Properties

Label 765.2.b.e.154.16
Level $765$
Weight $2$
Character 765.154
Analytic conductor $6.109$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [765,2,Mod(154,765)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(765, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("765.154"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 25x^{14} + 240x^{12} + 1160x^{10} + 3068x^{8} + 4457x^{6} + 3309x^{4} + 988x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 154.16
Root \(-0.130988i\) of defining polynomial
Character \(\chi\) \(=\) 765.154
Dual form 765.2.b.e.154.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.69353i q^{2} -5.25508 q^{4} +(1.80322 + 1.32226i) q^{5} -4.61905i q^{7} -8.76763i q^{8} +(-3.56155 + 4.85703i) q^{10} +1.48856 q^{11} -6.10761i q^{13} +12.4415 q^{14} +13.1057 q^{16} -1.00000i q^{17} -0.180969 q^{19} +(-9.47608 - 6.94860i) q^{20} +4.00947i q^{22} -6.74252i q^{23} +(1.50323 + 4.76868i) q^{25} +16.4510 q^{26} +24.2735i q^{28} -1.31185 q^{29} +3.02511 q^{31} +17.7652i q^{32} +2.69353 q^{34} +(6.10761 - 8.32919i) q^{35} -2.11789i q^{37} -0.487443i q^{38} +(11.5931 - 15.8100i) q^{40} -8.22550 q^{41} -2.32446i q^{43} -7.82248 q^{44} +18.1612 q^{46} +6.56155i q^{47} -14.3357 q^{49} +(-12.8446 + 4.04900i) q^{50} +32.0960i q^{52} -1.17450i q^{53} +(2.68420 + 1.96827i) q^{55} -40.4982 q^{56} -3.53351i q^{58} +3.42975 q^{59} -10.1482 q^{61} +8.14822i q^{62} -21.6397 q^{64} +(8.07588 - 11.0134i) q^{65} +12.6679i q^{67} +5.25508i q^{68} +(22.4349 + 16.4510i) q^{70} +7.21290 q^{71} -9.33079i q^{73} +5.70459 q^{74} +0.951004 q^{76} -6.87572i q^{77} +8.76117 q^{79} +(23.6325 + 17.3292i) q^{80} -22.1556i q^{82} +13.0203i q^{83} +(1.32226 - 1.80322i) q^{85} +6.26099 q^{86} -13.0511i q^{88} +8.43207 q^{89} -28.2114 q^{91} +35.4325i q^{92} -17.6737 q^{94} +(-0.326327 - 0.239288i) q^{95} +6.28431i q^{97} -38.6134i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} - 24 q^{10} + 32 q^{16} - 4 q^{19} + 6 q^{25} - 24 q^{31} + 8 q^{34} + 44 q^{40} + 80 q^{46} - 56 q^{49} + 26 q^{55} - 24 q^{61} - 108 q^{64} + 44 q^{70} + 12 q^{76} + 72 q^{79} + 2 q^{85}+ \cdots - 36 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.69353i 1.90461i 0.305148 + 0.952305i \(0.401294\pi\)
−0.305148 + 0.952305i \(0.598706\pi\)
\(3\) 0 0
\(4\) −5.25508 −2.62754
\(5\) 1.80322 + 1.32226i 0.806426 + 0.591335i
\(6\) 0 0
\(7\) 4.61905i 1.74584i −0.487865 0.872919i \(-0.662224\pi\)
0.487865 0.872919i \(-0.337776\pi\)
\(8\) 8.76763i 3.09983i
\(9\) 0 0
\(10\) −3.56155 + 4.85703i −1.12626 + 1.53593i
\(11\) 1.48856 0.448817 0.224408 0.974495i \(-0.427955\pi\)
0.224408 + 0.974495i \(0.427955\pi\)
\(12\) 0 0
\(13\) 6.10761i 1.69395i −0.531636 0.846973i \(-0.678422\pi\)
0.531636 0.846973i \(-0.321578\pi\)
\(14\) 12.4415 3.32514
\(15\) 0 0
\(16\) 13.1057 3.27642
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) −0.180969 −0.0415170 −0.0207585 0.999785i \(-0.506608\pi\)
−0.0207585 + 0.999785i \(0.506608\pi\)
\(20\) −9.47608 6.94860i −2.11892 1.55375i
\(21\) 0 0
\(22\) 4.00947i 0.854821i
\(23\) 6.74252i 1.40591i −0.711233 0.702956i \(-0.751863\pi\)
0.711233 0.702956i \(-0.248137\pi\)
\(24\) 0 0
\(25\) 1.50323 + 4.76868i 0.300647 + 0.953736i
\(26\) 16.4510 3.22631
\(27\) 0 0
\(28\) 24.2735i 4.58726i
\(29\) −1.31185 −0.243605 −0.121803 0.992554i \(-0.538868\pi\)
−0.121803 + 0.992554i \(0.538868\pi\)
\(30\) 0 0
\(31\) 3.02511 0.543326 0.271663 0.962392i \(-0.412426\pi\)
0.271663 + 0.962392i \(0.412426\pi\)
\(32\) 17.7652i 3.14048i
\(33\) 0 0
\(34\) 2.69353 0.461936
\(35\) 6.10761 8.32919i 1.03237 1.40789i
\(36\) 0 0
\(37\) 2.11789i 0.348179i −0.984730 0.174090i \(-0.944302\pi\)
0.984730 0.174090i \(-0.0556982\pi\)
\(38\) 0.487443i 0.0790738i
\(39\) 0 0
\(40\) 11.5931 15.8100i 1.83304 2.49978i
\(41\) −8.22550 −1.28461 −0.642304 0.766450i \(-0.722021\pi\)
−0.642304 + 0.766450i \(0.722021\pi\)
\(42\) 0 0
\(43\) 2.32446i 0.354477i −0.984168 0.177238i \(-0.943284\pi\)
0.984168 0.177238i \(-0.0567164\pi\)
\(44\) −7.82248 −1.17928
\(45\) 0 0
\(46\) 18.1612 2.67772
\(47\) 6.56155i 0.957101i 0.878060 + 0.478550i \(0.158838\pi\)
−0.878060 + 0.478550i \(0.841162\pi\)
\(48\) 0 0
\(49\) −14.3357 −2.04795
\(50\) −12.8446 + 4.04900i −1.81649 + 0.572615i
\(51\) 0 0
\(52\) 32.0960i 4.45091i
\(53\) 1.17450i 0.161330i −0.996741 0.0806652i \(-0.974296\pi\)
0.996741 0.0806652i \(-0.0257044\pi\)
\(54\) 0 0
\(55\) 2.68420 + 1.96827i 0.361938 + 0.265401i
\(56\) −40.4982 −5.41180
\(57\) 0 0
\(58\) 3.53351i 0.463973i
\(59\) 3.42975 0.446515 0.223257 0.974760i \(-0.428331\pi\)
0.223257 + 0.974760i \(0.428331\pi\)
\(60\) 0 0
\(61\) −10.1482 −1.29935 −0.649673 0.760214i \(-0.725094\pi\)
−0.649673 + 0.760214i \(0.725094\pi\)
\(62\) 8.14822i 1.03482i
\(63\) 0 0
\(64\) −21.6397 −2.70497
\(65\) 8.07588 11.0134i 1.00169 1.36604i
\(66\) 0 0
\(67\) 12.6679i 1.54762i 0.633415 + 0.773812i \(0.281653\pi\)
−0.633415 + 0.773812i \(0.718347\pi\)
