Properties

Label 2-765-5.4-c1-0-28
Degree $2$
Conductor $765$
Sign $0.591 - 0.806i$
Analytic cond. $6.10855$
Root an. cond. $2.47154$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.69i·2-s − 5.25·4-s + (1.80 + 1.32i)5-s − 4.61i·7-s − 8.76i·8-s + (−3.56 + 4.85i)10-s + 1.48·11-s − 6.10i·13-s + 12.4·14-s + 13.1·16-s i·17-s − 0.180·19-s + (−9.47 − 6.94i)20-s + 4.00i·22-s − 6.74i·23-s + ⋯
L(s)  = 1  + 1.90i·2-s − 2.62·4-s + (0.806 + 0.591i)5-s − 1.74i·7-s − 3.09i·8-s + (−1.12 + 1.53i)10-s + 0.448·11-s − 1.69i·13-s + 3.32·14-s + 3.27·16-s − 0.242i·17-s − 0.0415·19-s + (−2.11 − 1.55i)20-s + 0.854i·22-s − 1.40i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 765 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.591 - 0.806i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 765 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.591 - 0.806i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(765\)    =    \(3^{2} \cdot 5 \cdot 17\)
Sign: $0.591 - 0.806i$
Analytic conductor: \(6.10855\)
Root analytic conductor: \(2.47154\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{765} (154, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 765,\ (\ :1/2),\ 0.591 - 0.806i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.18132 + 0.598648i\)
\(L(\frac12)\) \(\approx\) \(1.18132 + 0.598648i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-1.80 - 1.32i)T \)
17 \( 1 + iT \)
good2 \( 1 - 2.69iT - 2T^{2} \)
7 \( 1 + 4.61iT - 7T^{2} \)
11 \( 1 - 1.48T + 11T^{2} \)
13 \( 1 + 6.10iT - 13T^{2} \)
19 \( 1 + 0.180T + 19T^{2} \)
23 \( 1 + 6.74iT - 23T^{2} \)
29 \( 1 + 1.31T + 29T^{2} \)
31 \( 1 - 3.02T + 31T^{2} \)
37 \( 1 + 2.11iT - 37T^{2} \)
41 \( 1 + 8.22T + 41T^{2} \)
43 \( 1 + 2.32iT - 43T^{2} \)
47 \( 1 - 6.56iT - 47T^{2} \)
53 \( 1 + 1.17iT - 53T^{2} \)
59 \( 1 - 3.42T + 59T^{2} \)
61 \( 1 + 10.1T + 61T^{2} \)
67 \( 1 - 12.6iT - 67T^{2} \)
71 \( 1 - 7.21T + 71T^{2} \)
73 \( 1 + 9.33iT - 73T^{2} \)
79 \( 1 - 8.76T + 79T^{2} \)
83 \( 1 - 13.0iT - 83T^{2} \)
89 \( 1 - 8.43T + 89T^{2} \)
97 \( 1 - 6.28iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.25335886816820839267738666633, −9.508556404676851026124398870996, −8.374083336956610446457430094251, −7.64409338518327163233654231091, −6.90210860980453602408659808636, −6.32647323896294065100409843386, −5.35504860460879709090384322526, −4.41215188161452783057266401149, −3.33081291823303192032454792359, −0.72394293938527811490143042136, 1.64152638825099713900459237845, 2.12946606444136448748803758309, 3.37963085762741814524669807842, 4.60295478821544475441452398248, 5.35549578656471987946338809041, 6.34021008511847801682498150014, 8.311838601351532504001897134387, 9.111529979598397992288187804646, 9.299607811958025210604023444136, 10.10351846195345767446048494081

Graph of the $Z$-function along the critical line