0.781099 −0.390549 0.920582i \(-0.627715\pi\)
−0.390549 + 0.920582i \(0.627715\pi\)
\(432\) 0 0
\(433\) 301545. 0.0772917 0.0386459 0.999253i \(-0.487696\pi\)
0.0386459 + 0.999253i \(0.487696\pi\)
\(434\) 0 0
\(435\) −229153. −0.0580634
\(436\) 0 0
\(437\) 997947. 0.249979
\(438\) 0 0
\(439\) 4.77660e6 1.18293 0.591464 0.806332i \(-0.298550\pi\)
0.591464 + 0.806332i \(0.298550\pi\)
\(440\) 0 0
\(441\) 569490. 0.139441
\(442\) 0 0
\(443\) −2.87476e6 −0.695973 −0.347986 0.937500i \(-0.613134\pi\)
−0.347986 + 0.937500i \(0.613134\pi\)
\(444\) 0 0
\(445\) 1.52867e6 0.365942
\(446\) 0 0
\(447\) 3.30552e6 0.782475
\(448\) 0 0
\(449\) 5.95349e6 1.39366 0.696828 0.717238i \(-0.254594\pi\)
0.696828 + 0.717238i \(0.254594\pi\)
\(450\) 0 0
\(451\) −1.12782e6 −0.261096
\(452\) 0 0
\(453\) −3.21402e6 −0.735873
\(454\) 0 0
\(455\) −1.25767e7 −2.84799
\(456\) 0 0
\(457\) 2.01722e6 0.451818 0.225909 0.974148i \(-0.427465\pi\)
0.225909 + 0.974148i \(0.427465\pi\)
\(458\) 0 0
\(459\) 929889. 0.206015
\(460\) 0 0
\(461\) −2.25196e6 −0.493525 −0.246763 0.969076i \(-0.579367\pi\)
−0.246763 + 0.969076i \(0.579367\pi\)
\(462\) 0 0
\(463\) 3.74465e6 0.811819 0.405909 0.913913i \(-0.366955\pi\)
0.405909 + 0.913913i \(0.366955\pi\)
\(464\) 0 0
\(465\) 1.62449e6 0.348406
\(466\) 0 0
\(467\) −8.62528e6 −1.83013 −0.915063 0.403311i \(-0.867859\pi\)
−0.915063 + 0.403311i \(0.867859\pi\)
\(468\) 0 0
\(469\) −5.22424e6 −1.09671
\(470\) 0 0
\(471\) 2.30937e6 0.479668
\(472\) 0 0
\(473\) 1.18570e6 0.243681
\(474\) 0 0
\(475\) −2.72394e6 −0.553941
\(476\) 0 0
\(477\) 649900. 0.130783
\(478\) 0 0
\(479\) −6.32087e6 −1.25875 −0.629373 0.777103i \(-0.716688\pi\)
−0.629373 + 0.777103i \(0.716688\pi\)
\(480\) 0 0
\(481\) 557759. 0.109922
\(482\) 0 0
\(483\) 3.52066e6 0.686682
\(484\) 0 0
\(485\) −1.73937e7 −3.35767
\(486\) 0 0
\(487\) −4.53590e6 −0.866644 −0.433322 0.901239i \(-0.642659\pi\)
−0.433322 + 0.901239i \(0.642659\pi\)
\(488\) 0 0
\(489\) −5.04556e6 −0.954196
\(490\) 0 0
\(491\) −2.68402e6 −0.502438 −0.251219 0.967930i \(-0.580831\pi\)
−0.251219 + 0.967930i \(0.580831\pi\)
\(492\) 0 0
\(493\) −324119. −0.0600602
\(494\) 0 0
\(495\) −690557. −0.126674
\(496\) 0 0
\(497\) −1.12378e7 −2.04075
\(498\) 0 0
\(499\) −2.57253e6 −0.462496 −0.231248 0.972895i \(-0.574281\pi\)
−0.231248 + 0.972895i \(0.574281\pi\)
