Properties

Label 3825.2.a.bt.1.7
Level $3825$
Weight $2$
Character 3825.1
Self dual yes
Analytic conductor $30.543$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3825,2,Mod(1,3825)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3825, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3825.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3825.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,0,8,0,0,0,18,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.5427787731\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.17830397164.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 8x^{6} + 24x^{5} + 16x^{4} - 51x^{3} - 11x^{2} + 30x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 765)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-1.38157\) of defining polynomial
Character \(\chi\) \(=\) 3825.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.69353 q^{2} +5.25508 q^{4} -4.61905 q^{7} +8.76763 q^{8} +1.48856 q^{11} +6.10761 q^{13} -12.4415 q^{14} +13.1057 q^{16} -1.00000 q^{17} +0.180969 q^{19} +4.00947 q^{22} +6.74252 q^{23} +16.4510 q^{26} -24.2735 q^{28} +1.31185 q^{29} +3.02511 q^{31} +17.7652 q^{32} -2.69353 q^{34} -2.11789 q^{37} +0.487443 q^{38} -8.22550 q^{41} +2.32446 q^{43} +7.82248 q^{44} +18.1612 q^{46} +6.56155 q^{47} +14.3357 q^{49} +32.0960 q^{52} +1.17450 q^{53} -40.4982 q^{56} +3.53351 q^{58} -3.42975 q^{59} -10.1482 q^{61} +8.14822 q^{62} +21.6397 q^{64} +12.6679 q^{67} -5.25508 q^{68} +7.21290 q^{71} +9.33079 q^{73} -5.70459 q^{74} +0.951004 q^{76} -6.87572 q^{77} -8.76117 q^{79} -22.1556 q^{82} -13.0203 q^{83} +6.26099 q^{86} +13.0511 q^{88} -8.43207 q^{89} -28.2114 q^{91} +35.4325 q^{92} +17.6737 q^{94} +6.28431 q^{97} +38.6134 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 8 q^{4} + 18 q^{8} + 16 q^{16} - 8 q^{17} + 2 q^{19} + 38 q^{23} - 12 q^{31} + 40 q^{32} - 4 q^{34} + 22 q^{38} + 40 q^{46} + 36 q^{47} + 28 q^{49} + 28 q^{53} - 12 q^{61} - 4 q^{62} + 54 q^{64}+ \cdots + 102 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.69353 1.90461 0.952305 0.305148i \(-0.0987059\pi\)
0.952305 + 0.305148i \(0.0987059\pi\)
\(3\) 0 0
\(4\) 5.25508 2.62754
\(5\) 0 0
\(6\) 0 0
\(7\) −4.61905 −1.74584 −0.872919 0.487865i \(-0.837776\pi\)
−0.872919 + 0.487865i \(0.837776\pi\)
\(8\) 8.76763 3.09983
\(9\) 0 0
\(10\) 0 0
\(11\) 1.48856 0.448817 0.224408 0.974495i \(-0.427955\pi\)
0.224408 + 0.974495i \(0.427955\pi\)
\(12\) 0 0
\(13\) 6.10761 1.69395 0.846973 0.531636i \(-0.178422\pi\)
0.846973 + 0.531636i \(0.178422\pi\)
\(14\) −12.4415 −3.32514
\(15\) 0 0
\(16\) 13.1057 3.27642
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 0.180969 0.0415170 0.0207585 0.999785i \(-0.493392\pi\)
0.0207585 + 0.999785i \(0.493392\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.00947 0.854821
\(23\) 6.74252 1.40591 0.702956 0.711233i \(-0.251863\pi\)
