Properties

Label 96.6.d.a.49.10
Level $96$
Weight $6$
Character 96.49
Analytic conductor $15.397$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [96,6,Mod(49,96)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(96, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("96.49"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 96 = 2^{5} \cdot 3 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 96.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3968467020\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4 x^{9} + 20 x^{8} - 16 x^{7} + 290 x^{6} + 896 x^{5} + 416 x^{4} + 13952 x^{3} + 60997 x^{2} + \cdots + 750564 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{40}\cdot 3^{8} \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.10
Root \(-2.89538 + 0.908872i\) of defining polynomial
Character \(\chi\) \(=\) 96.49
Dual form 96.6.d.a.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000i q^{3} +100.204i q^{5} -154.395 q^{7} -81.0000 q^{9} +85.0809i q^{11} -812.927i q^{13} -901.832 q^{15} +1275.57 q^{17} -393.875i q^{19} -1389.55i q^{21} -2533.66 q^{23} -6915.74 q^{25} -729.000i q^{27} +254.097i q^{29} -1801.33 q^{31} -765.728 q^{33} -15470.9i q^{35} +686.112i q^{37} +7316.35 q^{39} -13255.9 q^{41} +13936.2i q^{43} -8116.48i q^{45} -11557.4 q^{47} +7030.74 q^{49} +11480.1i q^{51} +8023.45i q^{53} -8525.40 q^{55} +3544.88 q^{57} -7967.95i q^{59} +15828.6i q^{61} +12506.0 q^{63} +81458.2 q^{65} +33836.9i q^{67} -22803.0i q^{69} +72786.0 q^{71} -717.727 q^{73} -62241.7i q^{75} -13136.0i q^{77} -32844.2 q^{79} +6561.00 q^{81} +46129.8i q^{83} +127816. i q^{85} -2286.88 q^{87} -15255.6 q^{89} +125512. i q^{91} -16211.9i q^{93} +39467.7 q^{95} -173584. q^{97} -6891.55i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 196 q^{7} - 810 q^{9} - 900 q^{15} - 404 q^{17} - 1672 q^{23} - 9366 q^{25} - 18692 q^{31} + 12168 q^{39} - 2476 q^{41} - 65256 q^{47} + 9378 q^{49} + 103424 q^{55} - 12888 q^{57} - 15876 q^{63}+ \cdots + 59372 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/96\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(37\) \(65\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000i 0.577350i
\(4\) 0 0
\(5\) 100.204i 1.79249i 0.443554 + 0.896247i \(0.353717\pi\)
−0.443554 + 0.896247i \(0.646283\pi\)
\(6\) 0 0
\(7\) −154.395 −1.19093 −0.595467 0.803380i \(-0.703033\pi\)
−0.595467 + 0.803380i \(0.703033\pi\)
\(8\) 0 0
\(9\) −81.0000 −0.333333
\(10\) 0 0
\(11\) 85.0809i 0.212007i 0.994366 + 0.106003i \(0.0338055\pi\)
−0.994366 + 0.106003i \(0.966195\pi\)
\(12\) 0 0
\(13\) − 812.927i − 1.33412i −0.745006 0.667058i \(-0.767553\pi\)
0.745006 0.667058i \(-0.232447\pi\)
\(14\) 0 0
\(15\) −901.832 −1.03490
\(16\) 0 0
\(17\) 1275.57 1.07049 0.535244 0.844698i \(-0.320220\pi\)
0.535244 + 0.844698i \(0.320220\pi\)
\(18\) 0 0
\(19\) − 393.875i − 0.250308i −0.992137 0.125154i \(-0.960057\pi\)
0.992137 0.125154i \(-0.0399425\pi\)
\(20\) 0 0
\(21\) − 1389.55i − 0.687586i
\(22\) 0 0
\(23\) −2533.66 −0.998686 −0.499343 0.866404i \(-0.666425\pi\)
−0.499343 + 0.866404i \(0.666425\pi\)
\(24\) 0 0
\(25\) −6915.74 −2.21304
\(26\) 0 0
\(27\) − 729.000i − 0.192450i
\(28\) 0 0
\(29\) 254.097i 0.0561055i 0.999606 + 0.0280527i \(0.00893064\pi\)
−0.999606 + 0.0280527i \(0.991069\pi\)
\(30\) 0 0
\(31\) −1801.33 −0.336658 −0.168329 0.985731i \(-0.553837\pi\)
−0.168329 + 0.985731i \(0.553837\pi\)
\(32\) 0 0
\(33\) −765.728 −0.122402
\(34\) 0 0
\(35\) − 15470.9i − 2.13474i
\(36\) 0 0
\(37\) 686.112i 0.0823930i 0.999151 + 0.0411965i \(0.0131170\pi\)
−0.999151 + 0.0411965i \(0.986883\pi\)
\(38\) 0 0
\(39\) 7316.35 0.770252
\(40\) 0 0
\(41\) −13255.9 −1.23154 −0.615772 0.787924i \(-0.711156\pi\)
−0.615772 + 0.787924i \(0.711156\pi\)
\(42\) 0 0
\(43\) 13936.2i 1.14940i 0.818363 + 0.574701i \(0.194882\pi\)
−0.818363 + 0.574701i \(0.805118\pi\)
\(44\) 0 0
\(45\) − 8116.48i − 0.597498i
\(46\) 0 0
\(47\) −11557.4 −0.763158 −0.381579 0.924336i \(-0.624620\pi\)
−0.381579 + 0.924336i \(0.624620\pi\)
\(48\) 0 0
\(49\) 7030.74 0.418322
\(50\) 0 0
\(51\) 11480.1i 0.618046i
\(52\) 0 0
\(53\) 8023.45i 0.392348i 0.980569 + 0.196174i \(0.0628518\pi\)
−0.980569 + 0.196174i \(0.937148\pi\)
\(54\) 0 0
\(55\) −8525.40 −0.380021
\(56\) 0 0
\(57\) 3544.88 0.144515
\(58\) 0 0
\(59\) − 7967.95i − 0.298000i −0.988837 0.149000i \(-0.952395\pi\)
0.988837 0.149000i \(-0.0476055\pi\)
\(60\) 0 0
\(61\) 15828.6i 0.544651i 0.962205 + 0.272326i \(0.0877928\pi\)