\(500\) 0 0
\(501\) 3.69843e6 0.658298
\(502\) 0 0
\(503\) −4.22685e6 −0.744898 −0.372449 0.928053i \(-0.621482\pi\)
−0.372449 + 0.928053i \(0.621482\pi\)
\(504\) 0 0
\(505\) −7.64252e6 −1.33355
\(506\) 0 0
\(507\) 2.60602e6 0.450255
\(508\) 0 0
\(509\) −2.93969e6 −0.502929 −0.251465 0.967866i \(-0.580912\pi\)
−0.251465 + 0.967866i \(0.580912\pi\)
\(510\) 0 0
\(511\) −110813. −0.0187732
\(512\) 0 0
\(513\) −287135. −0.0481718
\(514\) 0 0
\(515\) 7.13618e6 1.18563
\(516\) 0 0
\(517\) −983311. −0.161795
\(518\) 0 0
\(519\) −3.66801e6 −0.597740
\(520\) 0 0
\(521\) −5.13499e6 −0.828792 −0.414396 0.910097i \(-0.636007\pi\)
−0.414396 + 0.910097i \(0.636007\pi\)
\(522\) 0 0
\(523\) −479078. −0.0765865 −0.0382932 0.999267i \(-0.512192\pi\)
−0.0382932 + 0.999267i \(0.512192\pi\)
\(524\) 0 0
\(525\) −9.60979e6 −1.52165
\(526\) 0 0
\(527\) 2.29772e6 0.360388
\(528\) 0 0
\(529\) −16898.0 −0.00262540
\(530\) 0 0
\(531\) 645404. 0.0993334
\(532\) 0 0
\(533\) 1.07761e7 1.64302
\(534\) 0 0
\(535\) 1.45118e7 2.19198
\(536\) 0 0
\(537\) 663353. 0.0992680
\(538\) 0 0
\(539\) −598181. −0.0886872
\(540\) 0 0
\(541\) −1.03133e7 −1.51497 −0.757486 0.652852i \(-0.773572\pi\)
−0.757486 + 0.652852i \(0.773572\pi\)
\(542\) 0 0
\(543\) 1.74894e6 0.254552
\(544\) 0 0
\(545\) −1.63546e6 −0.235857
\(546\) 0 0
\(547\) −1.10504e7 −1.57910 −0.789552 0.613684i \(-0.789687\pi\)
−0.789552 + 0.613684i \(0.789687\pi\)
\(548\) 0 0
\(549\) −1.28212e6 −0.181550
\(550\) 0 0
\(551\) 100083. 0.0140437
\(552\) 0 0
\(553\) −5.07097e6 −0.705145
\(554\) 0 0
\(555\) 618757. 0.0852683
\(556\) 0 0
\(557\) −1.09232e6 −0.149181 −0.0745904 0.997214i \(-0.523765\pi\)
−0.0745904 + 0.997214i \(0.523765\pi\)
\(558\) 0 0
\(559\) −1.13291e7 −1.53344
\(560\) 0 0
\(561\) −976738. −0.131030
\(562\) 0 0
\(563\) 8.03622e6 1.06852 0.534258 0.845322i \(-0.320591\pi\)
0.534258 + 0.845322i \(0.320591\pi\)
\(564\) 0 0
\(565\) −1.67667e7 −2.20967
\(566\) 0 0
\(567\) −1.01298e6 −0.132326
\(568\) 0 0
\(569\) −4.89482e6 −0.633806 −0.316903 0.948458i \(-0.602643\pi\)
−0.316903 + 0.948458i \(0.602643\pi\)
\(570\) 0 0
\(571\) −629963. −0.0808583 −0.0404291 0.999182i \(-0.512873\pi\)
−0.0404291 + 0.999182i \(0.512873\pi\)
\(572\) 0 0
\(573\) 1.54335e6 0.196371
\(574\) 0 0
\(575\) −1.75222e7 −2.21013
\(576\) 0 0