0.702956 + 0.711233i \(0.251863\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 16.4510 3.22631
\(27\) 0 0
\(28\) −24.2735 −4.58726
\(29\) 1.31185 0.243605 0.121803 0.992554i \(-0.461132\pi\)
0.121803 + 0.992554i \(0.461132\pi\)
\(30\) 0 0
\(31\) 3.02511 0.543326 0.271663 0.962392i \(-0.412426\pi\)
0.271663 + 0.962392i \(0.412426\pi\)
\(32\) 17.7652 3.14048
\(33\) 0 0
\(34\) −2.69353 −0.461936
\(35\) 0 0
\(36\) 0 0
\(37\) −2.11789 −0.348179 −0.174090 0.984730i \(-0.555698\pi\)
−0.174090 + 0.984730i \(0.555698\pi\)
\(38\) 0.487443 0.0790738
\(39\) 0 0
\(40\) 0 0
\(41\) −8.22550 −1.28461 −0.642304 0.766450i \(-0.722021\pi\)
−0.642304 + 0.766450i \(0.722021\pi\)
\(42\) 0 0
\(43\) 2.32446 0.354477 0.177238 0.984168i \(-0.443284\pi\)
0.177238 + 0.984168i \(0.443284\pi\)
\(44\) 7.82248 1.17928
\(45\) 0 0
\(46\) 18.1612 2.67772
\(47\) 6.56155 0.957101 0.478550 0.878060i \(-0.341162\pi\)
0.478550 + 0.878060i \(0.341162\pi\)
\(48\) 0 0
\(49\) 14.3357 2.04795
\(50\) 0 0
\(51\) 0 0
\(52\) 32.0960 4.45091
\(53\) 1.17450 0.161330 0.0806652 0.996741i \(-0.474296\pi\)
0.0806652 + 0.996741i \(0.474296\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −40.4982 −5.41180
\(57\) 0 0
\(58\) 3.53351 0.463973
\(59\) −3.42975 −0.446515 −0.223257 0.974760i \(-0.571669\pi\)
−0.223257 + 0.974760i \(0.571669\pi\)
\(60\) 0 0
\(61\) −10.1482 −1.29935 −0.649673 0.760214i \(-0.725094\pi\)
−0.649673 + 0.760214i \(0.725094\pi\)
\(62\) 8.14822 1.03482
\(63\) 0 0
\(64\) 21.6397 2.70497
\(65\) 0 0
\(66\) 0 0
\(67\) 12.6679 1.54762 0.773812 0.633415i \(-0.218347\pi\)
0.773812 + 0.633415i \(0.218347\pi\)
\(68\) −5.25508 −0.637272
\(69\) 0 0
\(70\) 0 0
\(71\) 7.21290 0.856013 0.428007 0.903776i \(-0.359216\pi\)
0.428007 + 0.903776i \(0.359216\pi\)
\(72\) 0 0
\(73\) 9.33079 1.09209 0.546043 0.837757i \(-0.316134\pi\)
0.546043 + 0.837757i \(0.316134\pi\)
\(74\) −5.70459 −0.663145
\(75\) 0 0
\(76\) 0.951004 0.109088
\(77\) −6.87572 −0.783561
\(78\) 0 0
\(79\) −8.76117 −0.985708 −0.492854 0.870112i \(-0.664046\pi\)
−0.492854 + 0.870112i \(0.664046\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −22.1556 −2.44668
\(83\) −13.0203 −1.42916 −0.714582 0.699551i \(-0.753383\pi\)
−0.714582 + 0.699551i \(0.753383\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 6.26099 0.675140
\(87\) 0 0
\(88\) 13.0511 1.39125
\(89\) −8.43207 −0.893798 −0.446899 0.894584i \(-0.647472\pi\)
−0.446899 + 0.894584i \(0.647472\pi\)
\(90\) 0 0
\(91\) −28.2114 −2.95736
\(92\) 35.4325 3.69409
\(93\) 0 0
\(94\) 17.6737 1.82290
\(95\) 0 0
\(96\) 0 0
\(97\) 6.28431 0.638075 0.319038 0.947742i \(-0.396640\pi\)
0.319038 + 0.947742i \(0.396640\pi\)
\(98\) 38.6134 3.90055
\(99\) 0 0
\(100\) 0 0
\(101\) 4.23578 0.421476 0.210738 0.977543i \(-0.432413\pi\)
0.210738 + 0.977543i \(0.432413\pi\)
\(102\) 0 0
\(103\) 6.91365 0.681222 0.340611 0.940204i \(-0.389366\pi\)
0.340611 + 0.940204i \(0.389366\pi\)