−0.962205 + 0.272326i \(0.912207\pi\)
\(62\) 0 0
\(63\) 12506.0 0.396978
\(64\) 0 0
\(65\) 81458.2 2.39140
\(66\) 0 0
\(67\) 33836.9i 0.920881i 0.887691 + 0.460440i \(0.152309\pi\)
−0.887691 + 0.460440i \(0.847691\pi\)
\(68\) 0 0
\(69\) − 22803.0i − 0.576592i
\(70\) 0 0
\(71\) 72786.0 1.71357 0.856786 0.515672i \(-0.172458\pi\)
0.856786 + 0.515672i \(0.172458\pi\)
\(72\) 0 0
\(73\) −717.727 −0.0157635 −0.00788174 0.999969i \(-0.502509\pi\)
−0.00788174 + 0.999969i \(0.502509\pi\)
\(74\) 0 0
\(75\) − 62241.7i − 1.27770i
\(76\) 0 0
\(77\) − 13136.0i − 0.252486i
\(78\) 0 0
\(79\) −32844.2 −0.592094 −0.296047 0.955173i \(-0.595669\pi\)
−0.296047 + 0.955173i \(0.595669\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 46129.8i 0.734998i 0.930024 + 0.367499i \(0.119786\pi\)
−0.930024 + 0.367499i \(0.880214\pi\)
\(84\) 0 0
\(85\) 127816.i 1.91884i
\(86\) 0 0
\(87\) −2286.88 −0.0323925
\(88\) 0 0
\(89\) −15255.6 −0.204152 −0.102076 0.994777i \(-0.532549\pi\)
−0.102076 + 0.994777i \(0.532549\pi\)
\(90\) 0 0
\(91\) 125512.i 1.58884i
\(92\) 0 0
\(93\) − 16211.9i − 0.194369i
\(94\) 0 0
\(95\) 39467.7 0.448676
\(96\) 0 0
\(97\) −173584. −1.87318 −0.936591 0.350426i \(-0.886037\pi\)
−0.936591 + 0.350426i \(0.886037\pi\)
\(98\) 0 0
\(99\) − 6891.55i − 0.0706690i
\(100\) 0 0
\(101\) − 76270.0i − 0.743961i −0.928240 0.371981i \(-0.878679\pi\)
0.928240 0.371981i \(-0.121321\pi\)
\(102\) 0 0
\(103\) 71216.8 0.661439 0.330719 0.943729i \(-0.392709\pi\)
0.330719 + 0.943729i \(0.392709\pi\)
\(104\) 0 0
\(105\) 139238. 1.23249
\(106\) 0 0
\(107\) − 144823.i − 1.22286i −0.791297 0.611432i \(-0.790594\pi\)
0.791297 0.611432i \(-0.209406\pi\)
\(108\) 0 0
\(109\) 16321.4i 0.131580i 0.997833 + 0.0657900i \(0.0209568\pi\)
−0.997833 + 0.0657900i \(0.979043\pi\)
\(110\) 0 0
\(111\) −6175.01 −0.0475696
\(112\) 0 0
\(113\) −167326. −1.23273 −0.616366 0.787460i \(-0.711396\pi\)
−0.616366 + 0.787460i \(0.711396\pi\)
\(114\) 0 0
\(115\) − 253882.i − 1.79014i
\(116\) 0 0
\(117\) 65847.1i 0.444705i
\(118\) 0 0
\(119\) −196941. −1.27488
\(120\) 0 0
\(121\) 153812. 0.955053
\(122\) 0 0
\(123\) − 119303.i − 0.711032i
\(124\) 0 0
\(125\) − 379846.i − 2.17436i
\(126\) 0 0
\(127\) −307665. −1.69265 −0.846327 0.532663i \(-0.821191\pi\)
−0.846327 + 0.532663i \(0.821191\pi\)
\(128\) 0 0
\(129\) −125425. −0.663608
\(130\) 0 0
\(131\) 197124.i 1.00360i 0.864983 + 0.501802i \(0.167329\pi\)
−0.864983 + 0.501802i \(0.832671\pi\)
\(132\) 0 0
\(133\) 60812.3i 0.298100i
\(134\) 0 0
\(135\) 73048.4 0.344966
\(136\) 0 0
\(137\) −41854.6 −0.190521 −0.0952603 0.995452i \(-0.530368\pi\)
−0.0952603 + 0.995452i \(0.530368\pi\)
\(138\) 0 0
\(139\) 447375.i 1.96397i 0.188965 + 0.981984i \(0.439487\pi\)
−0.188965 + 0.981984i \(0.560513\pi\)
\(140\) 0 0
\(141\) − 104016.i − 0.440610i
\(142\) 0 0
\(143\) 69164.6 0.282842
\(144\) 0 0
\(145\) −25461.5 −0.100569
\(146\) 0 0
\(147\) 63276.6i 0.241518i
\(148\) 0 0
\(149\) 367279.i 1.35529i 0.735391 + 0.677643i \(0.236999\pi\)
−0.735391 + 0.677643i \(0.763001\pi\)
\(150\) 0 0
\(151\) −357113. −1.27457 −0.637285 0.770628i \(-0.719942\pi\)
−0.637285 + 0.770628i \(0.719942\pi\)
\(152\) 0 0
\(153\) −103321. −0.356829
\(154\) 0 0
\(155\) − 180499.i − 0.603457i
\(156\) 0 0
\(157\) − 256597.i − 0.830810i −0.909637 0.415405i \(-0.863640\pi\)
0.909637 0.415405i \(-0.136360\pi\)
\(158\) 0 0
\(159\) −72211.1 −0.226522
\(160\) 0 0
\(161\) 391184. 1.18937
\(162\) 0 0
\(163\) − 560618.i − 1.65272i −0.563145 0.826358i \(-0.690409\pi\)
0.563145 0.826358i \(-0.309591\pi\)
\(164\) 0 0
\(165\) − 76728.6i − 0.219405i
\(166\) 0 0
\(167\) 410936. 1.14021 0.570103 0.821573i \(-0.306903\pi\)
0.570103 + 0.821573i \(0.306903\pi\)
\(168\) 0 0
\(169\) −289558. −0.779864
\(170\) 0 0
\(171\) 31903.9i 0.0834360i
\(172\) 0 0
\(173\) 407557.i 1.03532i 0.855587 + 0.517658i \(0.173196\pi\)
−0.855587 + 0.517658i \(0.826804\pi\)
\(174\) 0 0
\(175\) 1.06775e6 2.63558
\(176\) 0 0
\(177\) 71711.5 0.172050
\(178\) 0 0
\(179\) 73705.9i 0.171937i 0.996298 + 0.0859686i \(0.0273985\pi\)
−0.996298 + 0.0859686i \(0.972602\pi\)
\(180\) 0 0
\(181\) 194327.i 0.440896i 0.975399 + 0.220448i \(0.0707520\pi\)
−0.975399 + 0.220448i \(0.929248\pi\)
\(182\) 0 0
\(183\) −142458. −0.314455
\(184\) 0 0
\(185\) −68750.8 −0.147689
\(186\) 0 0
\(187\) 108526.i 0.226951i
\(188\) 0 0
\(189\) 112554.i 0.229195i
\(190\) 0 0
\(191\) −171483. −0.340125 −0.170063 0.985433i \(-0.554397\pi\)
−0.170063 + 0.985433i \(0.554397\pi\)
\(192\) 0 0