\(577\) −6.90487e6 −0.863408 −0.431704 0.902015i \(-0.642087\pi\)
−0.431704 + 0.902015i \(0.642087\pi\)
\(578\) 0 0
\(579\) 6.97013e6 0.864061
\(580\) 0 0
\(581\) −7.12220e6 −0.875333
\(582\) 0 0
\(583\) −682642. −0.0831805
\(584\) 0 0
\(585\) 6.59811e6 0.797132
\(586\) 0 0
\(587\) −1.36076e7 −1.63000 −0.814998 0.579463i \(-0.803262\pi\)
−0.814998 + 0.579463i \(0.803262\pi\)
\(588\) 0 0
\(589\) −709498. −0.0842681
\(590\) 0 0
\(591\) 7.78250e6 0.916538
\(592\) 0 0
\(593\) 2.10052e6 0.245296 0.122648 0.992450i \(-0.460861\pi\)
0.122648 + 0.992450i \(0.460861\pi\)
\(594\) 0 0
\(595\) −1.97342e7 −2.28521
\(596\) 0 0
\(597\) 6.77444e6 0.777924
\(598\) 0 0
\(599\) 1.62682e6 0.185256 0.0926278 0.995701i \(-0.470473\pi\)
0.0926278 + 0.995701i \(0.470473\pi\)
\(600\) 0 0
\(601\) −4.49767e6 −0.507928 −0.253964 0.967214i \(-0.581734\pi\)
−0.253964 + 0.967214i \(0.581734\pi\)
\(602\) 0 0
\(603\) 2.74079e6 0.306960
\(604\) 0 0
\(605\) −1.54125e7 −1.71193
\(606\) 0 0
\(607\) 5.96865e6 0.657513 0.328756 0.944415i \(-0.393370\pi\)
0.328756 + 0.944415i \(0.393370\pi\)
\(608\) 0 0
\(609\) 353082. 0.0385773
\(610\) 0 0
\(611\) 9.39531e6 1.01814
\(612\) 0 0
\(613\) 3.34021e6 0.359023 0.179511 0.983756i \(-0.442548\pi\)
0.179511 + 0.983756i \(0.442548\pi\)
\(614\) 0 0
\(615\) 1.19546e7 1.27452
\(616\) 0 0
\(617\) −7.12648e6 −0.753637 −0.376818 0.926287i \(-0.622982\pi\)
−0.376818 + 0.926287i \(0.622982\pi\)
\(618\) 0 0
\(619\) −1.20586e7 −1.26494 −0.632469 0.774586i \(-0.717958\pi\)
−0.632469 + 0.774586i \(0.717958\pi\)
\(620\) 0 0
\(621\) −1.84704e6 −0.192197
\(622\) 0 0
\(623\) −2.35539e6 −0.243132
\(624\) 0 0
\(625\) 1.64502e7 1.68450
\(626\) 0 0
\(627\) 301601. 0.0306383
\(628\) 0 0
\(629\) 875182. 0.0882007
\(630\) 0 0
\(631\) −7.68926e6 −0.768796 −0.384398 0.923168i \(-0.625591\pi\)
−0.384398 + 0.923168i \(0.625591\pi\)
\(632\) 0 0
\(633\) 2.38965e6 0.237042
\(634\) 0 0
\(635\) 3.08291e7 3.03408
\(636\) 0 0
\(637\) 5.71548e6 0.558090
\(638\) 0 0
\(639\) 5.89567e6 0.571191
\(640\) 0 0
\(641\) −1.55180e7 −1.49174 −0.745868 0.666094i \(-0.767965\pi\)
−0.745868 + 0.666094i \(0.767965\pi\)
\(642\) 0 0
\(643\) 1.57536e7 1.50263 0.751314 0.659945i \(-0.229420\pi\)
0.751314 + 0.659945i \(0.229420\pi\)
\(644\) 0 0
\(645\) −1.25681e7 −1.18951
\(646\) 0 0
\(647\) −1.36896e7 −1.28567 −0.642834 0.766006i \(-0.722241\pi\)