\(68\) 5.25508i 0.637272i
\(69\) 0 0
\(70\) 22.4349 + 16.4510i 2.68148 + 1.96627i
\(71\) 7.21290 0.856013 0.428007 0.903776i \(-0.359216\pi\)
0.428007 + 0.903776i \(0.359216\pi\)
\(72\) 0 0
\(73\) 9.33079i 1.09209i −0.837757 0.546043i \(-0.816134\pi\)
0.837757 0.546043i \(-0.183866\pi\)
\(74\) 5.70459 0.663145
\(75\) 0 0
\(76\) 0.951004 0.109088
\(77\) 6.87572i 0.783561i
\(78\) 0 0
\(79\) 8.76117 0.985708 0.492854 0.870112i \(-0.335954\pi\)
0.492854 + 0.870112i \(0.335954\pi\)
\(80\) 23.6325 + 17.3292i 2.64219 + 1.93746i
\(81\) 0 0
\(82\) 22.1556i 2.44668i
\(83\) 13.0203i 1.42916i 0.699551 + 0.714582i \(0.253383\pi\)
−0.699551 + 0.714582i \(0.746617\pi\)
\(84\) 0 0
\(85\) 1.32226 1.80322i 0.143420 0.195587i
\(86\) 6.26099 0.675140
\(87\) 0 0
\(88\) 13.0511i 1.39125i
\(89\) 8.43207 0.893798 0.446899 0.894584i \(-0.352528\pi\)
0.446899 + 0.894584i \(0.352528\pi\)
\(90\) 0 0
\(91\) −28.2114 −2.95736
\(92\) 35.4325i 3.69409i
\(93\) 0 0
\(94\) −17.6737 −1.82290
\(95\) −0.326327 0.239288i −0.0334804 0.0245505i
\(96\) 0 0
\(97\) 6.28431i 0.638075i 0.947742 + 0.319038i \(0.103360\pi\)
−0.947742 + 0.319038i \(0.896640\pi\)
\(98\) 38.6134i 3.90055i
\(99\) 0 0
\(100\) −7.89961 25.0598i −0.789961 2.50598i
\(101\) 4.23578 0.421476 0.210738 0.977543i \(-0.432413\pi\)
0.210738 + 0.977543i \(0.432413\pi\)
\(102\) 0 0
\(103\) 6.91365i 0.681222i −0.940204 0.340611i \(-0.889366\pi\)
0.940204 0.340611i \(-0.110634\pi\)
\(104\) −53.5493 −5.25094
\(105\) 0 0
\(106\) 3.16355 0.307271
\(107\) 0.116639i 0.0112760i −0.999984 0.00563798i \(-0.998205\pi\)
0.999984 0.00563798i \(-0.00179464\pi\)
\(108\) 0 0
\(109\) 6.95715 0.666374 0.333187 0.942861i \(-0.391876\pi\)
0.333187 + 0.942861i \(0.391876\pi\)
\(110\) −5.30157 + 7.22996i −0.505485 + 0.689350i
\(111\) 0 0
\(112\) 60.5359i 5.72010i
\(113\) 8.90847i 0.838039i −0.907977 0.419019i \(-0.862374\pi\)
0.907977 0.419019i \(-0.137626\pi\)
\(114\) 0 0
\(115\) 8.91540 12.1583i 0.831365 1.13377i
\(116\) 6.89390 0.640083
\(117\) 0 0
\(118\) 9.23811i 0.850437i
\(119\) −4.61905 −0.423428
\(120\) 0 0
\(121\) −8.78420 −0.798563
\(122\) 27.3345i 2.47475i
\(123\) 0 0
\(124\) −15.8972 −1.42761
\(125\) −3.59479 + 10.5867i −0.321528 + 0.946900i
\(126\) 0 0
\(127\) 10.3434i 0.917828i −0.888481 0.458914i \(-0.848239\pi\)
0.888481 0.458914i \(-0.151761\pi\)
\(128\) 22.7567i 2.01143i
\(129\) 0 0
\(130\) 29.6648 + 21.7526i 2.60178 + 1.90783i
\(131\) 14.5397 1.27034 0.635169 0.772373i \(-0.280930\pi\)
0.635169 + 0.772373i \(0.280930\pi\)
\(132\) 0 0
\(133\) 0.835903i 0.0724820i
\(134\) −34.1212 −2.94762
\(135\) 0 0
\(136\) −8.76763 −0.751818
\(137\) 11.3907i 0.973172i 0.873633 + 0.486586i \(0.161758\pi\)
−0.873633 + 0.486586i \(0.838242\pi\)
\(138\) 0 0
\(139\) 5.48504 0.465235 0.232618 0.972568i \(-0.425271\pi\)
0.232618 + 0.972568i \(0.425271\pi\)
\(140\) −32.0960 + 43.7705i −2.71260 + 3.69928i
\(141\) 0 0
\(142\) 19.4281i 1.63037i
\(143\) 9.09153i 0.760272i
\(144\) 0 0
\(145\) −2.36557 1.73462i −0.196450 0.144052i
\(146\) 25.1327 2.08000
\(147\) 0 0
\(148\) 11.1297i 0.914854i
\(149\) 20.2342 1.65765 0.828823 0.559511i \(-0.189011\pi\)
0.828823 + 0.559511i \(0.189011\pi\)
\(150\) 0 0
\(151\) 7.23766 0.588993 0.294496 0.955653i \(-0.404848\pi\)
0.294496 + 0.955653i \(0.404848\pi\)
\(152\) 1.58667i 0.128696i
\(153\) 0 0
\(154\) 18.5199 1.49238
\(155\) 5.45496 + 4.00000i 0.438153 + 0.321288i
\(156\) 0 0
\(157\) 7.51215i 0.599534i −0.954012 0.299767i \(-0.903091\pi\)
0.954012 0.299767i \(-0.0969090\pi\)
\(158\) 23.5984i 1.87739i
\(159\) 0 0
\(160\) −23.4903 + 32.0347i −1.85707 + 2.53257i
\(161\) −31.1441 −2.45450
\(162\) 0 0
\(163\) 6.64426i 0.520419i 0.965552 + 0.260209i \(0.0837916\pi\)
−0.965552 + 0.260209i \(0.916208\pi\)
\(164\) 43.2257 3.37536
\(165\) 0 0
\(166\) −35.0705 −2.72200
\(167\) 3.61461i 0.279707i −0.990172 0.139854i \(-0.955337\pi\)
0.990172 0.139854i \(-0.0446632\pi\)
\(168\) 0 0
\(169\) −24.3029 −1.86945
\(170\) 4.85703 + 3.56155i 0.372517 + 0.273159i
\(171\) 0 0
\(172\) 12.2152i 0.931402i
\(173\) 7.35067i 0.558861i 0.960166 + 0.279431i \(0.0901457\pi\)
−0.960166 + 0.279431i \(0.909854\pi\)
\(174\) 0 0
\(175\) 22.0268 6.94351i 1.66507 0.524880i
\(176\) 19.5086 1.47051
\(177\) 0 0
\(178\) 22.7120i 1.70234i
\(179\) 5.18768 0.387746 0.193873 0.981027i \(-0.437895\pi\)
0.193873 + 0.981027i \(0.437895\pi\)
\(180\) 0 0
\(181\) 0.693208 0.0515258 0.0257629 0.999668i \(-0.491799\pi\)
0.0257629 + 0.999668i \(0.491799\pi\)
\(182\) 75.9881i 5.63261i
\(183\) 0 0
\(184\) −59.1160 −4.35809
\(185\) 2.80041 3.81903i 0.205890 0.280781i
\(186\) 0 0
\(187\) 1.48856i 0.108854i
\(188\) 34.4815i 2.51482i
\(189\) 0 0
\(190\) 0.644529 0.878970i 0.0467591 0.0637672i
\(191\) −3.42975 −0.248168 −0.124084 0.992272i \(-0.539599\pi\)
−0.124084 + 0.992272i \(0.539599\pi\)
\(192\) 0 0
\(193\) 5.33241i 0.383835i 0.981411 + 0.191918i \(0.0614706\pi\)
−0.981411 + 0.191918i \(0.938529\pi\)