\(193\) 774459. 1.49660 0.748299 0.663362i \(-0.230871\pi\)
0.748299 + 0.663362i \(0.230871\pi\)
\(194\) 0 0
\(195\) 733124.i 1.38067i
\(196\) 0 0
\(197\) 864723.i 1.58749i 0.608250 + 0.793746i \(0.291872\pi\)
−0.608250 + 0.793746i \(0.708128\pi\)
\(198\) 0 0
\(199\) 752715. 1.34740 0.673702 0.739003i \(-0.264703\pi\)
0.673702 + 0.739003i \(0.264703\pi\)
\(200\) 0 0
\(201\) −304532. −0.531671
\(202\) 0 0
\(203\) − 39231.3i − 0.0668179i
\(204\) 0 0
\(205\) − 1.32829e6i − 2.20754i
\(206\) 0 0
\(207\) 205227. 0.332895
\(208\) 0 0
\(209\) 33511.3 0.0530671
\(210\) 0 0
\(211\) 265517.i 0.410569i 0.978702 + 0.205285i \(0.0658120\pi\)
−0.978702 + 0.205285i \(0.934188\pi\)
\(212\) 0 0
\(213\) 655074.i 0.989331i
\(214\) 0 0
\(215\) −1.39645e6 −2.06030
\(216\) 0 0
\(217\) 278115. 0.400937
\(218\) 0 0
\(219\) − 6459.54i − 0.00910105i
\(220\) 0 0
\(221\) − 1.03694e6i − 1.42815i
\(222\) 0 0
\(223\) −209136. −0.281623 −0.140811 0.990036i \(-0.544971\pi\)
−0.140811 + 0.990036i \(0.544971\pi\)
\(224\) 0 0
\(225\) 560175. 0.737679
\(226\) 0 0
\(227\) 120120.i 0.154722i 0.997003 + 0.0773610i \(0.0246494\pi\)
−0.997003 + 0.0773610i \(0.975351\pi\)
\(228\) 0 0
\(229\) 440615.i 0.555227i 0.960693 + 0.277613i \(0.0895434\pi\)
−0.960693 + 0.277613i \(0.910457\pi\)
\(230\) 0 0
\(231\) 118224. 0.145773
\(232\) 0 0
\(233\) 167121. 0.201670 0.100835 0.994903i \(-0.467849\pi\)
0.100835 + 0.994903i \(0.467849\pi\)
\(234\) 0 0
\(235\) − 1.15809e6i − 1.36796i
\(236\) 0 0
\(237\) − 295598.i − 0.341846i
\(238\) 0 0
\(239\) 445757. 0.504781 0.252391 0.967625i \(-0.418783\pi\)
0.252391 + 0.967625i \(0.418783\pi\)
\(240\) 0 0
\(241\) 153018. 0.169708 0.0848538 0.996393i \(-0.472958\pi\)
0.0848538 + 0.996393i \(0.472958\pi\)
\(242\) 0 0
\(243\) 59049.0i 0.0641500i
\(244\) 0 0
\(245\) 704505.i 0.749840i
\(246\) 0 0
\(247\) −320192. −0.333940
\(248\) 0 0
\(249\) −415168. −0.424351
\(250\) 0 0
\(251\) 693358.i 0.694662i 0.937743 + 0.347331i \(0.112912\pi\)
−0.937743 + 0.347331i \(0.887088\pi\)
\(252\) 0 0
\(253\) − 215566.i − 0.211728i
\(254\) 0 0
\(255\) −1.15035e6 −1.10784
\(256\) 0 0
\(257\) −1.71886e6 −1.62334 −0.811668 0.584119i \(-0.801440\pi\)
−0.811668 + 0.584119i \(0.801440\pi\)
\(258\) 0 0
\(259\) − 105932.i − 0.0981246i
\(260\) 0 0
\(261\) − 20581.9i − 0.0187018i
\(262\) 0 0
\(263\) 156631. 0.139633 0.0698167 0.997560i \(-0.477759\pi\)
0.0698167 + 0.997560i \(0.477759\pi\)
\(264\) 0 0
\(265\) −803978. −0.703282
\(266\) 0 0
\(267\) − 137300.i − 0.117867i
\(268\) 0 0
\(269\) − 800001.i − 0.674078i −0.941491 0.337039i \(-0.890575\pi\)
0.941491 0.337039i \(-0.109425\pi\)
\(270\) 0 0
\(271\) −1.89597e6 −1.56823 −0.784113 0.620618i \(-0.786882\pi\)
−0.784113 + 0.620618i \(0.786882\pi\)
\(272\) 0 0
\(273\) −1.12961e6 −0.917319
\(274\) 0 0
\(275\) − 588397.i − 0.469180i
\(276\) 0 0
\(277\) − 279803.i − 0.219105i −0.993981 0.109553i \(-0.965058\pi\)
0.993981 0.109553i \(-0.0349418\pi\)
\(278\) 0 0
\(279\) 145907. 0.112219
\(280\) 0 0
\(281\) 554219. 0.418712 0.209356 0.977840i \(-0.432863\pi\)
0.209356 + 0.977840i \(0.432863\pi\)
\(282\) 0 0
\(283\) − 1.57678e6i − 1.17032i −0.810917 0.585161i \(-0.801031\pi\)
0.810917 0.585161i \(-0.198969\pi\)
\(284\) 0 0
\(285\) 355209.i 0.259043i
\(286\) 0 0
\(287\) 2.04664e6 1.46669
\(288\) 0 0
\(289\) 207218. 0.145943
\(290\) 0 0
\(291\) − 1.56225e6i − 1.08148i
\(292\) 0 0
\(293\) − 184563.i − 0.125596i −0.998026 0.0627979i \(-0.979998\pi\)
0.998026 0.0627979i \(-0.0200024\pi\)
\(294\) 0 0
\(295\) 798416. 0.534164
\(296\) 0 0
\(297\) 62023.9 0.0408008
\(298\) 0 0
\(299\) 2.05968e6i 1.33236i
\(300\) 0 0
\(301\) − 2.15167e6i − 1.36886i
\(302\) 0 0
\(303\) 686430. 0.429526
\(304\) 0 0
\(305\) −1.58608e6 −0.976285
\(306\) 0 0
\(307\) − 405878.i − 0.245782i −0.992420 0.122891i \(-0.960783\pi\)
0.992420 0.122891i \(-0.0392165\pi\)
\(308\) 0 0
\(309\) 640952.i 0.381882i
\(310\) 0 0
\(311\) −254438. −0.149170 −0.0745849 0.997215i \(-0.523763\pi\)
−0.0745849 + 0.997215i \(0.523763\pi\)
\(312\) 0 0
\(313\) 1.03862e6 0.599234 0.299617 0.954060i \(-0.403141\pi\)
0.299617 + 0.954060i \(0.403141\pi\)
\(314\) 0 0
\(315\) 1.25314e6i 0.711581i
\(316\) 0 0
\(317\) − 1.39910e6i − 0.781990i −0.920393 0.390995i \(-0.872131\pi\)
0.920393 0.390995i \(-0.127869\pi\)
\(318\) 0 0
\(319\) −21618.8 −0.0118948
\(320\) 0 0
\(321\) 1.30341e6 0.706021
\(322\) 0 0
\(323\) − 502415.i − 0.267952i
\(324\) 0 0
\(325\) 5.62200e6i 2.95245i
\(326\) 0 0
\(327\) −146892. −0.0759678
\(328\) 0 0