−0.642834 + 0.766006i \(0.722241\pi\)
\(648\) 0 0
\(649\) −677920. −0.0631781
\(650\) 0 0
\(651\) −2.50304e6 −0.231481
\(652\) 0 0
\(653\) −4.41496e6 −0.405176 −0.202588 0.979264i \(-0.564935\pi\)
−0.202588 + 0.979264i \(0.564935\pi\)
\(654\) 0 0
\(655\) 1.97526e7 1.79895
\(656\) 0 0
\(657\) 58135.9 0.00525449
\(658\) 0 0
\(659\) −1.73108e6 −0.155276 −0.0776381 0.996982i \(-0.524738\pi\)
−0.0776381 + 0.996982i \(0.524738\pi\)
\(660\) 0 0
\(661\) −8.30967e6 −0.739742 −0.369871 0.929083i \(-0.620598\pi\)
−0.369871 + 0.929083i \(0.620598\pi\)
\(662\) 0 0
\(663\) 9.33250e6 0.824545
\(664\) 0 0
\(665\) 6.09361e6 0.534343
\(666\) 0 0
\(667\) 643797. 0.0560318
\(668\) 0 0
\(669\) 1.88223e6 0.162595
\(670\) 0 0
\(671\) 1.34671e6 0.115470
\(672\) 0 0
\(673\) −1.56921e6 −0.133550 −0.0667751 0.997768i \(-0.521271\pi\)
−0.0667751 + 0.997768i \(0.521271\pi\)
\(674\) 0 0
\(675\) 5.04158e6 0.425899
\(676\) 0 0
\(677\) −1.17260e7 −0.983282 −0.491641 0.870798i \(-0.663603\pi\)
−0.491641 + 0.870798i \(0.663603\pi\)
\(678\) 0 0
\(679\) 2.68004e7 2.23083
\(680\) 0 0
\(681\) 1.08108e6 0.0893288
\(682\) 0 0
\(683\) 2.11345e7 1.73356 0.866782 0.498687i \(-0.166184\pi\)
0.866782 + 0.498687i \(0.166184\pi\)
\(684\) 0 0
\(685\) 4.19398e6 0.341507
\(686\) 0 0
\(687\) 3.96553e6 0.320560
\(688\) 0 0
\(689\) 6.52248e6 0.523438
\(690\) 0 0
\(691\) −1.84062e7 −1.46646 −0.733230 0.679981i \(-0.761988\pi\)
−0.733230 + 0.679981i \(0.761988\pi\)
\(692\) 0 0
\(693\) 1.06402e6 0.0841621
\(694\) 0 0
\(695\) −4.48285e7 −3.52040
\(696\) 0 0
\(697\) 1.69088e7 1.31835
\(698\) 0 0
\(699\) −1.50409e6 −0.116434
\(700\) 0 0
\(701\) 9.57182e6 0.735698 0.367849 0.929886i \(-0.380094\pi\)
0.367849 + 0.929886i \(0.380094\pi\)
\(702\) 0 0
\(703\) −270243. −0.0206236
\(704\) 0 0
\(705\) 1.04228e7 0.789790
\(706\) 0 0
\(707\) 1.17757e7 0.886008
\(708\) 0 0
\(709\) 5.35207e6 0.399859 0.199929 0.979810i \(-0.435929\pi\)
0.199929 + 0.979810i \(0.435929\pi\)
\(710\) 0 0
\(711\) 2.66038e6 0.197365
\(712\) 0 0
\(713\) −4.56395e6 −0.336215
\(714\) 0 0
\(715\) −6.93053e6 −0.506992
\(716\) 0 0
\(717\) −4.01181e6 −0.291436
\(718\) 0 0
\(719\) −1.13450e7 −0.818435 −0.409217 0.912437i \(-0.634198\pi\)
−0.409217 + 0.912437i \(0.634198\pi\)
\(720\) 0 0
\(721\) −1.09955e7 −0.787730
\(722\) 0 0
\(723\) 1.37717e6 0.0979807
\(724\) 0 0