\(104\) 53.5493 5.25094
\(105\) 0 0
\(106\) 3.16355 0.307271
\(107\) −0.116639 −0.0112760 −0.00563798 0.999984i \(-0.501795\pi\)
−0.00563798 + 0.999984i \(0.501795\pi\)
\(108\) 0 0
\(109\) −6.95715 −0.666374 −0.333187 0.942861i \(-0.608124\pi\)
−0.333187 + 0.942861i \(0.608124\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −60.5359 −5.72010
\(113\) 8.90847 0.838039 0.419019 0.907977i \(-0.362374\pi\)
0.419019 + 0.907977i \(0.362374\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.89390 0.640083
\(117\) 0 0
\(118\) −9.23811 −0.850437
\(119\) 4.61905 0.423428
\(120\) 0 0
\(121\) −8.78420 −0.798563
\(122\) −27.3345 −2.47475
\(123\) 0 0
\(124\) 15.8972 1.42761
\(125\) 0 0
\(126\) 0 0
\(127\) −10.3434 −0.917828 −0.458914 0.888481i \(-0.651761\pi\)
−0.458914 + 0.888481i \(0.651761\pi\)
\(128\) 22.7567 2.01143
\(129\) 0 0
\(130\) 0 0
\(131\) 14.5397 1.27034 0.635169 0.772373i \(-0.280930\pi\)
0.635169 + 0.772373i \(0.280930\pi\)
\(132\) 0 0
\(133\) −0.835903 −0.0724820
\(134\) 34.1212 2.94762
\(135\) 0 0
\(136\) −8.76763 −0.751818
\(137\) 11.3907 0.973172 0.486586 0.873633i \(-0.338242\pi\)
0.486586 + 0.873633i \(0.338242\pi\)
\(138\) 0 0
\(139\) −5.48504 −0.465235 −0.232618 0.972568i \(-0.574729\pi\)
−0.232618 + 0.972568i \(0.574729\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 19.4281 1.63037
\(143\) 9.09153 0.760272
\(144\) 0 0
\(145\) 0 0
\(146\) 25.1327 2.08000
\(147\) 0 0
\(148\) −11.1297 −0.914854
\(149\) −20.2342 −1.65765 −0.828823 0.559511i \(-0.810989\pi\)
−0.828823 + 0.559511i \(0.810989\pi\)
\(150\) 0 0
\(151\) 7.23766 0.588993 0.294496 0.955653i \(-0.404848\pi\)
0.294496 + 0.955653i \(0.404848\pi\)
\(152\) 1.58667 0.128696
\(153\) 0 0
\(154\) −18.5199 −1.49238
\(155\) 0 0
\(156\) 0 0
\(157\) −7.51215 −0.599534 −0.299767 0.954012i \(-0.596909\pi\)
−0.299767 + 0.954012i \(0.596909\pi\)
\(158\) −23.5984 −1.87739
\(159\) 0 0
\(160\) 0 0
\(161\) −31.1441 −2.45450
\(162\) 0 0
\(163\) −6.64426 −0.520419 −0.260209 0.965552i \(-0.583792\pi\)
−0.260209 + 0.965552i \(0.583792\pi\)
\(164\) −43.2257 −3.37536
\(165\) 0 0
\(166\) −35.0705 −2.72200
\(167\) −3.61461 −0.279707 −0.139854 0.990172i \(-0.544663\pi\)
−0.139854 + 0.990172i \(0.544663\pi\)
\(168\) 0 0
\(169\) 24.3029 1.86945
\(170\) 0 0
\(171\) 0 0
\(172\) 12.2152 0.931402
\(173\) −7.35067 −0.558861 −0.279431 0.960166i \(-0.590146\pi\)
−0.279431 + 0.960166i \(0.590146\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 19.5086 1.47051
\(177\) 0 0
\(178\) −22.7120 −1.70234
\(179\) −5.18768 −0.387746 −0.193873 0.981027i \(-0.562105\pi\)
−0.193873 + 0.981027i \(0.562105\pi\)
\(180\) 0 0
\(181\) 0.693208 0.0515258 0.0257629 0.999668i \(-0.491799\pi\)
0.0257629 + 0.999668i \(0.491799\pi\)
\(182\) −75.9881 −5.63261
\(183\) 0 0
\(184\) 59.1160 4.35809
\(185\) 0 0
\(186\) 0 0
\(187\) −1.48856 −0.108854
\(188\) 34.4815 2.51482
\(189\) 0 0
\(190\) 0 0
