Properties

Label 768.6.a.bd
Level $768$
Weight $6$
Character orbit 768.a
Self dual yes
Analytic conductor $123.175$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,6,Mod(1,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 768.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,45,0,50,0,98,0,405,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(123.174773616\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 65x^{3} + 85x^{2} + 856x - 1692 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 24)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 9 q^{3} + (\beta_{2} + 10) q^{5} + ( - \beta_1 + 20) q^{7} + 81 q^{9} + ( - \beta_{4} + 3 \beta_{2} - \beta_1) q^{11} + ( - 2 \beta_{3} + \beta_{2} + \cdots + 134) q^{13} + (9 \beta_{2} + 90) q^{15}+ \cdots + ( - 81 \beta_{4} + 243 \beta_{2} - 81 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 45 q^{3} + 50 q^{5} + 98 q^{7} + 405 q^{9} + 676 q^{13} + 450 q^{15} - 202 q^{17} + 716 q^{19} + 882 q^{21} - 836 q^{23} + 4683 q^{25} + 3645 q^{27} + 5046 q^{29} + 9346 q^{31} + 436 q^{35} + 10952 q^{37}+ \cdots + 29686 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 65x^{3} + 85x^{2} + 856x - 1692 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{4} - 2\nu^{3} - 43\nu^{2} + 188\nu + 78 ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{4} + 2\nu^{3} + 63\nu^{2} - 48\nu - 628 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{4} + 4\nu^{3} + 46\nu^{2} - 16\nu + 824 ) / 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 4\nu^{4} + 8\nu^{3} - 232\nu^{2} - 356\nu + 2286 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 2\beta_{2} + 4\beta _1 + 24 ) / 128 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -7\beta_{3} + 18\beta_{2} + 4\beta _1 + 3352 ) / 128 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 8\beta_{4} + 43\beta_{3} + 206\beta_{2} + 132\beta _1 - 1560 ) / 128 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 16\beta_{4} - 403\beta_{3} + 810\beta_{2} + 324\beta _1 + 126520 ) / 128 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.40044
−6.86450
3.28141
−4.60811
6.79075
0 9.00000 0 −67.1492 0 −37.4101 0 81.0000 0
1.2 0 9.00000 0 −29.4414 0 94.2792 0 81.0000 0
1.3 0 9.00000 0 −20.4846 0 −35.4345 0 81.0000 0
1.4 0 9.00000 0 66.8717 0 230.960 0 81.0000 0
1.5 0 9.00000 0 100.204 0 −154.395 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 768.6.a.bd 5
4.b odd 2 1 768.6.a.bb 5
8.b even 2 1 768.6.a.ba 5
8.d odd 2 1 768.6.a.bc 5
16.e even 4 2 24.6.d.a 10
16.f odd 4 2 96.6.d.a 10
48.i odd 4 2 72.6.d.d 10
48.k even 4 2 288.6.d.d 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.6.d.a 10 16.e even 4 2
72.6.d.d 10 48.i odd 4 2
96.6.d.a 10 16.f odd 4 2
288.6.d.d 10 48.k even 4 2
768.6.a.ba 5 8.b even 2 1
768.6.a.bb 5 4.b odd 2 1
768.6.a.bc 5 8.d odd 2 1
768.6.a.bd 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(768))\):

\( T_{5}^{5} - 50T_{5}^{4} - 8904T_{5}^{3} + 164112T_{5}^{2} + 19739408T_{5} + 271363808 \) Copy content Toggle raw display
\( T_{7}^{5} - 98T_{7}^{4} - 39560T_{7}^{3} + 1063696T_{7}^{2} + 207195664T_{7} + 4456567264 \) Copy content Toggle raw display
\( T_{11}^{5} - 392960T_{11}^{3} + 29048832T_{11}^{2} + 20197933056T_{11} + 1270622453760 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( (T - 9)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} - 50 T^{4} + \cdots + 271363808 \) Copy content Toggle raw display
$7$ \( T^{5} + \cdots + 4456567264 \) Copy content Toggle raw display
$11$ \( T^{5} + \cdots + 1270622453760 \) Copy content Toggle raw display
$13$ \( T^{5} + \cdots + 19009776061440 \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots + 25\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots - 174679081196544 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots - 28\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots + 11\!\cdots\!28 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 17\!\cdots\!80 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 35\!\cdots\!88 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 12\!\cdots\!20 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 12\!\cdots\!48 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 65\!\cdots\!12 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 14\!\cdots\!60 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 39\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 27\!\cdots\!60 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 40\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 11\!\cdots\!32 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 17\!\cdots\!60 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 37\!\cdots\!60 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 26\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 85\!\cdots\!20 \) Copy content Toggle raw display
show more
show less