\(725\) −1.75727e6 −0.124164
\(726\) 0 0
\(727\) −5.36024e6 −0.376139 −0.188069 0.982156i \(-0.560223\pi\)
−0.188069 + 0.982156i \(0.560223\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −1.77765e7 −1.23042
\(732\) 0 0
\(733\) −2.07596e7 −1.42712 −0.713558 0.700596i \(-0.752918\pi\)
−0.713558 + 0.700596i \(0.752918\pi\)
\(734\) 0 0
\(735\) 6.34054e6 0.432920
\(736\) 0 0
\(737\) −2.87887e6 −0.195233
\(738\) 0 0
\(739\) 2.02904e7 1.36672 0.683359 0.730082i \(-0.260518\pi\)
0.683359 + 0.730082i \(0.260518\pi\)
\(740\) 0 0
\(741\) −2.88173e6 −0.192800
\(742\) 0 0
\(743\) 2.10215e7 1.39699 0.698493 0.715617i \(-0.253855\pi\)
0.698493 + 0.715617i \(0.253855\pi\)
\(744\) 0 0
\(745\) 3.68027e7 2.42934
\(746\) 0 0
\(747\) 3.73651e6 0.244999
\(748\) 0 0
\(749\) −2.23599e7 −1.45635
\(750\) 0 0
\(751\) 3.49173e6 0.225913 0.112956 0.993600i \(-0.463968\pi\)
0.112956 + 0.993600i \(0.463968\pi\)
\(752\) 0 0
\(753\) −6.24023e6 −0.401063
\(754\) 0 0
\(755\) −3.57840e7 −2.28466
\(756\) 0 0
\(757\) −2.15165e7 −1.36468 −0.682342 0.731033i \(-0.739039\pi\)
−0.682342 + 0.731033i \(0.739039\pi\)
\(758\) 0 0
\(759\) 1.94010e6 0.122242
\(760\) 0 0
\(761\) 1.62464e7 1.01694 0.508469 0.861080i \(-0.330212\pi\)
0.508469 + 0.861080i \(0.330212\pi\)
\(762\) 0 0
\(763\) 2.51993e6 0.156703
\(764\) 0 0
\(765\) 1.03531e7 0.639614
\(766\) 0 0
\(767\) 6.47736e6 0.397567
\(768\) 0 0
\(769\) 1.89849e7 1.15769 0.578846 0.815437i \(-0.303503\pi\)
0.578846 + 0.815437i \(0.303503\pi\)
\(770\) 0 0
\(771\) −1.54698e7 −0.937233
\(772\) 0 0
\(773\) 9.61884e6 0.578994 0.289497 0.957179i \(-0.406512\pi\)
0.289497 + 0.957179i \(0.406512\pi\)
\(774\) 0 0
\(775\) 1.24575e7 0.745036
\(776\) 0 0
\(777\) −953388. −0.0566523
\(778\) 0 0
\(779\) −5.22118e6 −0.308265
\(780\) 0 0
\(781\) −6.19270e6 −0.363289
\(782\) 0 0
\(783\) −185237. −0.0107975
\(784\) 0 0
\(785\) 2.57119e7 1.48922
\(786\) 0 0
\(787\) −9.93586e6 −0.571832 −0.285916 0.958255i \(-0.592298\pi\)
−0.285916 + 0.958255i \(0.592298\pi\)
\(788\) 0 0
\(789\) 1.40968e6 0.0806174
\(790\) 0 0
\(791\) 2.58343e7 1.46810
\(792\) 0 0
\(793\) −1.28675e7 −0.726628
\(794\) 0 0
\(795\) 7.23580e6 0.406040
\(796\) 0 0
\(797\) 2.77653e7 1.54831 0.774154 0.632998i \(-0.218176\pi\)
0.774154 + 0.632998i \(0.218176\pi\)
\(798\) 0 0
\(799\) 1.47422e7 0.816951
\(800\) 0 0