\(329\) 1.78440e6 0.908870
\(330\) 0 0
\(331\) 2.04667e6i 1.02678i 0.858156 + 0.513390i \(0.171610\pi\)
−0.858156 + 0.513390i \(0.828390\pi\)
\(332\) 0 0
\(333\) − 55575.0i − 0.0274643i
\(334\) 0 0
\(335\) −3.39058e6 −1.65067
\(336\) 0 0
\(337\) −3.22090e6 −1.54491 −0.772453 0.635072i \(-0.780970\pi\)
−0.772453 + 0.635072i \(0.780970\pi\)
\(338\) 0 0
\(339\) − 1.50594e6i − 0.711718i
\(340\) 0 0
\(341\) − 153258.i − 0.0713737i
\(342\) 0 0
\(343\) 1.50940e6 0.692740
\(344\) 0 0
\(345\) 2.28494e6 1.03354
\(346\) 0 0
\(347\) − 1.80278e6i − 0.803748i −0.915695 0.401874i \(-0.868359\pi\)
0.915695 0.401874i \(-0.131641\pi\)
\(348\) 0 0
\(349\) 3.09976e6i 1.36228i 0.732155 + 0.681138i \(0.238515\pi\)
−0.732155 + 0.681138i \(0.761485\pi\)
\(350\) 0 0
\(351\) −592624. −0.256751
\(352\) 0 0
\(353\) 2.54655e6 1.08772 0.543859 0.839177i \(-0.316963\pi\)
0.543859 + 0.839177i \(0.316963\pi\)
\(354\) 0 0
\(355\) 7.29342e6i 3.07157i
\(356\) 0 0
\(357\) − 1.77247e6i − 0.736052i
\(358\) 0 0
\(359\) 790598. 0.323757 0.161879 0.986811i \(-0.448245\pi\)
0.161879 + 0.986811i \(0.448245\pi\)
\(360\) 0 0
\(361\) 2.32096e6 0.937346
\(362\) 0 0
\(363\) 1.38431e6i 0.551400i
\(364\) 0 0
\(365\) − 71918.7i − 0.0282560i
\(366\) 0 0
\(367\) 1.30401e6 0.505376 0.252688 0.967548i \(-0.418685\pi\)
0.252688 + 0.967548i \(0.418685\pi\)
\(368\) 0 0
\(369\) 1.07373e6 0.410515
\(370\) 0 0
\(371\) − 1.23878e6i − 0.467260i
\(372\) 0 0
\(373\) − 4.94317e6i − 1.83964i −0.392337 0.919822i \(-0.628333\pi\)
0.392337 0.919822i \(-0.371667\pi\)
\(374\) 0 0
\(375\) 3.41861e6 1.25537
\(376\) 0 0
\(377\) 206563. 0.0748512
\(378\) 0 0
\(379\) − 1.92614e6i − 0.688795i −0.938824 0.344397i \(-0.888083\pi\)
0.938824 0.344397i \(-0.111917\pi\)
\(380\) 0 0
\(381\) − 2.76898e6i − 0.977255i
\(382\) 0 0
\(383\) 4.69380e6 1.63504 0.817519 0.575902i \(-0.195349\pi\)
0.817519 + 0.575902i \(0.195349\pi\)
\(384\) 0 0
\(385\) 1.31628e6 0.452580
\(386\) 0 0
\(387\) − 1.12883e6i − 0.383134i
\(388\) 0 0
\(389\) 2.35028e6i 0.787492i 0.919219 + 0.393746i \(0.128821\pi\)
−0.919219 + 0.393746i \(0.871179\pi\)
\(390\) 0 0
\(391\) −3.23186e6 −1.06908
\(392\) 0 0
\(393\) −1.77412e6 −0.579430
\(394\) 0 0
\(395\) − 3.29110e6i − 1.06133i
\(396\) 0 0
\(397\) 1.84236e6i 0.586675i 0.956009 + 0.293338i \(0.0947660\pi\)
−0.956009 + 0.293338i \(0.905234\pi\)
\(398\) 0 0
\(399\) −547311. −0.172108
\(400\) 0 0
\(401\) 4.73319e6 1.46992 0.734959 0.678112i \(-0.237201\pi\)
0.734959 + 0.678112i \(0.237201\pi\)
\(402\) 0 0
\(403\) 1.46435e6i 0.449140i
\(404\) 0 0
\(405\) 657435.i 0.199166i
\(406\) 0 0
\(407\) −58375.0 −0.0174679
\(408\) 0 0
\(409\) −6.34620e6 −1.87588 −0.937941 0.346796i \(-0.887270\pi\)
−0.937941 + 0.346796i \(0.887270\pi\)
\(410\) 0 0
\(411\) − 376692.i − 0.109997i
\(412\) 0 0
\(413\) 1.23021e6i 0.354898i
\(414\) 0 0
\(415\) −4.62237e6 −1.31748
\(416\) 0 0
\(417\) −4.02637e6 −1.13390
\(418\) 0 0
\(419\) 1.21837e6i 0.339034i 0.985527 + 0.169517i \(0.0542208\pi\)
−0.985527 + 0.169517i \(0.945779\pi\)
\(420\) 0 0
\(421\) 3.51877e6i 0.967579i 0.875185 + 0.483789i \(0.160740\pi\)
−0.875185 + 0.483789i \(0.839260\pi\)
\(422\) 0 0
\(423\) 936147. 0.254386
\(424\) 0 0
\(425\) −8.82151e6 −2.36903
\(426\) 0 0
\(427\) − 2.44386e6i − 0.648643i
\(428\) 0 0
\(429\) 622481.i 0.163299i
\(430\) 0 0
\(431\) 3.01231e6 0.781099 0.390549 0.920582i \(-0.372285\pi\)
0.390549 + 0.920582i \(0.372285\pi\)
\(432\) 0 0
\(433\) 301545. 0.0772917 0.0386459 0.999253i \(-0.487696\pi\)
0.0386459 + 0.999253i \(0.487696\pi\)
\(434\) 0 0
\(435\) − 229153.i − 0.0580634i
\(436\) 0 0
\(437\) 997947.i 0.249979i
\(438\) 0 0
\(439\) 4.77660e6 1.18293 0.591464 0.806332i \(-0.298550\pi\)
0.591464 + 0.806332i \(0.298550\pi\)
\(440\) 0 0
\(441\) −569490. −0.139441
\(442\) 0 0
\(443\) 2.87476e6i 0.695973i 0.937500 + 0.347986i \(0.113134\pi\)
−0.937500 + 0.347986i \(0.886866\pi\)
\(444\) 0 0
\(445\) − 1.52867e6i − 0.365942i
\(446\) 0 0
\(447\) −3.30552e6 −0.782475
\(448\) 0 0
\(449\) 5.95349e6 1.39366 0.696828 0.717238i \(-0.254594\pi\)
0.696828 + 0.717238i \(0.254594\pi\)
\(450\) 0 0
\(451\) − 1.12782e6i − 0.261096i
\(452\) 0 0
\(453\) − 3.21402e6i − 0.735873i
\(454\) 0 0
\(455\) −1.25767e7 −2.84799
\(456\) 0 0
\(457\) −2.01722e6 −0.451818 −0.225909 0.974148i \(-0.572535\pi\)
−0.225909 + 0.974148i \(0.572535\pi\)
\(458\) 0 0
\(459\) − 929889.i − 0.206015i
\(460\) 0 0
\(461\) 2.25196e6i 0.493525i 0.969076 + 0.246763i \(0.0793668\pi\)
−0.969076 + 0.246763i \(0.920633\pi\)
\(462\) 0 0