\(194\) −16.9270 −1.21528
\(195\) 0 0
\(196\) 75.3350 5.38107
\(197\) 14.0138i 0.998445i −0.866474 0.499223i \(-0.833619\pi\)
0.866474 0.499223i \(-0.166381\pi\)
\(198\) 0 0
\(199\) 20.0932 1.42437 0.712184 0.701993i \(-0.247706\pi\)
0.712184 + 0.701993i \(0.247706\pi\)
\(200\) 41.8100 13.1798i 2.95642 0.931952i
\(201\) 0 0
\(202\) 11.4092i 0.802747i
\(203\) 6.05953i 0.425295i
\(204\) 0 0
\(205\) −14.8324 10.8763i −1.03594 0.759633i
\(206\) 18.6221 1.29746
\(207\) 0 0
\(208\) 80.0444i 5.55008i
\(209\) −0.269382 −0.0186335
\(210\) 0 0
\(211\) 4.39923 0.302856 0.151428 0.988468i \(-0.451613\pi\)
0.151428 + 0.988468i \(0.451613\pi\)
\(212\) 6.17210i 0.423902i
\(213\) 0 0
\(214\) 0.314171 0.0214763
\(215\) 3.07355 4.19152i 0.209614 0.285859i
\(216\) 0 0
\(217\) 13.9732i 0.948560i
\(218\) 18.7393i 1.26918i
\(219\) 0 0
\(220\) −14.1057 10.3434i −0.951005 0.697351i
\(221\) −6.10761 −0.410842
\(222\) 0 0
\(223\) 22.7045i 1.52040i 0.649687 + 0.760202i \(0.274900\pi\)
−0.649687 + 0.760202i \(0.725100\pi\)
\(224\) 82.0586 5.48277
\(225\) 0 0
\(226\) 23.9952 1.59614
\(227\) 20.6900i 1.37324i −0.727016 0.686620i \(-0.759094\pi\)
0.727016 0.686620i \(-0.240906\pi\)
\(228\) 0 0
\(229\) 22.7050 1.50039 0.750193 0.661219i \(-0.229960\pi\)
0.750193 + 0.661219i \(0.229960\pi\)
\(230\) 32.7486 + 24.0138i 2.15938 + 1.58343i
\(231\) 0 0
\(232\) 11.5019i 0.755134i
\(233\) 12.0818i 0.791505i 0.918357 + 0.395753i \(0.129516\pi\)
−0.918357 + 0.395753i \(0.870484\pi\)
\(234\) 0 0
\(235\) −8.67611 + 11.8319i −0.565967 + 0.771831i
\(236\) −18.0236 −1.17324
\(237\) 0 0
\(238\) 12.4415i 0.806465i
\(239\) −24.1165 −1.55997 −0.779984 0.625799i \(-0.784773\pi\)
−0.779984 + 0.625799i \(0.784773\pi\)
\(240\) 0 0
\(241\) −18.5733 −1.19641 −0.598206 0.801342i \(-0.704120\pi\)
−0.598206 + 0.801342i \(0.704120\pi\)
\(242\) 23.6605i 1.52095i
\(243\) 0 0
\(244\) 53.3297 3.41408
\(245\) −25.8504 18.9555i −1.65152 1.21102i
\(246\) 0 0
\(247\) 1.10529i 0.0703276i
\(248\) 26.5231i 1.68422i
\(249\) 0 0
\(250\) −28.5155 9.68265i −1.80348 0.612385i
\(251\) 12.6679 0.799588 0.399794 0.916605i \(-0.369082\pi\)
0.399794 + 0.916605i \(0.369082\pi\)
\(252\) 0 0
\(253\) 10.0366i 0.630997i
\(254\) 27.8602 1.74810
\(255\) 0 0
\(256\) 18.0162 1.12602
\(257\) 16.0502i 1.00119i 0.865683 + 0.500593i \(0.166885\pi\)
−0.865683 + 0.500593i \(0.833115\pi\)
\(258\) 0 0
\(259\) −9.78265 −0.607864
\(260\) −42.4394 + 57.8762i −2.63198 + 3.58933i
\(261\) 0 0
\(262\) 39.1630i 2.41950i
\(263\) 0.481294i 0.0296779i −0.999890 0.0148389i \(-0.995276\pi\)
0.999890 0.0148389i \(-0.00472355\pi\)
\(264\) 0 0
\(265\) 1.55300 2.11789i 0.0954002 0.130101i
\(266\) −2.25153 −0.138050
\(267\) 0 0
\(268\) 66.5706i 4.06644i
\(269\) 3.03782 0.185219 0.0926095 0.995703i \(-0.470479\pi\)
0.0926095 + 0.995703i \(0.470479\pi\)
\(270\) 0 0
\(271\) −15.2527 −0.926534 −0.463267 0.886219i \(-0.653323\pi\)
−0.463267 + 0.886219i \(0.653323\pi\)
\(272\) 13.1057i 0.794649i
\(273\) 0 0
\(274\) −30.6811 −1.85351
\(275\) 2.23765 + 7.09845i 0.134935 + 0.428053i
\(276\) 0 0
\(277\) 19.7582i 1.18716i −0.804777 0.593578i \(-0.797715\pi\)
0.804777 0.593578i \(-0.202285\pi\)
\(278\) 14.7741i 0.886092i
\(279\) 0 0
\(280\) −73.0273 53.5493i −4.36421 3.20018i
\(281\) −26.4557 −1.57821 −0.789106 0.614257i \(-0.789456\pi\)
−0.789106 + 0.614257i \(0.789456\pi\)
\(282\) 0 0
\(283\) 1.28854i 0.0765955i −0.999266 0.0382977i \(-0.987806\pi\)
0.999266 0.0382977i \(-0.0121935\pi\)
\(284\) −37.9043 −2.24921
\(285\) 0 0
\(286\) 24.4883 1.44802
\(287\) 37.9940i 2.24272i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 4.67224 6.37172i 0.274363 0.374160i
\(291\) 0 0
\(292\) 49.0340i 2.86950i
\(293\) 6.86279i 0.400929i 0.979701 + 0.200464i \(0.0642451\pi\)
−0.979701 + 0.200464i \(0.935755\pi\)
\(294\) 0 0
\(295\) 6.18460 + 4.53503i 0.360081 + 0.264040i
\(296\) −18.5689 −1.07929
\(297\) 0 0
\(298\) 54.5012i 3.15717i
\(299\) −41.1807 −2.38154
\(300\) 0 0
\(301\) −10.7368 −0.618859
\(302\) 19.4948i 1.12180i
\(303\) 0 0
\(304\) −2.37172 −0.136027
\(305\) −18.2995 13.4186i −1.04783 0.768349i
\(306\) 0 0
\(307\) 19.0747i 1.08865i −0.838874 0.544326i \(-0.816786\pi\)
0.838874 0.544326i \(-0.183214\pi\)
\(308\) 36.1325i 2.05884i
\(309\) 0 0
\(310\) −10.7741 + 14.6931i −0.611928 + 0.834510i
\(311\) 16.6884 0.946313 0.473156 0.880978i \(-0.343115\pi\)
0.473156 + 0.880978i \(0.343115\pi\)
\(312\) 0 0
\(313\) 19.5208i 1.10338i 0.834049 + 0.551690i \(0.186017\pi\)
−0.834049 + 0.551690i \(0.813983\pi\)
\(314\) 20.2342 1.14188
\(315\) 0 0
\(316\) −46.0406 −2.58999
\(317\) 27.9952i 1.57237i 0.617993 + 0.786184i \(0.287946\pi\)
−0.617993 + 0.786184i \(0.712054\pi\)
\(318\) 0 0
\(319\) −1.95277 −0.109334
\(320\) −39.0213 28.6134i −2.18136 1.59954i
\(321\) 0 0
\(322\) 83.8873i 4.67486i
\(323\) 0.180969i 0.0100694i
\(324\) 0 0
\(325\) 29.1252 9.18116i 1.61558 0.509279i
\(326\) −17.8965 −0.991195
\(327\) 0 0
\(328\) 72.1182i 3.98206i