\(191\) −3.42975 −0.248168 −0.124084 0.992272i \(-0.539599\pi\)
−0.124084 + 0.992272i \(0.539599\pi\)
\(192\) 0 0
\(193\) −5.33241 −0.383835 −0.191918 0.981411i \(-0.561471\pi\)
−0.191918 + 0.981411i \(0.561471\pi\)
\(194\) 16.9270 1.21528
\(195\) 0 0
\(196\) 75.3350 5.38107
\(197\) −14.0138 −0.998445 −0.499223 0.866474i \(-0.666381\pi\)
−0.499223 + 0.866474i \(0.666381\pi\)
\(198\) 0 0
\(199\) −20.0932 −1.42437 −0.712184 0.701993i \(-0.752294\pi\)
−0.712184 + 0.701993i \(0.752294\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 11.4092 0.802747
\(203\) −6.05953 −0.425295
\(204\) 0 0
\(205\) 0 0
\(206\) 18.6221 1.29746
\(207\) 0 0
\(208\) 80.0444 5.55008
\(209\) 0.269382 0.0186335
\(210\) 0 0
\(211\) 4.39923 0.302856 0.151428 0.988468i \(-0.451613\pi\)
0.151428 + 0.988468i \(0.451613\pi\)
\(212\) 6.17210 0.423902
\(213\) 0 0
\(214\) −0.314171 −0.0214763
\(215\) 0 0
\(216\) 0 0
\(217\) −13.9732 −0.948560
\(218\) −18.7393 −1.26918
\(219\) 0 0
\(220\) 0 0
\(221\) −6.10761 −0.410842
\(222\) 0 0
\(223\) −22.7045 −1.52040 −0.760202 0.649687i \(-0.774900\pi\)
−0.760202 + 0.649687i \(0.774900\pi\)
\(224\) −82.0586 −5.48277
\(225\) 0 0
\(226\) 23.9952 1.59614
\(227\) −20.6900 −1.37324 −0.686620 0.727016i \(-0.740906\pi\)
−0.686620 + 0.727016i \(0.740906\pi\)
\(228\) 0 0
\(229\) −22.7050 −1.50039 −0.750193 0.661219i \(-0.770040\pi\)
−0.750193 + 0.661219i \(0.770040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 11.5019 0.755134
\(233\) −12.0818 −0.791505 −0.395753 0.918357i \(-0.629516\pi\)
−0.395753 + 0.918357i \(0.629516\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −18.0236 −1.17324
\(237\) 0 0
\(238\) 12.4415 0.806465
\(239\) 24.1165 1.55997 0.779984 0.625799i \(-0.215227\pi\)
0.779984 + 0.625799i \(0.215227\pi\)
\(240\) 0 0
\(241\) −18.5733 −1.19641 −0.598206 0.801342i \(-0.704120\pi\)
−0.598206 + 0.801342i \(0.704120\pi\)
\(242\) −23.6605 −1.52095
\(243\) 0 0
\(244\) −53.3297 −3.41408
\(245\) 0 0
\(246\) 0 0
\(247\) 1.10529 0.0703276
\(248\) 26.5231 1.68422
\(249\) 0 0
\(250\) 0 0
\(251\) 12.6679 0.799588 0.399794 0.916605i \(-0.369082\pi\)
0.399794 + 0.916605i \(0.369082\pi\)
\(252\) 0 0
\(253\) 10.0366 0.630997
\(254\) −27.8602 −1.74810
\(255\) 0 0
\(256\) 18.0162 1.12602
\(257\) 16.0502 1.00119 0.500593 0.865683i \(-0.333115\pi\)
0.500593 + 0.865683i \(0.333115\pi\)
\(258\) 0 0
\(259\) 9.78265 0.607864
\(260\) 0 0
\(261\) 0 0
\(262\) 39.1630 2.41950
\(263\) 0.481294 0.0296779 0.0148389 0.999890i \(-0.495276\pi\)
0.0148389 + 0.999890i \(0.495276\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2.25153 −0.138050
\(267\) 0 0
\(268\) 66.5706 4.06644
\(269\) −3.03782 −0.185219 −0.0926095 0.995703i \(-0.529521\pi\)
−0.0926095 + 0.995703i \(0.529521\pi\)
\(270\) 0 0
\(271\) −15.2527 −0.926534 −0.463267 0.886219i \(-0.653323\pi\)
−0.463267 + 0.886219i \(0.653323\pi\)
\(272\) −13.1057 −0.794649
\(273\) 0 0
\(274\) 30.6811 1.85351