\(463\) −3.74465e6 −0.811819 −0.405909 0.913913i \(-0.633045\pi\)
−0.405909 + 0.913913i \(0.633045\pi\)
\(464\) 0 0
\(465\) 1.62449e6 0.348406
\(466\) 0 0
\(467\) − 8.62528e6i − 1.83013i −0.403311 0.915063i \(-0.632141\pi\)
0.403311 0.915063i \(-0.367859\pi\)
\(468\) 0 0
\(469\) − 5.22424e6i − 1.09671i
\(470\) 0 0
\(471\) 2.30937e6 0.479668
\(472\) 0 0
\(473\) −1.18570e6 −0.243681
\(474\) 0 0
\(475\) 2.72394e6i 0.553941i
\(476\) 0 0
\(477\) − 649900.i − 0.130783i
\(478\) 0 0
\(479\) 6.32087e6 1.25875 0.629373 0.777103i \(-0.283312\pi\)
0.629373 + 0.777103i \(0.283312\pi\)
\(480\) 0 0
\(481\) 557759. 0.109922
\(482\) 0 0
\(483\) 3.52066e6i 0.686682i
\(484\) 0 0
\(485\) − 1.73937e7i − 3.35767i
\(486\) 0 0
\(487\) −4.53590e6 −0.866644 −0.433322 0.901239i \(-0.642659\pi\)
−0.433322 + 0.901239i \(0.642659\pi\)
\(488\) 0 0
\(489\) 5.04556e6 0.954196
\(490\) 0 0
\(491\) 2.68402e6i 0.502438i 0.967930 + 0.251219i \(0.0808314\pi\)
−0.967930 + 0.251219i \(0.919169\pi\)
\(492\) 0 0
\(493\) 324119.i 0.0600602i
\(494\) 0 0
\(495\) 690557. 0.126674
\(496\) 0 0
\(497\) −1.12378e7 −2.04075
\(498\) 0 0
\(499\) − 2.57253e6i − 0.462496i −0.972895 0.231248i \(-0.925719\pi\)
0.972895 0.231248i \(-0.0742810\pi\)
\(500\) 0 0
\(501\) 3.69843e6i 0.658298i
\(502\) 0 0
\(503\) −4.22685e6 −0.744898 −0.372449 0.928053i \(-0.621482\pi\)
−0.372449 + 0.928053i \(0.621482\pi\)
\(504\) 0 0
\(505\) 7.64252e6 1.33355
\(506\) 0 0
\(507\) − 2.60602e6i − 0.450255i
\(508\) 0 0
\(509\) 2.93969e6i 0.502929i 0.967866 + 0.251465i \(0.0809122\pi\)
−0.967866 + 0.251465i \(0.919088\pi\)
\(510\) 0 0
\(511\) 110813. 0.0187732
\(512\) 0 0
\(513\) −287135. −0.0481718
\(514\) 0 0
\(515\) 7.13618e6i 1.18563i
\(516\) 0 0
\(517\) − 983311.i − 0.161795i
\(518\) 0 0
\(519\) −3.66801e6 −0.597740
\(520\) 0 0
\(521\) 5.13499e6 0.828792 0.414396 0.910097i \(-0.363993\pi\)
0.414396 + 0.910097i \(0.363993\pi\)
\(522\) 0 0
\(523\) 479078.i 0.0765865i 0.999267 + 0.0382932i \(0.0121921\pi\)
−0.999267 + 0.0382932i \(0.987808\pi\)
\(524\) 0 0
\(525\) 9.60979e6i 1.52165i
\(526\) 0 0
\(527\) −2.29772e6 −0.360388
\(528\) 0 0
\(529\) −16898.0 −0.00262540
\(530\) 0 0
\(531\) 645404.i 0.0993334i
\(532\) 0 0
\(533\) 1.07761e7i 1.64302i
\(534\) 0 0
\(535\) 1.45118e7 2.19198
\(536\) 0 0
\(537\) −663353. −0.0992680
\(538\) 0 0
\(539\) 598181.i 0.0886872i
\(540\) 0 0
\(541\) 1.03133e7i 1.51497i 0.652852 + 0.757486i \(0.273572\pi\)
−0.652852 + 0.757486i \(0.726428\pi\)
\(542\) 0 0
\(543\) −1.74894e6 −0.254552
\(544\) 0 0
\(545\) −1.63546e6 −0.235857
\(546\) 0 0
\(547\) − 1.10504e7i − 1.57910i −0.613684 0.789552i \(-0.710313\pi\)
0.613684 0.789552i \(-0.289687\pi\)
\(548\) 0 0
\(549\) − 1.28212e6i − 0.181550i
\(550\) 0 0
\(551\) 100083. 0.0140437
\(552\) 0 0
\(553\) 5.07097e6 0.705145
\(554\) 0 0
\(555\) − 618757.i − 0.0852683i
\(556\) 0 0
\(557\) 1.09232e6i 0.149181i 0.997214 + 0.0745904i \(0.0237649\pi\)
−0.997214 + 0.0745904i \(0.976235\pi\)
\(558\) 0 0
\(559\) 1.13291e7 1.53344
\(560\) 0 0
\(561\) −976738. −0.131030
\(562\) 0 0
\(563\) 8.03622e6i 1.06852i 0.845322 + 0.534258i \(0.179409\pi\)
−0.845322 + 0.534258i \(0.820591\pi\)
\(564\) 0 0
\(565\) − 1.67667e7i − 2.20967i
\(566\) 0 0
\(567\) −1.01298e6 −0.132326
\(568\) 0 0
\(569\) 4.89482e6 0.633806 0.316903 0.948458i \(-0.397357\pi\)
0.316903 + 0.948458i \(0.397357\pi\)
\(570\) 0 0
\(571\) 629963.i 0.0808583i 0.999182 + 0.0404291i \(0.0128725\pi\)
−0.999182 + 0.0404291i \(0.987127\pi\)
\(572\) 0 0
\(573\) − 1.54335e6i − 0.196371i
\(574\) 0 0
\(575\) 1.75222e7 2.21013
\(576\) 0 0
\(577\) −6.90487e6 −0.863408 −0.431704 0.902015i \(-0.642087\pi\)
−0.431704 + 0.902015i \(0.642087\pi\)
\(578\) 0 0
\(579\) 6.97013e6i 0.864061i
\(580\) 0 0
\(581\) − 7.12220e6i − 0.875333i
\(582\) 0 0
\(583\) −682642. −0.0831805
\(584\) 0 0
\(585\) −6.59811e6 −0.797132
\(586\) 0 0
\(587\) 1.36076e7i 1.63000i 0.579463 + 0.814998i \(0.303262\pi\)
−0.579463 + 0.814998i \(0.696738\pi\)
\(588\) 0 0
\(589\) 709498.i 0.0842681i
\(590\) 0 0
\(591\) −7.78250e6 −0.916538
\(592\) 0 0
\(593\) 2.10052e6 0.245296 0.122648 0.992450i \(-0.460861\pi\)
0.122648 + 0.992450i \(0.460861\pi\)
\(594\) 0 0
\(595\) − 1.97342e7i − 2.28521i
\(596\) 0 0
\(597\) 6.77444e6i 0.777924i
\(598\) 0 0
\(599\) 1.62682e6 0.185256 0.0926278 0.995701i \(-0.470473\pi\)
0.0926278 + 0.995701i \(0.470473\pi\)
\(600\) 0 0
\(601\) 4.49767e6 0.507928 0.253964 0.967214i \(-0.418266\pi\)
0.253964 + 0.967214i \(0.418266\pi\)
\(602\) 0 0