\(329\) 30.3082 1.67094
\(330\) 0 0
\(331\) 0.449715 0.0247185 0.0123593 0.999924i \(-0.496066\pi\)
0.0123593 + 0.999924i \(0.496066\pi\)
\(332\) 68.4228i 3.75519i
\(333\) 0 0
\(334\) 9.73606 0.532733
\(335\) −16.7503 + 22.8430i −0.915164 + 1.24805i
\(336\) 0 0
\(337\) 13.9797i 0.761523i 0.924673 + 0.380762i \(0.124338\pi\)
−0.924673 + 0.380762i \(0.875662\pi\)
\(338\) 65.4605i 3.56058i
\(339\) 0 0
\(340\) −6.94860 + 9.47608i −0.376841 + 0.513913i
\(341\) 4.50305 0.243854
\(342\) 0 0
\(343\) 33.8838i 1.82955i
\(344\) −20.3800 −1.09882
\(345\) 0 0
\(346\) −19.7992 −1.06441
\(347\) 18.8291i 1.01080i 0.862885 + 0.505400i \(0.168655\pi\)
−0.862885 + 0.505400i \(0.831345\pi\)
\(348\) 0 0
\(349\) −1.04013 −0.0556769 −0.0278384 0.999612i \(-0.508862\pi\)
−0.0278384 + 0.999612i \(0.508862\pi\)
\(350\) 18.7025 + 59.3297i 0.999692 + 3.17130i
\(351\) 0 0
\(352\) 26.4446i 1.40950i
\(353\) 21.1017i 1.12313i 0.827432 + 0.561566i \(0.189801\pi\)
−0.827432 + 0.561566i \(0.810199\pi\)
\(354\) 0 0
\(355\) 13.0065 + 9.53736i 0.690312 + 0.506190i
\(356\) −44.3112 −2.34849
\(357\) 0 0
\(358\) 13.9732i 0.738504i
\(359\) 5.80836 0.306554 0.153277 0.988183i \(-0.451017\pi\)
0.153277 + 0.988183i \(0.451017\pi\)
\(360\) 0 0
\(361\) −18.9673 −0.998276
\(362\) 1.86717i 0.0981365i
\(363\) 0 0
\(364\) 148.253 7.77057
\(365\) 12.3378 16.8255i 0.645788 0.880687i
\(366\) 0 0
\(367\) 15.6845i 0.818722i 0.912372 + 0.409361i \(0.134248\pi\)
−0.912372 + 0.409361i \(0.865752\pi\)
\(368\) 88.3654i 4.60636i
\(369\) 0 0
\(370\) 10.2867 + 7.54298i 0.534778 + 0.392141i
\(371\) −5.42509 −0.281657
\(372\) 0 0
\(373\) 28.6662i 1.48428i −0.670244 0.742140i \(-0.733811\pi\)
0.670244 0.742140i \(-0.266189\pi\)
\(374\) 4.00947 0.207325
\(375\) 0 0
\(376\) 57.5293 2.96685
\(377\) 8.01230i 0.412654i
\(378\) 0 0
\(379\) −14.0803 −0.723254 −0.361627 0.932323i \(-0.617779\pi\)
−0.361627 + 0.932323i \(0.617779\pi\)
\(380\) 1.71487 + 1.25748i 0.0879711 + 0.0645073i
\(381\) 0 0
\(382\) 9.23811i 0.472663i
\(383\) 16.5445i 0.845382i −0.906274 0.422691i \(-0.861086\pi\)
0.906274 0.422691i \(-0.138914\pi\)
\(384\) 0 0
\(385\) 9.09153 12.3985i 0.463347 0.631885i
\(386\) −14.3630 −0.731056
\(387\) 0 0
\(388\) 33.0246i 1.67657i
\(389\) −21.4533 −1.08773 −0.543863 0.839174i \(-0.683039\pi\)
−0.543863 + 0.839174i \(0.683039\pi\)
\(390\) 0 0
\(391\) −6.74252 −0.340984
\(392\) 125.690i 6.34829i
\(393\) 0 0
\(394\) 37.7466 1.90165
\(395\) 15.7983 + 11.5846i 0.794901 + 0.582884i
\(396\) 0 0
\(397\) 32.8093i 1.64665i −0.567568 0.823326i \(-0.692116\pi\)
0.567568 0.823326i \(-0.307884\pi\)
\(398\) 54.1215i 2.71287i
\(399\) 0 0
\(400\) 19.7009 + 62.4968i 0.985045 + 3.12484i
\(401\) −0.246062 −0.0122878 −0.00614388 0.999981i \(-0.501956\pi\)
−0.00614388 + 0.999981i \(0.501956\pi\)
\(402\) 0 0
\(403\) 18.4762i 0.920366i
\(404\) −22.2594 −1.10744
\(405\) 0 0
\(406\) −16.3215 −0.810022
\(407\) 3.15260i 0.156269i
\(408\) 0 0
\(409\) 3.77694 0.186757 0.0933787 0.995631i \(-0.470233\pi\)
0.0933787 + 0.995631i \(0.470233\pi\)
\(410\) 29.2956 39.9515i 1.44680 1.97306i
\(411\) 0 0
\(412\) 36.3318i 1.78994i
\(413\) 15.8422i 0.779543i
\(414\) 0 0
\(415\) −17.2163 + 23.4785i −0.845115 + 1.15252i
\(416\) 108.503 5.31980
\(417\) 0 0
\(418\) 0.725587i 0.0354896i
\(419\) −18.4069 −0.899234 −0.449617 0.893222i \(-0.648439\pi\)
−0.449617 + 0.893222i \(0.648439\pi\)
\(420\) 0 0
\(421\) −14.5252 −0.707914 −0.353957 0.935262i \(-0.615164\pi\)
−0.353957 + 0.935262i \(0.615164\pi\)
\(422\) 11.8494i 0.576822i
\(423\) 0 0
\(424\) −10.2976 −0.500096
\(425\) 4.76868 1.50323i 0.231315 0.0729175i
\(426\) 0 0
\(427\) 46.8752i 2.26845i
\(428\) 0.612950i 0.0296280i
\(429\) 0 0
\(430\) 11.2900 + 8.27869i 0.544451 + 0.399234i
\(431\) −37.0684 −1.78552 −0.892762 0.450529i \(-0.851235\pi\)
−0.892762 + 0.450529i \(0.851235\pi\)
\(432\) 0 0
\(433\) 16.7503i 0.804966i −0.915428 0.402483i \(-0.868147\pi\)
0.915428 0.402483i \(-0.131853\pi\)
\(434\) 37.6371 1.80664
\(435\) 0 0
\(436\) −36.5604 −1.75092
\(437\) 1.22018i 0.0583693i
\(438\) 0 0
\(439\) 17.4072 0.830802 0.415401 0.909638i \(-0.363641\pi\)
0.415401 + 0.909638i \(0.363641\pi\)
\(440\) 17.2570 23.5341i 0.822697 1.12194i
\(441\) 0 0
\(442\) 16.4510i 0.782494i
\(443\) 33.9402i 1.61255i −0.591543 0.806273i \(-0.701481\pi\)
0.591543 0.806273i \(-0.298519\pi\)
\(444\) 0 0
\(445\) 15.2049 + 11.1494i 0.720782 + 0.528534i
\(446\) −61.1551 −2.89578
\(447\) 0 0
\(448\) 99.9551i 4.72243i
\(449\) 18.1461 0.856369 0.428184 0.903691i \(-0.359153\pi\)
0.428184 + 0.903691i \(0.359153\pi\)
\(450\) 0 0
\(451\) −12.2441 −0.576553
\(452\) 46.8147i 2.20198i
\(453\) 0 0
\(454\) 55.7289 2.61549
\(455\) −50.8714 37.3029i −2.38489 1.74879i
\(456\) 0 0
\(457\) 17.9694i 0.840574i −0.907391 0.420287i \(-0.861929\pi\)
0.907391 0.420287i \(-0.138071\pi\)
\(458\) 61.1564i 2.85765i
\(459\) 0 0
\(460\) −46.8511 + 63.8927i −2.18444 + 2.97901i
\(461\) −12.8532 −0.598634 −0.299317 0.954154i \(-0.596759\pi\)