\(801\) 1.23570e6 0.0680508
\(802\) 0 0
\(803\) −61064.8 −0.00334197
\(804\) 0 0
\(805\) 3.91980e7 2.13194
\(806\) 0 0
\(807\) 7.20001e6 0.389179
\(808\) 0 0
\(809\) −2.70847e7 −1.45497 −0.727484 0.686125i \(-0.759311\pi\)
−0.727484 + 0.686125i \(0.759311\pi\)
\(810\) 0 0
\(811\) −2.00386e7 −1.06983 −0.534917 0.844905i \(-0.679657\pi\)
−0.534917 + 0.844905i \(0.679657\pi\)
\(812\) 0 0
\(813\) 1.70637e7 0.905416
\(814\) 0 0
\(815\) −5.61759e7 −2.96249
\(816\) 0 0
\(817\) 5.48911e6 0.287705
\(818\) 0 0
\(819\) −1.01665e7 −0.529614
\(820\) 0 0
\(821\) 3.68572e6 0.190838 0.0954188 0.995437i \(-0.469581\pi\)
0.0954188 + 0.995437i \(0.469581\pi\)
\(822\) 0 0
\(823\) −2.22928e7 −1.14727 −0.573633 0.819112i \(-0.694467\pi\)
−0.573633 + 0.819112i \(0.694467\pi\)
\(824\) 0 0
\(825\) −5.29558e6 −0.270881
\(826\) 0 0
\(827\) −1.98390e7 −1.00869 −0.504343 0.863503i \(-0.668265\pi\)
−0.504343 + 0.863503i \(0.668265\pi\)
\(828\) 0 0
\(829\) −4.83084e6 −0.244139 −0.122069 0.992522i \(-0.538953\pi\)
−0.122069 + 0.992522i \(0.538953\pi\)
\(830\) 0 0
\(831\) −2.51823e6 −0.126500
\(832\) 0 0
\(833\) 8.96819e6 0.447808
\(834\) 0 0
\(835\) 4.11773e7 2.04381
\(836\) 0 0
\(837\) 1.31317e6 0.0647898
\(838\) 0 0
\(839\) −2.24080e7 −1.09900 −0.549501 0.835493i \(-0.685182\pi\)
−0.549501 + 0.835493i \(0.685182\pi\)
\(840\) 0 0
\(841\) −2.04466e7 −0.996852
\(842\) 0 0
\(843\) −4.98797e6 −0.241743
\(844\) 0 0
\(845\) 2.90147e7 1.39790
\(846\) 0 0
\(847\) 2.37478e7 1.13740
\(848\) 0 0
\(849\) 1.41910e7 0.675686
\(850\) 0 0
\(851\) −1.73838e6 −0.0822848
\(852\) 0 0
\(853\) 2.55770e7 1.20358 0.601792 0.798653i \(-0.294453\pi\)
0.601792 + 0.798653i \(0.294453\pi\)
\(854\) 0 0
\(855\) −3.19688e6 −0.149559
\(856\) 0 0
\(857\) 1.94781e7 0.905929 0.452964 0.891529i \(-0.350366\pi\)
0.452964 + 0.891529i \(0.350366\pi\)
\(858\) 0 0
\(859\) 2.93437e7 1.35685 0.678424 0.734670i \(-0.262663\pi\)
0.678424 + 0.734670i \(0.262663\pi\)
\(860\) 0 0
\(861\) −1.84198e7 −0.846792
\(862\) 0 0
\(863\) 9.84655e6 0.450046 0.225023 0.974353i \(-0.427754\pi\)
0.225023 + 0.974353i \(0.427754\pi\)
\(864\) 0 0
\(865\) −4.08387e7 −1.85580
\(866\) 0 0
\(867\) 1.86496e6 0.0842601
\(868\) 0 0
\(869\) −2.79441e6 −0.125528
\(870\) 0 0
\(871\) 2.75069e7 1.22856
\(872\) 0 0
\(873\) −1.40603e7 −0.624394
\(874\) 0 0
\(875\) −5.86462e7 −2.58952