\(603\) − 2.74079e6i − 0.306960i
\(604\) 0 0
\(605\) 1.54125e7i 1.71193i
\(606\) 0 0
\(607\) −5.96865e6 −0.657513 −0.328756 0.944415i \(-0.606630\pi\)
−0.328756 + 0.944415i \(0.606630\pi\)
\(608\) 0 0
\(609\) 353082. 0.0385773
\(610\) 0 0
\(611\) 9.39531e6i 1.01814i
\(612\) 0 0
\(613\) 3.34021e6i 0.359023i 0.983756 + 0.179511i \(0.0574517\pi\)
−0.983756 + 0.179511i \(0.942548\pi\)
\(614\) 0 0
\(615\) 1.19546e7 1.27452
\(616\) 0 0
\(617\) 7.12648e6 0.753637 0.376818 0.926287i \(-0.377018\pi\)
0.376818 + 0.926287i \(0.377018\pi\)
\(618\) 0 0
\(619\) 1.20586e7i 1.26494i 0.774586 + 0.632469i \(0.217958\pi\)
−0.774586 + 0.632469i \(0.782042\pi\)
\(620\) 0 0
\(621\) 1.84704e6i 0.192197i
\(622\) 0 0
\(623\) 2.35539e6 0.243132
\(624\) 0 0
\(625\) 1.64502e7 1.68450
\(626\) 0 0
\(627\) 301601.i 0.0306383i
\(628\) 0 0
\(629\) 875182.i 0.0882007i
\(630\) 0 0
\(631\) −7.68926e6 −0.768796 −0.384398 0.923168i \(-0.625591\pi\)
−0.384398 + 0.923168i \(0.625591\pi\)
\(632\) 0 0
\(633\) −2.38965e6 −0.237042
\(634\) 0 0
\(635\) − 3.08291e7i − 3.03408i
\(636\) 0 0
\(637\) − 5.71548e6i − 0.558090i
\(638\) 0 0
\(639\) −5.89567e6 −0.571191
\(640\) 0 0
\(641\) −1.55180e7 −1.49174 −0.745868 0.666094i \(-0.767965\pi\)
−0.745868 + 0.666094i \(0.767965\pi\)
\(642\) 0 0
\(643\) 1.57536e7i 1.50263i 0.659945 + 0.751314i \(0.270580\pi\)
−0.659945 + 0.751314i \(0.729420\pi\)
\(644\) 0 0
\(645\) − 1.25681e7i − 1.18951i
\(646\) 0 0
\(647\) −1.36896e7 −1.28567 −0.642834 0.766006i \(-0.722241\pi\)
−0.642834 + 0.766006i \(0.722241\pi\)
\(648\) 0 0
\(649\) 677920. 0.0631781
\(650\) 0 0
\(651\) 2.50304e6i 0.231481i
\(652\) 0 0
\(653\) 4.41496e6i 0.405176i 0.979264 + 0.202588i \(0.0649352\pi\)
−0.979264 + 0.202588i \(0.935065\pi\)
\(654\) 0 0
\(655\) −1.97526e7 −1.79895
\(656\) 0 0
\(657\) 58135.9 0.00525449
\(658\) 0 0
\(659\) − 1.73108e6i − 0.155276i −0.996982 0.0776381i \(-0.975262\pi\)
0.996982 0.0776381i \(-0.0247379\pi\)
\(660\) 0 0
\(661\) − 8.30967e6i − 0.739742i −0.929083 0.369871i \(-0.879402\pi\)
0.929083 0.369871i \(-0.120598\pi\)
\(662\) 0 0
\(663\) 9.33250e6 0.824545
\(664\) 0 0
\(665\) −6.09361e6 −0.534343
\(666\) 0 0
\(667\) − 643797.i − 0.0560318i
\(668\) 0 0
\(669\) − 1.88223e6i − 0.162595i
\(670\) 0 0
\(671\) −1.34671e6 −0.115470
\(672\) 0 0
\(673\) −1.56921e6 −0.133550 −0.0667751 0.997768i \(-0.521271\pi\)
−0.0667751 + 0.997768i \(0.521271\pi\)
\(674\) 0 0
\(675\) 5.04158e6i 0.425899i
\(676\) 0 0
\(677\) − 1.17260e7i − 0.983282i −0.870798 0.491641i \(-0.836397\pi\)
0.870798 0.491641i \(-0.163603\pi\)
\(678\) 0 0
\(679\) 2.68004e7 2.23083
\(680\) 0 0
\(681\) −1.08108e6 −0.0893288
\(682\) 0 0
\(683\) − 2.11345e7i − 1.73356i −0.498687 0.866782i \(-0.666184\pi\)
0.498687 0.866782i \(-0.333816\pi\)
\(684\) 0 0
\(685\) − 4.19398e6i − 0.341507i
\(686\) 0 0
\(687\) −3.96553e6 −0.320560
\(688\) 0 0
\(689\) 6.52248e6 0.523438
\(690\) 0 0
\(691\) − 1.84062e7i − 1.46646i −0.679981 0.733230i \(-0.738012\pi\)
0.679981 0.733230i \(-0.261988\pi\)
\(692\) 0 0
\(693\) 1.06402e6i 0.0841621i
\(694\) 0 0
\(695\) −4.48285e7 −3.52040
\(696\) 0 0
\(697\) −1.69088e7 −1.31835
\(698\) 0 0
\(699\) 1.50409e6i 0.116434i
\(700\) 0 0
\(701\) − 9.57182e6i − 0.735698i −0.929886 0.367849i \(-0.880094\pi\)
0.929886 0.367849i \(-0.119906\pi\)
\(702\) 0 0
\(703\) 270243. 0.0206236
\(704\) 0 0
\(705\) 1.04228e7 0.789790
\(706\) 0 0
\(707\) 1.17757e7i 0.886008i
\(708\) 0 0
\(709\) 5.35207e6i 0.399859i 0.979810 + 0.199929i \(0.0640713\pi\)
−0.979810 + 0.199929i \(0.935929\pi\)
\(710\) 0 0
\(711\) 2.66038e6 0.197365
\(712\) 0 0
\(713\) 4.56395e6 0.336215
\(714\) 0 0
\(715\) 6.93053e6i 0.506992i
\(716\) 0 0
\(717\) 4.01181e6i 0.291436i
\(718\) 0 0
\(719\) 1.13450e7 0.818435 0.409217 0.912437i \(-0.365802\pi\)
0.409217 + 0.912437i \(0.365802\pi\)
\(720\) 0 0
\(721\) −1.09955e7 −0.787730
\(722\) 0 0
\(723\) 1.37717e6i 0.0979807i
\(724\) 0 0
\(725\) − 1.75727e6i − 0.124164i
\(726\) 0 0
\(727\) −5.36024e6 −0.376139 −0.188069 0.982156i \(-0.560223\pi\)
−0.188069 + 0.982156i \(0.560223\pi\)
\(728\) 0 0
\(729\) −531441. −0.0370370
\(730\) 0 0
\(731\) 1.77765e7i 1.23042i
\(732\) 0 0
\(733\) 2.07596e7i 1.42712i 0.700596 + 0.713558i \(0.252918\pi\)
−0.700596 + 0.713558i \(0.747082\pi\)
\(734\) 0 0
\(735\) −6.34054e6 −0.432920
\(736\) 0 0
\(737\) −2.87887e6 −0.195233
\(738\) 0 0
\(739\) 2.02904e7i 1.36672i 0.730082 + 0.683359i \(0.239482\pi\)
−0.730082 + 0.683359i \(0.760518\pi\)
\(740\) 0 0
\(741\) − 2.88173e6i − 0.192800i
\(742\) 0 0