−0.299317 + 0.954154i \(0.596759\pi\)
\(462\) 0 0
\(463\) 7.39826i 0.343826i 0.985112 + 0.171913i \(0.0549948\pi\)
−0.985112 + 0.171913i \(0.945005\pi\)
\(464\) −17.1928 −0.798154
\(465\) 0 0
\(466\) −32.5426 −1.50751
\(467\) 23.4159i 1.08356i 0.840521 + 0.541780i \(0.182249\pi\)
−0.840521 + 0.541780i \(0.817751\pi\)
\(468\) 0 0
\(469\) 58.5135 2.70190
\(470\) −31.8697 23.3693i −1.47004 1.07795i
\(471\) 0 0
\(472\) 30.0708i 1.38412i
\(473\) 3.46009i 0.159095i
\(474\) 0 0
\(475\) −0.272038 0.862981i −0.0124820 0.0395963i
\(476\) 24.2735 1.11257
\(477\) 0 0
\(478\) 64.9585i 2.97113i
\(479\) −33.6761 −1.53870 −0.769349 0.638828i \(-0.779419\pi\)
−0.769349 + 0.638828i \(0.779419\pi\)
\(480\) 0 0
\(481\) −12.9353 −0.589797
\(482\) 50.0277i 2.27870i
\(483\) 0 0
\(484\) 46.1616 2.09826
\(485\) −8.30952 + 11.3320i −0.377316 + 0.514561i
\(486\) 0 0
\(487\) 33.2554i 1.50695i 0.657479 + 0.753473i \(0.271623\pi\)
−0.657479 + 0.753473i \(0.728377\pi\)
\(488\) 88.9759i 4.02775i
\(489\) 0 0
\(490\) 51.0572 69.6287i 2.30653 3.14550i
\(491\) 35.2806 1.59219 0.796096 0.605170i \(-0.206895\pi\)
0.796096 + 0.605170i \(0.206895\pi\)
\(492\) 0 0
\(493\) 1.31185i 0.0590830i
\(494\) −2.97711 −0.133947
\(495\) 0 0
\(496\) 39.6462 1.78017
\(497\) 33.3167i 1.49446i
\(498\) 0 0
\(499\) 13.7992 0.617738 0.308869 0.951105i \(-0.400050\pi\)
0.308869 + 0.951105i \(0.400050\pi\)
\(500\) 18.8909 55.6338i 0.844826 2.48802i
\(501\) 0 0
\(502\) 34.1212i 1.52290i
\(503\) 8.73772i 0.389596i −0.980843 0.194798i \(-0.937595\pi\)
0.980843 0.194798i \(-0.0624051\pi\)
\(504\) 0 0
\(505\) 7.63806 + 5.60082i 0.339889 + 0.249233i
\(506\) 27.0339 1.20180
\(507\) 0 0
\(508\) 54.3553i 2.41163i
\(509\) 5.64032 0.250003 0.125001 0.992157i \(-0.460106\pi\)
0.125001 + 0.992157i \(0.460106\pi\)
\(510\) 0 0
\(511\) −43.0994 −1.90661
\(512\) 3.01385i 0.133194i
\(513\) 0 0
\(514\) −43.2317 −1.90687
\(515\) 9.14167 12.4669i 0.402830 0.549355i
\(516\) 0 0
\(517\) 9.76725i 0.429563i
\(518\) 26.3498i 1.15774i
\(519\) 0 0
\(520\) −96.5614 70.8063i −4.23450 3.10506i
\(521\) 24.8619 1.08922 0.544609 0.838690i \(-0.316678\pi\)
0.544609 + 0.838690i \(0.316678\pi\)
\(522\) 0 0
\(523\) 21.4533i 0.938089i 0.883175 + 0.469044i \(0.155402\pi\)
−0.883175 + 0.469044i \(0.844598\pi\)
\(524\) −76.4072 −3.33786
\(525\) 0 0
\(526\) 1.29638 0.0565247
\(527\) 3.02511i 0.131776i
\(528\) 0 0
\(529\) −22.4616 −0.976591
\(530\) 5.70459 + 4.18305i 0.247792 + 0.181700i
\(531\) 0 0
\(532\) 4.39274i 0.190449i
\(533\) 50.2382i 2.17606i
\(534\) 0 0
\(535\) 0.154228 0.210327i 0.00666787 0.00909323i
\(536\) 111.067 4.79737
\(537\) 0 0
\(538\) 8.18244i 0.352770i
\(539\) −21.3394 −0.919155
\(540\) 0 0
\(541\) −8.95779 −0.385125 −0.192563 0.981285i \(-0.561680\pi\)
−0.192563 + 0.981285i \(0.561680\pi\)
\(542\) 41.0835i 1.76469i
\(543\) 0 0
\(544\) 17.7652 0.761678
\(545\) 12.5453 + 9.19920i 0.537382 + 0.394050i
\(546\) 0 0
\(547\) 11.2335i 0.480308i −0.970735 0.240154i \(-0.922802\pi\)
0.970735 0.240154i \(-0.0771979\pi\)
\(548\) 59.8589i 2.55705i
\(549\) 0 0
\(550\) −19.1199 + 6.02716i −0.815273 + 0.256999i
\(551\) 0.237404 0.0101138
\(552\) 0 0
\(553\) 40.4683i 1.72089i
\(554\) 53.2192 2.26107
\(555\) 0 0
\(556\) −28.8243 −1.22242
\(557\) 38.6187i 1.63633i 0.574985 + 0.818164i \(0.305008\pi\)
−0.574985 + 0.818164i \(0.694992\pi\)
\(558\) 0 0
\(559\) −14.1969 −0.600465
\(560\) 80.0444 109.160i 3.38249 4.61284i
\(561\) 0 0
\(562\) 71.2590i 3.00588i
\(563\) 19.3186i 0.814180i 0.913388 + 0.407090i \(0.133456\pi\)
−0.913388 + 0.407090i \(0.866544\pi\)
\(564\) 0 0
\(565\) 11.7794 16.0640i 0.495561 0.675816i
\(566\) 3.47070 0.145884
\(567\) 0 0
\(568\) 63.2400i 2.65349i
\(569\) 21.0402 0.882051 0.441025 0.897495i \(-0.354615\pi\)
0.441025 + 0.897495i \(0.354615\pi\)
\(570\) 0 0
\(571\) 15.9522 0.667580 0.333790 0.942647i \(-0.391672\pi\)
0.333790 + 0.942647i \(0.391672\pi\)
\(572\) 47.7767i 1.99764i
\(573\) 0 0
\(574\) −102.338 −4.27150
\(575\) 32.1529 10.1356i 1.34087 0.422683i
\(576\) 0 0
\(577\) 10.0761i 0.419474i −0.977758 0.209737i \(-0.932739\pi\)
0.977758 0.209737i \(-0.0672608\pi\)
\(578\) 2.69353i 0.112036i
\(579\) 0 0
\(580\) 12.4312 + 9.11556i 0.516179 + 0.378503i
\(581\) 60.1415 2.49509
\(582\) 0 0
\(583\) 1.74831i 0.0724078i
\(584\) −81.8089 −3.38528
\(585\) 0 0
\(586\) −18.4851 −0.763613
\(587\) 29.6248i 1.22275i 0.791342 + 0.611374i \(0.209383\pi\)
−0.791342 + 0.611374i \(0.790617\pi\)
\(588\) 0 0
\(589\) −0.547450 −0.0225573
\(590\) −12.2152 + 16.6584i −0.502893 + 0.685814i
\(591\) 0 0
\(592\) 27.7564i 1.14078i
\(593\) 18.6199i 0.764628i −0.924032 0.382314i \(-0.875127\pi\)
0.924032 0.382314i \(-0.124873\pi\)
\(594\) 0 0
\(595\) −8.32919 6.10761i −0.341463 0.250388i
\(596\) −106.332 −4.35553
\(597\) 0 0
\(598\) 110.921i 4.53591i
\(599\) 44.2120 1.80645 0.903226 0.429165i \(-0.141192\pi\)
0.903226 + 0.429165i \(0.141192\pi\)
\(600\) 0 0