\(876\) 0 0
\(877\) 1.09591e7 0.481147 0.240573 0.970631i \(-0.422665\pi\)
0.240573 + 0.970631i \(0.422665\pi\)
\(878\) 0 0
\(879\) −1.66107e6 −0.0725128
\(880\) 0 0
\(881\) −4.72688e6 −0.205180 −0.102590 0.994724i \(-0.532713\pi\)
−0.102590 + 0.994724i \(0.532713\pi\)
\(882\) 0 0
\(883\) 3.23858e7 1.39782 0.698912 0.715207i \(-0.253668\pi\)
0.698912 + 0.715207i \(0.253668\pi\)
\(884\) 0 0
\(885\) 7.18575e6 0.308400
\(886\) 0 0
\(887\) −4.35277e7 −1.85762 −0.928809 0.370559i \(-0.879166\pi\)
−0.928809 + 0.370559i \(0.879166\pi\)
\(888\) 0 0
\(889\) −4.75018e7 −2.01584
\(890\) 0 0
\(891\) −558216. −0.0235563
\(892\) 0 0
\(893\) −4.55217e6 −0.191025
\(894\) 0 0
\(895\) 7.38559e6 0.308197
\(896\) 0 0
\(897\) −1.85372e7 −0.769240
\(898\) 0 0
\(899\) −457713. −0.0188883
\(900\) 0 0
\(901\) 1.02345e7 0.420004
\(902\) 0 0
\(903\) 1.93650e7 0.790312
\(904\) 0 0
\(905\) 1.94722e7 0.790304
\(906\) 0 0
\(907\) 4.49574e7 1.81461 0.907303 0.420477i \(-0.138137\pi\)
0.907303 + 0.420477i \(0.138137\pi\)
\(908\) 0 0
\(909\) −6.17787e6 −0.247987
\(910\) 0 0
\(911\) −3.43483e7 −1.37123 −0.685614 0.727965i \(-0.740466\pi\)
−0.685614 + 0.727965i \(0.740466\pi\)
\(912\) 0 0
\(913\) −3.92476e6 −0.155825
\(914\) 0 0
\(915\) −1.42748e7 −0.563658
\(916\) 0 0
\(917\) −3.04350e7 −1.19522
\(918\) 0 0
\(919\) 1.51792e7 0.592871 0.296435 0.955053i \(-0.404202\pi\)
0.296435 + 0.955053i \(0.404202\pi\)
\(920\) 0 0
\(921\) −3.65290e6 −0.141902
\(922\) 0 0
\(923\) 5.91698e7 2.28610
\(924\) 0 0
\(925\) 4.74497e6 0.182339
\(926\) 0 0
\(927\) 5.76856e6 0.220480
\(928\) 0 0
\(929\) −3.12691e7 −1.18871 −0.594356 0.804202i \(-0.702593\pi\)
−0.594356 + 0.804202i \(0.702593\pi\)
\(930\) 0 0
\(931\) −2.76923e6 −0.104709
\(932\) 0 0
\(933\) −2.28994e6 −0.0861232
\(934\) 0 0
\(935\) −1.08747e7 −0.406808
\(936\) 0 0
\(937\) −2.67948e7 −0.997015 −0.498507 0.866885i \(-0.666118\pi\)
−0.498507 + 0.866885i \(0.666118\pi\)
\(938\) 0 0
\(939\) −9.34759e6 −0.345968
\(940\) 0 0
\(941\) 8.36072e6 0.307801 0.153900 0.988086i \(-0.450817\pi\)
0.153900 + 0.988086i \(0.450817\pi\)
\(942\) 0 0
\(943\) −3.35860e7 −1.22993
\(944\) 0 0
\(945\) −1.12783e7 −0.410831
\(946\) 0 0
\(947\) −4.40994e7 −1.59793 −0.798965 0.601377i \(-0.794619\pi\)
−0.798965 + 0.601377i \(0.794619\pi\)
\(948\) 0 0
\(949\) 583460. 0.0210303
\(950\) 0 0