\(743\) 2.10215e7 1.39699 0.698493 0.715617i \(-0.253855\pi\)
0.698493 + 0.715617i \(0.253855\pi\)
\(744\) 0 0
\(745\) −3.68027e7 −2.42934
\(746\) 0 0
\(747\) − 3.73651e6i − 0.244999i
\(748\) 0 0
\(749\) 2.23599e7i 1.45635i
\(750\) 0 0
\(751\) −3.49173e6 −0.225913 −0.112956 0.993600i \(-0.536032\pi\)
−0.112956 + 0.993600i \(0.536032\pi\)
\(752\) 0 0
\(753\) −6.24023e6 −0.401063
\(754\) 0 0
\(755\) − 3.57840e7i − 2.28466i
\(756\) 0 0
\(757\) − 2.15165e7i − 1.36468i −0.731033 0.682342i \(-0.760961\pi\)
0.731033 0.682342i \(-0.239039\pi\)
\(758\) 0 0
\(759\) 1.94010e6 0.122242
\(760\) 0 0
\(761\) −1.62464e7 −1.01694 −0.508469 0.861080i \(-0.669788\pi\)
−0.508469 + 0.861080i \(0.669788\pi\)
\(762\) 0 0
\(763\) − 2.51993e6i − 0.156703i
\(764\) 0 0
\(765\) − 1.03531e7i − 0.639614i
\(766\) 0 0
\(767\) −6.47736e6 −0.397567
\(768\) 0 0
\(769\) 1.89849e7 1.15769 0.578846 0.815437i \(-0.303503\pi\)
0.578846 + 0.815437i \(0.303503\pi\)
\(770\) 0 0
\(771\) − 1.54698e7i − 0.937233i
\(772\) 0 0
\(773\) 9.61884e6i 0.578994i 0.957179 + 0.289497i \(0.0934880\pi\)
−0.957179 + 0.289497i \(0.906512\pi\)
\(774\) 0 0
\(775\) 1.24575e7 0.745036
\(776\) 0 0
\(777\) 953388. 0.0566523
\(778\) 0 0
\(779\) 5.22118e6i 0.308265i
\(780\) 0 0
\(781\) 6.19270e6i 0.363289i
\(782\) 0 0
\(783\) 185237. 0.0107975
\(784\) 0 0
\(785\) 2.57119e7 1.48922
\(786\) 0 0
\(787\) − 9.93586e6i − 0.571832i −0.958255 0.285916i \(-0.907702\pi\)
0.958255 0.285916i \(-0.0922979\pi\)
\(788\) 0 0
\(789\) 1.40968e6i 0.0806174i
\(790\) 0 0
\(791\) 2.58343e7 1.46810
\(792\) 0 0
\(793\) 1.28675e7 0.726628
\(794\) 0 0
\(795\) − 7.23580e6i − 0.406040i
\(796\) 0 0
\(797\) − 2.77653e7i − 1.54831i −0.632998 0.774154i \(-0.718176\pi\)
0.632998 0.774154i \(-0.281824\pi\)
\(798\) 0 0
\(799\) −1.47422e7 −0.816951
\(800\) 0 0
\(801\) 1.23570e6 0.0680508
\(802\) 0 0
\(803\) − 61064.8i − 0.00334197i
\(804\) 0 0
\(805\) 3.91980e7i 2.13194i
\(806\) 0 0
\(807\) 7.20001e6 0.389179
\(808\) 0 0
\(809\) 2.70847e7 1.45497 0.727484 0.686125i \(-0.240689\pi\)
0.727484 + 0.686125i \(0.240689\pi\)
\(810\) 0 0
\(811\) 2.00386e7i 1.06983i 0.844905 + 0.534917i \(0.179657\pi\)
−0.844905 + 0.534917i \(0.820343\pi\)
\(812\) 0 0
\(813\) − 1.70637e7i − 0.905416i
\(814\) 0 0
\(815\) 5.61759e7 2.96249
\(816\) 0 0
\(817\) 5.48911e6 0.287705
\(818\) 0 0
\(819\) − 1.01665e7i − 0.529614i
\(820\) 0 0
\(821\) 3.68572e6i 0.190838i 0.995437 + 0.0954188i \(0.0304190\pi\)
−0.995437 + 0.0954188i \(0.969581\pi\)
\(822\) 0 0
\(823\) −2.22928e7 −1.14727 −0.573633 0.819112i \(-0.694467\pi\)
−0.573633 + 0.819112i \(0.694467\pi\)
\(824\) 0 0
\(825\) 5.29558e6 0.270881
\(826\) 0 0
\(827\) 1.98390e7i 1.00869i 0.863503 + 0.504343i \(0.168265\pi\)
−0.863503 + 0.504343i \(0.831735\pi\)
\(828\) 0 0
\(829\) 4.83084e6i 0.244139i 0.992522 + 0.122069i \(0.0389530\pi\)
−0.992522 + 0.122069i \(0.961047\pi\)
\(830\) 0 0
\(831\) 2.51823e6 0.126500
\(832\) 0 0
\(833\) 8.96819e6 0.447808
\(834\) 0 0
\(835\) 4.11773e7i 2.04381i
\(836\) 0 0
\(837\) 1.31317e6i 0.0647898i
\(838\) 0 0
\(839\) −2.24080e7 −1.09900 −0.549501 0.835493i \(-0.685182\pi\)
−0.549501 + 0.835493i \(0.685182\pi\)
\(840\) 0 0
\(841\) 2.04466e7 0.996852
\(842\) 0 0
\(843\) 4.98797e6i 0.241743i
\(844\) 0 0
\(845\) − 2.90147e7i − 1.39790i
\(846\) 0 0
\(847\) −2.37478e7 −1.13740
\(848\) 0 0
\(849\) 1.41910e7 0.675686
\(850\) 0 0
\(851\) − 1.73838e6i − 0.0822848i
\(852\) 0 0
\(853\) 2.55770e7i 1.20358i 0.798653 + 0.601792i \(0.205547\pi\)
−0.798653 + 0.601792i \(0.794453\pi\)
\(854\) 0 0
\(855\) −3.19688e6 −0.149559
\(856\) 0 0
\(857\) −1.94781e7 −0.905929 −0.452964 0.891529i \(-0.649634\pi\)
−0.452964 + 0.891529i \(0.649634\pi\)
\(858\) 0 0
\(859\) − 2.93437e7i − 1.35685i −0.734670 0.678424i \(-0.762663\pi\)
0.734670 0.678424i \(-0.237337\pi\)
\(860\) 0 0
\(861\) 1.84198e7i 0.846792i
\(862\) 0 0
\(863\) −9.84655e6 −0.450046 −0.225023 0.974353i \(-0.572246\pi\)
−0.225023 + 0.974353i \(0.572246\pi\)
\(864\) 0 0
\(865\) −4.08387e7 −1.85580
\(866\) 0 0
\(867\) 1.86496e6i 0.0842601i
\(868\) 0 0
\(869\) − 2.79441e6i − 0.125528i
\(870\) 0 0
\(871\) 2.75069e7 1.22856
\(872\) 0 0
\(873\) 1.40603e7 0.624394
\(874\) 0 0
\(875\) 5.86462e7i 2.58952i
\(876\) 0 0
\(877\) − 1.09591e7i − 0.481147i −0.970631 0.240573i \(-0.922665\pi\)
0.970631 0.240573i \(-0.0773355\pi\)
\(878\) 0 0
\(879\) 1.66107e6 0.0725128
\(880\) 0 0
\(881\) −4.72688e6 −0.205180 −0.102590 0.994724i \(-0.532713\pi\)
−0.102590 + 0.994724i \(0.532713\pi\)