\(601\) 31.0357 1.26597 0.632986 0.774163i \(-0.281829\pi\)
0.632986 + 0.774163i \(0.281829\pi\)
\(602\) 28.9199i 1.17869i
\(603\) 0 0
\(604\) −38.0345 −1.54760
\(605\) −15.8399 11.6150i −0.643983 0.472218i
\(606\) 0 0
\(607\) 35.1424i 1.42639i 0.700967 + 0.713194i \(0.252752\pi\)
−0.700967 + 0.713194i \(0.747248\pi\)
\(608\) 3.21495i 0.130383i
\(609\) 0 0
\(610\) 36.1434 49.2902i 1.46340 1.99570i
\(611\) 40.0754 1.62128
\(612\) 0 0
\(613\) 45.8296i 1.85104i −0.378698 0.925520i \(-0.623628\pi\)
0.378698 0.925520i \(-0.376372\pi\)
\(614\) 51.3782 2.07346
\(615\) 0 0
\(616\) −60.2838 −2.42891
\(617\) 19.3645i 0.779586i −0.920902 0.389793i \(-0.872547\pi\)
0.920902 0.389793i \(-0.127453\pi\)
\(618\) 0 0
\(619\) 24.1232 0.969594 0.484797 0.874627i \(-0.338893\pi\)
0.484797 + 0.874627i \(0.338893\pi\)
\(620\) −28.6662 21.0203i −1.15126 0.844196i
\(621\) 0 0
\(622\) 44.9506i 1.80236i
\(623\) 38.9482i 1.56043i
\(624\) 0 0
\(625\) −20.4806 + 14.3369i −0.819223 + 0.573475i
\(626\) −52.5798 −2.10151
\(627\) 0 0
\(628\) 39.4769i 1.57530i
\(629\) −2.11789 −0.0844458
\(630\) 0 0
\(631\) 42.5276 1.69300 0.846499 0.532390i \(-0.178706\pi\)
0.846499 + 0.532390i \(0.178706\pi\)
\(632\) 76.8147i 3.05553i
\(633\) 0 0
\(634\) −75.4058 −2.99475
\(635\) 13.6767 18.6515i 0.542743 0.740160i
\(636\) 0 0
\(637\) 87.5566i 3.46912i
\(638\) 5.25984i 0.208239i
\(639\) 0 0
\(640\) 30.0904 41.0354i 1.18943 1.62207i
\(641\) 31.3506 1.23828 0.619138 0.785282i \(-0.287482\pi\)
0.619138 + 0.785282i \(0.287482\pi\)
\(642\) 0 0
\(643\) 20.3035i 0.800692i 0.916364 + 0.400346i \(0.131110\pi\)
−0.916364 + 0.400346i \(0.868890\pi\)
\(644\) 163.664 6.44928
\(645\) 0 0
\(646\) −0.487443 −0.0191782
\(647\) 38.8373i 1.52685i 0.645896 + 0.763425i \(0.276484\pi\)
−0.645896 + 0.763425i \(0.723516\pi\)
\(648\) 0 0
\(649\) 5.10537 0.200403
\(650\) 24.7297 + 78.4495i 0.969978 + 3.07704i
\(651\) 0 0
\(652\) 34.9161i 1.36742i
\(653\) 34.5694i 1.35281i −0.736532 0.676403i \(-0.763538\pi\)
0.736532 0.676403i \(-0.236462\pi\)
\(654\) 0 0
\(655\) 26.2183 + 19.2253i 1.02443 + 0.751195i
\(656\) −107.801 −4.20892
\(657\) 0 0
\(658\) 81.6358i 3.18249i
\(659\) −17.8777 −0.696417 −0.348208 0.937417i \(-0.613210\pi\)
−0.348208 + 0.937417i \(0.613210\pi\)
\(660\) 0 0
\(661\) −10.7639 −0.418667 −0.209333 0.977844i \(-0.567129\pi\)
−0.209333 + 0.977844i \(0.567129\pi\)
\(662\) 1.21132i 0.0470792i
\(663\) 0 0
\(664\) 114.157 4.43016
\(665\) −1.10529 + 1.50732i −0.0428611 + 0.0584514i
\(666\) 0 0
\(667\) 8.84521i 0.342488i
\(668\) 18.9951i 0.734942i
\(669\) 0 0
\(670\) −61.5281 45.1172i −2.37704 1.74303i
\(671\) −15.1062 −0.583168
\(672\) 0 0
\(673\) 7.18958i 0.277138i −0.990353 0.138569i \(-0.955750\pi\)
0.990353 0.138569i \(-0.0442502\pi\)
\(674\) −37.6547 −1.45040
\(675\) 0 0
\(676\) 127.714 4.91206
\(677\) 38.0770i 1.46342i 0.681617 + 0.731709i \(0.261277\pi\)
−0.681617 + 0.731709i \(0.738723\pi\)
\(678\) 0 0
\(679\) 29.0276 1.11398
\(680\) −15.8100 11.5931i −0.606286 0.444576i
\(681\) 0 0
\(682\) 12.1291i 0.464447i
\(683\) 7.36273i 0.281727i −0.990029 0.140864i \(-0.955012\pi\)
0.990029 0.140864i \(-0.0449879\pi\)
\(684\) 0 0
\(685\) −15.0615 + 20.5399i −0.575470 + 0.784791i
\(686\) −91.2668 −3.48458
\(687\) 0 0
\(688\) 30.4637i 1.16142i
\(689\) −7.17340 −0.273285
\(690\) 0 0
\(691\) 40.5159 1.54130 0.770650 0.637259i \(-0.219932\pi\)
0.770650 + 0.637259i \(0.219932\pi\)
\(692\) 38.6283i 1.46843i
\(693\) 0 0
\(694\) −50.7167 −1.92518
\(695\) 9.89076 + 7.25268i 0.375178 + 0.275110i
\(696\) 0 0
\(697\) 8.22550i 0.311563i
\(698\) 2.80161i 0.106043i
\(699\) 0 0
\(700\) −115.752 + 36.4887i −4.37503 + 1.37914i
\(701\) −16.5969 −0.626855 −0.313428 0.949612i \(-0.601477\pi\)
−0.313428 + 0.949612i \(0.601477\pi\)
\(702\) 0 0
\(703\) 0.383272i 0.0144554i
\(704\) −32.2120 −1.21403
\(705\) 0 0
\(706\) −56.8381 −2.13913
\(707\) 19.5653i 0.735829i
\(708\) 0 0
\(709\) −23.7142 −0.890604 −0.445302 0.895381i \(-0.646904\pi\)
−0.445302 + 0.895381i \(0.646904\pi\)
\(710\) −25.6891 + 35.0332i −0.964095 + 1.31477i
\(711\) 0 0
\(712\) 73.9293i 2.77062i
\(713\) 20.3969i 0.763870i
\(714\) 0 0
\(715\) 12.0214 16.3941i 0.449575 0.613103i
\(716\) −27.2617 −1.01882
\(717\) 0 0
\(718\) 15.6450i 0.583865i
\(719\) 2.14873 0.0801339 0.0400670 0.999197i \(-0.487243\pi\)
0.0400670 + 0.999197i \(0.487243\pi\)
\(720\) 0 0
\(721\) −31.9345 −1.18930
\(722\) 51.0888i 1.90133i
\(723\) 0 0
\(724\) −3.64286 −0.135386
\(725\) −1.97202 6.25581i −0.0732391 0.232335i
\(726\) 0 0
\(727\) 21.5131i 0.797875i −0.916978 0.398938i \(-0.869379\pi\)
0.916978 0.398938i \(-0.130621\pi\)
\(728\) 247.347i 9.16729i
\(729\) 0 0
\(730\) 45.3199 + 33.2321i 1.67736 + 1.22997i
\(731\) −2.32446 −0.0859733
\(732\) 0 0
\(733\) 37.4517i 1.38331i 0.722228 + 0.691655i \(0.243118\pi\)
−0.722228 + 0.691655i \(0.756882\pi\)
\(734\) −42.2465 −1.55935
\(735\) 0 0
\(736\) 119.782 4.41524
\(737\) 18.8568i 0.694600i
\(738\) 0 0