\(951\) 1.25919e7 0.451482
\(952\) 0 0
\(953\) −1.99247e7 −0.710658 −0.355329 0.934741i \(-0.615631\pi\)
−0.355329 + 0.934741i \(0.615631\pi\)
\(954\) 0 0
\(955\) 1.71832e7 0.609673
\(956\) 0 0
\(957\) 194569. 0.00686744
\(958\) 0 0
\(959\) −6.46213e6 −0.226897
\(960\) 0 0
\(961\) −2.53844e7 −0.886662
\(962\) 0 0
\(963\) 1.17307e7 0.407621
\(964\) 0 0
\(965\) 7.76035e7 2.68264
\(966\) 0 0
\(967\) −4.56359e7 −1.56942 −0.784712 0.619860i \(-0.787189\pi\)
−0.784712 + 0.619860i \(0.787189\pi\)
\(968\) 0 0
\(969\) −4.52173e6 −0.154702
\(970\) 0 0
\(971\) 2.09777e7 0.714020 0.357010 0.934101i \(-0.383796\pi\)
0.357010 + 0.934101i \(0.383796\pi\)
\(972\) 0 0
\(973\) 6.90723e7 2.33895
\(974\) 0 0
\(975\) 5.05980e7 1.70460
\(976\) 0 0
\(977\) −3.03128e7 −1.01599 −0.507995 0.861360i \(-0.669613\pi\)
−0.507995 + 0.861360i \(0.669613\pi\)
\(978\) 0 0
\(979\) −1.29796e6 −0.0432817
\(980\) 0 0
\(981\) −1.32203e6 −0.0438600
\(982\) 0 0
\(983\) −2.04558e7 −0.675200 −0.337600 0.941290i \(-0.609615\pi\)
−0.337600 + 0.941290i \(0.609615\pi\)
\(984\) 0 0
\(985\) 8.66483e7 2.84557
\(986\) 0 0
\(987\) −1.60596e7 −0.524737
\(988\) 0 0
\(989\) 3.53095e7 1.14789
\(990\) 0 0
\(991\) −1.72449e7 −0.557797 −0.278898 0.960321i \(-0.589969\pi\)
−0.278898 + 0.960321i \(0.589969\pi\)
\(992\) 0 0
\(993\) −1.84200e7 −0.592811
\(994\) 0 0
\(995\) 7.54247e7 2.41522
\(996\) 0 0
\(997\) −7.27445e6 −0.231773 −0.115886 0.993262i \(-0.536971\pi\)
−0.115886 + 0.993262i \(0.536971\pi\)
\(998\) 0 0
\(999\) 500175. 0.0158565
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.6.a.bd.1.5 5
4.3 odd 2 768.6.a.bb.1.5 5
8.3 odd 2 768.6.a.bc.1.1 5
8.5 even 2 768.6.a.ba.1.1 5
16.3 odd 4 96.6.d.a.49.1 10
16.5 even 4 24.6.d.a.13.8 yes 10
16.11 odd 4 96.6.d.a.49.10 10
16.13 even 4 24.6.d.a.13.7 10
48.5 odd 4 72.6.d.d.37.3 10
48.11 even 4 288.6.d.d.145.1 10
48.29 odd 4 72.6.d.d.37.4 10
48.35 even 4 288.6.d.d.145.10 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.6.d.a.13.7 10 16.13 even 4
24.6.d.a.13.8 yes 10 16.5 even 4
72.6.d.d.37.3 10 48.5 odd 4
72.6.d.d.37.4 10 48.29 odd 4
96.6.d.a.49.1 10 16.3 odd 4
96.6.d.a.49.10 10 16.11 odd 4
288.6.d.d.145.1 10 48.11 even 4
288.6.d.d.145.10 10 48.35 even 4
768.6.a.ba.1.1 5 8.5 even 2
768.6.a.bb.1.5 5 4.3 odd 2
768.6.a.bc.1.1 5 8.3 odd 2
768.6.a.bd.1.5 5 1.1 even 1 trivial