\(882\) 0 0
\(883\) 3.23858e7i 1.39782i 0.715207 + 0.698912i \(0.246332\pi\)
−0.715207 + 0.698912i \(0.753668\pi\)
\(884\) 0 0
\(885\) 7.18575e6i 0.308400i
\(886\) 0 0
\(887\) −4.35277e7 −1.85762 −0.928809 0.370559i \(-0.879166\pi\)
−0.928809 + 0.370559i \(0.879166\pi\)
\(888\) 0 0
\(889\) 4.75018e7 2.01584
\(890\) 0 0
\(891\) 558216.i 0.0235563i
\(892\) 0 0
\(893\) 4.55217e6i 0.191025i
\(894\) 0 0
\(895\) −7.38559e6 −0.308197
\(896\) 0 0
\(897\) −1.85372e7 −0.769240
\(898\) 0 0
\(899\) − 457713.i − 0.0188883i
\(900\) 0 0
\(901\) 1.02345e7i 0.420004i
\(902\) 0 0
\(903\) 1.93650e7 0.790312
\(904\) 0 0
\(905\) −1.94722e7 −0.790304
\(906\) 0 0
\(907\) − 4.49574e7i − 1.81461i −0.420477 0.907303i \(-0.638137\pi\)
0.420477 0.907303i \(-0.361863\pi\)
\(908\) 0 0
\(909\) 6.17787e6i 0.247987i
\(910\) 0 0
\(911\) 3.43483e7 1.37123 0.685614 0.727965i \(-0.259534\pi\)
0.685614 + 0.727965i \(0.259534\pi\)
\(912\) 0 0
\(913\) −3.92476e6 −0.155825
\(914\) 0 0
\(915\) − 1.42748e7i − 0.563658i
\(916\) 0 0
\(917\) − 3.04350e7i − 1.19522i
\(918\) 0 0
\(919\) 1.51792e7 0.592871 0.296435 0.955053i \(-0.404202\pi\)
0.296435 + 0.955053i \(0.404202\pi\)
\(920\) 0 0
\(921\) 3.65290e6 0.141902
\(922\) 0 0
\(923\) − 5.91698e7i − 2.28610i
\(924\) 0 0
\(925\) − 4.74497e6i − 0.182339i
\(926\) 0 0
\(927\) −5.76856e6 −0.220480
\(928\) 0 0
\(929\) −3.12691e7 −1.18871 −0.594356 0.804202i \(-0.702593\pi\)
−0.594356 + 0.804202i \(0.702593\pi\)
\(930\) 0 0
\(931\) − 2.76923e6i − 0.104709i
\(932\) 0 0
\(933\) − 2.28994e6i − 0.0861232i
\(934\) 0 0
\(935\) −1.08747e7 −0.406808
\(936\) 0 0
\(937\) 2.67948e7 0.997015 0.498507 0.866885i \(-0.333882\pi\)
0.498507 + 0.866885i \(0.333882\pi\)
\(938\) 0 0
\(939\) 9.34759e6i 0.345968i
\(940\) 0 0
\(941\) − 8.36072e6i − 0.307801i −0.988086 0.153900i \(-0.950817\pi\)
0.988086 0.153900i \(-0.0491835\pi\)
\(942\) 0 0
\(943\) 3.35860e7 1.22993
\(944\) 0 0
\(945\) −1.12783e7 −0.410831
\(946\) 0 0
\(947\) − 4.40994e7i − 1.59793i −0.601377 0.798965i \(-0.705381\pi\)
0.601377 0.798965i \(-0.294619\pi\)
\(948\) 0 0
\(949\) 583460.i 0.0210303i
\(950\) 0 0
\(951\) 1.25919e7 0.451482
\(952\) 0 0
\(953\) 1.99247e7 0.710658 0.355329 0.934741i \(-0.384369\pi\)
0.355329 + 0.934741i \(0.384369\pi\)
\(954\) 0 0
\(955\) − 1.71832e7i − 0.609673i
\(956\) 0 0
\(957\) − 194569.i − 0.00686744i
\(958\) 0 0
\(959\) 6.46213e6 0.226897
\(960\) 0 0
\(961\) −2.53844e7 −0.886662
\(962\) 0 0
\(963\) 1.17307e7i 0.407621i
\(964\) 0 0
\(965\) 7.76035e7i 2.68264i
\(966\) 0 0
\(967\) −4.56359e7 −1.56942 −0.784712 0.619860i \(-0.787189\pi\)
−0.784712 + 0.619860i \(0.787189\pi\)
\(968\) 0 0
\(969\) 4.52173e6 0.154702
\(970\) 0 0
\(971\) − 2.09777e7i − 0.714020i −0.934101 0.357010i \(-0.883796\pi\)
0.934101 0.357010i \(-0.116204\pi\)
\(972\) 0 0
\(973\) − 6.90723e7i − 2.33895i
\(974\) 0 0
\(975\) −5.05980e7 −1.70460
\(976\) 0 0
\(977\) −3.03128e7 −1.01599 −0.507995 0.861360i \(-0.669613\pi\)
−0.507995 + 0.861360i \(0.669613\pi\)
\(978\) 0 0
\(979\) − 1.29796e6i − 0.0432817i
\(980\) 0 0
\(981\) − 1.32203e6i − 0.0438600i
\(982\) 0 0
\(983\) −2.04558e7 −0.675200 −0.337600 0.941290i \(-0.609615\pi\)
−0.337600 + 0.941290i \(0.609615\pi\)
\(984\) 0 0
\(985\) −8.66483e7 −2.84557
\(986\) 0 0
\(987\) 1.60596e7i 0.524737i
\(988\) 0 0
\(989\) − 3.53095e7i − 1.14789i
\(990\) 0 0
\(991\) 1.72449e7 0.557797 0.278898 0.960321i \(-0.410031\pi\)
0.278898 + 0.960321i \(0.410031\pi\)
\(992\) 0 0
\(993\) −1.84200e7 −0.592811
\(994\) 0 0
\(995\) 7.54247e7i 2.41522i
\(996\) 0 0
\(997\) − 7.27445e6i − 0.231773i −0.993262 0.115886i \(-0.963029\pi\)
0.993262 0.115886i \(-0.0369708\pi\)
\(998\) 0 0
\(999\) 500175. 0.0158565
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 96.6.d.a.49.10 10
3.2 odd 2 288.6.d.d.145.1 10
4.3 odd 2 24.6.d.a.13.8 yes 10
8.3 odd 2 24.6.d.a.13.7 10
8.5 even 2 inner 96.6.d.a.49.1 10
12.11 even 2 72.6.d.d.37.3 10
16.3 odd 4 768.6.a.bd.1.5 5
16.5 even 4 768.6.a.bc.1.1 5
16.11 odd 4 768.6.a.ba.1.1 5
16.13 even 4 768.6.a.bb.1.5 5
24.5 odd 2 288.6.d.d.145.10 10
24.11 even 2 72.6.d.d.37.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.6.d.a.13.7 10 8.3 odd 2
24.6.d.a.13.8 yes 10 4.3 odd 2
72.6.d.d.37.3 10 12.11 even 2
72.6.d.d.37.4 10 24.11 even 2
96.6.d.a.49.1 10 8.5 even 2 inner
96.6.d.a.49.10 10 1.1 even 1 trivial
288.6.d.d.145.1 10 3.2 odd 2
288.6.d.d.145.10 10 24.5 odd 2
768.6.a.ba.1.1 5 16.11 odd 4
768.6.a.bb.1.5 5 16.13 even 4
768.6.a.bc.1.1 5 16.5 even 4
768.6.a.bd.1.5 5 16.3 odd 4