\(739\) 29.9540 1.10188 0.550938 0.834546i \(-0.314270\pi\)
0.550938 + 0.834546i \(0.314270\pi\)
\(740\) −14.7164 + 20.0693i −0.540985 + 0.737762i
\(741\) 0 0
\(742\) 14.6126i 0.536446i
\(743\) 4.89399i 0.179543i −0.995962 0.0897716i \(-0.971386\pi\)
0.995962 0.0897716i \(-0.0286137\pi\)
\(744\) 0 0
\(745\) 36.4867 + 26.7549i 1.33677 + 0.980224i
\(746\) 77.2132 2.82698
\(747\) 0 0
\(748\) 7.82248i 0.286018i
\(749\) −0.538764 −0.0196860
\(750\) 0 0
\(751\) 17.7060 0.646102 0.323051 0.946382i \(-0.395291\pi\)
0.323051 + 0.946382i \(0.395291\pi\)
\(752\) 85.9937i 3.13587i
\(753\) 0 0
\(754\) −21.5813 −0.785946
\(755\) 13.0511 + 9.57010i 0.474979 + 0.348292i
\(756\) 0 0
\(757\) 49.1135i 1.78506i −0.450988 0.892530i \(-0.648928\pi\)
0.450988 0.892530i \(-0.351072\pi\)
\(758\) 37.9255i 1.37752i
\(759\) 0 0
\(760\) −2.09799 + 2.86111i −0.0761022 + 0.103784i
\(761\) 9.03057 0.327358 0.163679 0.986514i \(-0.447664\pi\)
0.163679 + 0.986514i \(0.447664\pi\)
\(762\) 0 0
\(763\) 32.1355i 1.16338i
\(764\) 18.0236 0.652070
\(765\) 0 0
\(766\) 44.5629 1.61012
\(767\) 20.9476i 0.756372i
\(768\) 0 0
\(769\) 46.2896 1.66924 0.834622 0.550823i \(-0.185686\pi\)
0.834622 + 0.550823i \(0.185686\pi\)
\(770\) 33.3956 + 24.4883i 1.20349 + 0.882495i
\(771\) 0 0
\(772\) 28.0222i 1.00854i
\(773\) 0.350175i 0.0125949i 0.999980 + 0.00629746i \(0.00200456\pi\)
−0.999980 + 0.00629746i \(0.997995\pi\)
\(774\) 0 0
\(775\) 4.54745 + 14.4258i 0.163349 + 0.518190i
\(776\) 55.0986 1.97792
\(777\) 0 0
\(778\) 57.7851i 2.07170i
\(779\) 1.48856 0.0533331
\(780\) 0 0
\(781\) 10.7368 0.384193
\(782\) 18.1612i 0.649441i
\(783\) 0 0
\(784\) −187.879 −6.70995
\(785\) 9.93304 13.5461i 0.354526 0.483480i
\(786\) 0 0
\(787\) 18.6914i 0.666278i −0.942878 0.333139i \(-0.891892\pi\)
0.942878 0.333139i \(-0.108108\pi\)
\(788\) 73.6439i 2.62345i
\(789\) 0 0
\(790\) −31.2034 + 42.5533i −1.11017 + 1.51398i
\(791\) −41.1487 −1.46308
\(792\) 0 0
\(793\) 61.9814i 2.20102i
\(794\) 88.3727 3.13623
\(795\) 0 0
\(796\) −105.591 −3.74258
\(797\) 32.4669i 1.15004i −0.818141 0.575018i \(-0.804995\pi\)
0.818141 0.575018i \(-0.195005\pi\)
\(798\) 0 0
\(799\) 6.56155 0.232131
\(800\) −84.7167 + 26.7053i −2.99519 + 0.944174i
\(801\) 0 0
\(802\) 0.662775i 0.0234034i
\(803\) 13.8894i 0.490147i
\(804\) 0 0
\(805\) −56.1597 41.1807i −1.97937 1.45143i
\(806\) 49.7661 1.75294
\(807\) 0 0
\(808\) 37.1378i 1.30650i
\(809\) 7.30347 0.256776 0.128388 0.991724i \(-0.459020\pi\)
0.128388 + 0.991724i \(0.459020\pi\)
\(810\) 0 0
\(811\) −3.42434 −0.120245 −0.0601225 0.998191i \(-0.519149\pi\)
−0.0601225 + 0.998191i \(0.519149\pi\)
\(812\) 31.8433i 1.11748i
\(813\) 0 0
\(814\) 8.49161 0.297631
\(815\) −8.78547 + 11.9811i −0.307742 + 0.419679i
\(816\) 0 0
\(817\) 0.420654i 0.0147168i
\(818\) 10.1733i 0.355700i
\(819\) 0 0
\(820\) 77.9455 + 57.1557i 2.72198 + 1.99597i
\(821\) 40.2521 1.40481 0.702404 0.711778i \(-0.252110\pi\)
0.702404 + 0.711778i \(0.252110\pi\)
\(822\) 0 0
\(823\) 9.80674i 0.341841i 0.985285 + 0.170921i \(0.0546742\pi\)
−0.985285 + 0.170921i \(0.945326\pi\)
\(824\) −60.6163 −2.11167
\(825\) 0 0
\(826\) 42.6713 1.48472
\(827\) 4.78549i 0.166408i 0.996533 + 0.0832038i \(0.0265153\pi\)
−0.996533 + 0.0832038i \(0.973485\pi\)
\(828\) 0 0
\(829\) −38.5349 −1.33837 −0.669185 0.743096i \(-0.733357\pi\)
−0.669185 + 0.743096i \(0.733357\pi\)
\(830\) −63.2400 46.3725i −2.19509 1.60961i
\(831\) 0 0
\(832\) 132.167i 4.58207i
\(833\) 14.3357i 0.496701i
\(834\) 0 0
\(835\) 4.77948 6.51796i 0.165401 0.225563i
\(836\) 1.41562 0.0489604
\(837\) 0 0
\(838\) 49.5793i 1.71269i
\(839\) −3.20700 −0.110718 −0.0553590 0.998467i \(-0.517630\pi\)
−0.0553590 + 0.998467i \(0.517630\pi\)
\(840\) 0 0
\(841\) −27.2790 −0.940656
\(842\) 39.1239i 1.34830i
\(843\) 0 0
\(844\) −23.1183 −0.795765
\(845\) −43.8236 32.1349i −1.50758 1.10547i
\(846\) 0 0
\(847\) 40.5747i 1.39416i
\(848\) 15.3927i 0.528586i
\(849\) 0 0
\(850\) 4.04900 + 12.8446i 0.138879 + 0.440565i
\(851\) −14.2799 −0.489509
\(852\) 0 0
\(853\) 18.4995i 0.633412i 0.948524 + 0.316706i \(0.102577\pi\)
−0.948524 + 0.316706i \(0.897423\pi\)
\(854\) −126.259 −4.32051
\(855\) 0 0
\(856\) −1.02265 −0.0349535
\(857\) 7.84698i 0.268048i −0.990978 0.134024i \(-0.957210\pi\)
0.990978 0.134024i \(-0.0427899\pi\)
\(858\) 0 0
\(859\) −28.9487 −0.987718 −0.493859 0.869542i \(-0.664414\pi\)
−0.493859 + 0.869542i \(0.664414\pi\)
\(860\) −16.1518 + 22.0268i −0.550770 + 0.751107i
\(861\) 0 0
\(862\) 99.8447i 3.40073i
\(863\) 34.1900i 1.16384i −0.813245 0.581921i \(-0.802301\pi\)
0.813245 0.581921i \(-0.197699\pi\)
\(864\) 0 0
\(865\) −9.71953 + 13.2549i −0.330474 + 0.450680i
\(866\) 45.1172 1.53315
\(867\) 0 0
\(868\) 73.4300i 2.49238i
\(869\) 13.0415 0.442403
\(870\) 0 0
\(871\) 77.3703 2.62159
\(872\) 60.9978i 2.06565i
\(873\) 0 0
\(874\) −3.28660 −0.111171
\(875\) 48.9004 + 16.6045i 1.65313 + 0.561335i
\(876\) 0 0
\(877\) 2.93107i 0.0989753i 0.998775 + 0.0494877i \(0.0157588\pi\)
−0.998775 + 0.0494877i \(0.984241\pi\)
\(878\) 46.8869i 1.58235i
\(879\) 0 0
\(880\) 35.1783 + 25.7955i 1.18586 + 0.869566i
\(881\) −56.2657 −1.89564 −0.947820 0.318807i \(-0.896718\pi\)
−0.947820 + 0.318807i \(0.896718\pi\)
\(882\) 0 0
\(883\) 0.966565i 0.0325275i −0.999868 0.0162638i \(-0.994823\pi\)
0.999868 0.0162638i \(-0.00517714\pi\)
\(884\) 32.0960 1.07950
\(885\) 0 0
\(886\) 91.4187 3.07127
\(887\) 41.0673i 1.37890i −0.724331 0.689452i \(-0.757851\pi\)
0.724331 0.689452i \(-0.242149\pi\)
\(888\) 0 0
\(889\) −47.7767 −1.60238
\(890\) −30.0313 + 40.9548i −1.00665 + 1.37281i
\(891\) 0 0
\(892\) 119.314i 3.99492i
\(893\) 1.18743i 0.0397360i
\(894\) 0 0
\(895\) 9.35456 + 6.85949i 0.312688 + 0.229288i
\(896\) −105.114 −3.51162
\(897\) 0 0
\(898\) 48.8771i 1.63105i
\(899\) −3.96851 −0.132357
\(900\) 0 0
\(901\) −1.17450 −0.0391283
\(902\) 32.9799i 1.09811i
\(903\) 0 0
\(904\) −78.1062 −2.59778
\(905\) 1.25001 + 0.916605i 0.0415517 + 0.0304690i
\(906\) 0 0
\(907\) 43.2302i 1.43543i −0.696334 0.717717i \(-0.745187\pi\)
0.696334 0.717717i \(-0.254813\pi\)
\(908\) 108.727i 3.60824i
\(909\) 0 0
\(910\) 100.476 137.023i 3.33076 4.54228i
\(911\) 44.9471 1.48916 0.744581 0.667532i \(-0.232649\pi\)
0.744581 + 0.667532i \(0.232649\pi\)
\(912\) 0 0
\(913\) 19.3815i 0.641433i
\(914\) 48.4011 1.60097
\(915\) 0 0
\(916\) −119.316 −3.94232
\(917\) 67.1596i 2.21780i
\(918\) 0 0
\(919\) −1.36957 −0.0451781 −0.0225890 0.999745i \(-0.507191\pi\)
−0.0225890 + 0.999745i \(0.507191\pi\)
\(920\) −106.599 78.1669i −3.51448 2.57709i
\(921\) 0 0
\(922\) 34.6205i 1.14016i
\(923\) 44.0536i 1.45004i
\(924\) 0 0
\(925\) 10.0995 3.18368i 0.332071 0.104679i
\(926\) −19.9274 −0.654855
\(927\) 0 0
\(928\) 23.3054i 0.765038i
\(929\) 2.67132 0.0876431 0.0438215 0.999039i \(-0.486047\pi\)
0.0438215 + 0.999039i \(0.486047\pi\)
\(930\) 0 0
\(931\) 2.59430 0.0850248
\(932\) 63.4908i 2.07971i
\(933\) 0 0
\(934\) −63.0714 −2.06376
\(935\) 1.96827 2.68420i 0.0643692 0.0877828i
\(936\) 0 0
\(937\) 26.6015i 0.869034i −0.900664 0.434517i \(-0.856919\pi\)
0.900664 0.434517i \(-0.143081\pi\)
\(938\) 157.608i 5.14607i
\(939\) 0 0
\(940\) 45.5936 62.1778i 1.48710 2.02802i
\(941\) 24.8072 0.808690 0.404345 0.914606i \(-0.367499\pi\)
0.404345 + 0.914606i \(0.367499\pi\)
\(942\) 0 0
\(943\) 55.4606i 1.80605i
\(944\) 44.9492 1.46297
\(945\) 0 0
\(946\) 9.31984 0.303014
\(947\) 39.6057i 1.28701i 0.765441 + 0.643506i \(0.222521\pi\)
−0.765441 + 0.643506i \(0.777479\pi\)
\(948\) 0 0
\(949\) −56.9888 −1.84994
\(950\) 2.32446 0.732741i 0.0754155 0.0237733i
\(951\) 0 0
\(952\) 40.4982i 1.31255i
\(953\) 43.2247i 1.40019i 0.714052 + 0.700093i \(0.246858\pi\)
−0.714052 + 0.700093i \(0.753142\pi\)
\(954\) 0 0
\(955\) −6.18460 4.53503i −0.200129 0.146750i
\(956\) 126.734 4.09888
\(957\) 0 0
\(958\) 90.7073i 2.93062i
\(959\) 52.6142 1.69900
\(960\) 0 0
\(961\) −21.8487 −0.704796
\(962\) 34.8414i 1.12333i
\(963\) 0 0
\(964\) 97.6042 3.14362
\(965\) −7.05086 + 9.61553i −0.226975 + 0.309535i
\(966\) 0 0
\(967\) 0.630476i 0.0202748i 0.999949 + 0.0101374i \(0.00322688\pi\)
−0.999949 + 0.0101374i \(0.996773\pi\)
\(968\) 77.0166i 2.47541i
\(969\) 0 0
\(970\) −30.5231 22.3819i −0.980037 0.718640i
\(971\) −62.1272 −1.99376 −0.996879 0.0789458i \(-0.974845\pi\)
−0.996879 + 0.0789458i \(0.974845\pi\)
\(972\) 0 0
\(973\) 25.3357i 0.812225i
\(974\) −89.5743 −2.87015
\(975\) 0 0
\(976\) −132.999 −4.25721
\(977\) 43.0462i 1.37717i 0.725156 + 0.688585i \(0.241768\pi\)
−0.725156 + 0.688585i \(0.758232\pi\)
\(978\) 0 0
\(979\) 12.5516 0.401151
\(980\) 135.846 + 99.6128i 4.33944 + 3.18201i
\(981\) 0 0
\(982\) 95.0292i 3.03250i
\(983\) 26.5628i 0.847222i 0.905844 + 0.423611i \(0.139238\pi\)
−0.905844 + 0.423611i \(0.860762\pi\)
\(984\) 0 0
\(985\) 18.5300 25.2701i 0.590415 0.805172i
\(986\) −3.53351 −0.112530
\(987\) 0 0
\(988\) 5.80836i 0.184789i
\(989\) −15.6727 −0.498364
\(990\) 0 0
\(991\) −35.8067 −1.13744 −0.568719 0.822532i \(-0.692561\pi\)
−0.568719 + 0.822532i \(0.692561\pi\)
\(992\) 53.7418i 1.70631i
\(993\) 0 0
\(994\) 89.7395 2.84636
\(995\) 36.2325 + 26.5685i 1.14865 + 0.842279i
\(996\) 0 0
\(997\) 2.94417i 0.0932428i 0.998913 + 0.0466214i \(0.0148454\pi\)
−0.998913 + 0.0466214i \(0.985155\pi\)
\(998\) 37.1685i 1.17655i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.b.e.154.16 yes 16
3.2 odd 2 inner 765.2.b.e.154.1 16
5.2 odd 4 3825.2.a.bs.1.2 8
5.3 odd 4 3825.2.a.bt.1.7 8
5.4 even 2 inner 765.2.b.e.154.2 yes 16
15.2 even 4 3825.2.a.bt.1.8 8
15.8 even 4 3825.2.a.bs.1.1 8
15.14 odd 2 inner 765.2.b.e.154.15 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
765.2.b.e.154.1 16 3.2 odd 2 inner
765.2.b.e.154.2 yes 16 5.4 even 2 inner
765.2.b.e.154.15 yes 16 15.14 odd 2 inner
765.2.b.e.154.16 yes 16 1.1 even 1 trivial
3825.2.a.bs.1.1 8 15.8 even 4
3825.2.a.bs.1.2 8 5.2 odd 4
3825.2.a.bt.1.7 8 5.3 odd 4
3825.2.a.bt.1.8 8 15.2 even 4