\(275\) 0 0
\(276\) 0 0
\(277\) −19.7582 −1.18716 −0.593578 0.804777i \(-0.702285\pi\)
−0.593578 + 0.804777i \(0.702285\pi\)
\(278\) −14.7741 −0.886092
\(279\) 0 0
\(280\) 0 0
\(281\) −26.4557 −1.57821 −0.789106 0.614257i \(-0.789456\pi\)
−0.789106 + 0.614257i \(0.789456\pi\)
\(282\) 0 0
\(283\) 1.28854 0.0765955 0.0382977 0.999266i \(-0.487806\pi\)
0.0382977 + 0.999266i \(0.487806\pi\)
\(284\) 37.9043 2.24921
\(285\) 0 0
\(286\) 24.4883 1.44802
\(287\) 37.9940 2.24272
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 49.0340 2.86950
\(293\) −6.86279 −0.400929 −0.200464 0.979701i \(-0.564245\pi\)
−0.200464 + 0.979701i \(0.564245\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −18.5689 −1.07929
\(297\) 0 0
\(298\) −54.5012 −3.15717
\(299\) 41.1807 2.38154
\(300\) 0 0
\(301\) −10.7368 −0.618859
\(302\) 19.4948 1.12180
\(303\) 0 0
\(304\) 2.37172 0.136027
\(305\) 0 0
\(306\) 0 0
\(307\) −19.0747 −1.08865 −0.544326 0.838874i \(-0.683214\pi\)
−0.544326 + 0.838874i \(0.683214\pi\)
\(308\) −36.1325 −2.05884
\(309\) 0 0
\(310\) 0 0
\(311\) 16.6884 0.946313 0.473156 0.880978i \(-0.343115\pi\)
0.473156 + 0.880978i \(0.343115\pi\)
\(312\) 0 0
\(313\) −19.5208 −1.10338 −0.551690 0.834049i \(-0.686017\pi\)
−0.551690 + 0.834049i \(0.686017\pi\)
\(314\) −20.2342 −1.14188
\(315\) 0 0
\(316\) −46.0406 −2.58999
\(317\) 27.9952 1.57237 0.786184 0.617993i \(-0.212054\pi\)
0.786184 + 0.617993i \(0.212054\pi\)
\(318\) 0 0
\(319\) 1.95277 0.109334
\(320\) 0 0
\(321\) 0 0
\(322\) −83.8873 −4.67486
\(323\) −0.180969 −0.0100694
\(324\) 0 0
\(325\) 0 0
\(326\) −17.8965 −0.991195
\(327\) 0 0
\(328\) −72.1182 −3.98206
\(329\) −30.3082 −1.67094
\(330\) 0 0
\(331\) 0.449715 0.0247185 0.0123593 0.999924i \(-0.496066\pi\)
0.0123593 + 0.999924i \(0.496066\pi\)
\(332\) −68.4228 −3.75519
\(333\) 0 0
\(334\) −9.73606 −0.532733
\(335\) 0 0
\(336\) 0 0
\(337\) 13.9797 0.761523 0.380762 0.924673i \(-0.375662\pi\)
0.380762 + 0.924673i \(0.375662\pi\)
\(338\) 65.4605 3.56058
\(339\) 0 0
\(340\) 0 0
\(341\) 4.50305 0.243854
\(342\) 0 0
\(343\) −33.8838 −1.82955
\(344\) 20.3800 1.09882
\(345\) 0 0
\(346\) −19.7992 −1.06441
\(347\) 18.8291 1.01080 0.505400 0.862885i \(-0.331345\pi\)
0.505400 + 0.862885i \(0.331345\pi\)
\(348\) 0 0
\(349\) 1.04013 0.0556769 0.0278384 0.999612i \(-0.491138\pi\)
0.0278384 + 0.999612i \(0.491138\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 26.4446 1.40950
\(353\) −21.1017 −1.12313 −0.561566 0.827432i \(-0.689801\pi\)
−0.561566 + 0.827432i \(0.689801\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −44.3112 −2.34849
\(357\) 0 0
\(358\) −13.9732 −0.738504
\(359\) −5.80836 −0.306554 −0.153277 0.988183i \(-0.548983\pi\)
−0.153277 + 0.988183i \(0.548983\pi\)
\(360\) 0 0
\(361\) −18.9673 −0.998276
\(362\) 1.86717 0.0981365
\(363\) 0 0
\(364\) −148.253 −7.77057
\(365\) 0 0
\(366\) 0 0
\(367\) 15.6845 0.818722 0.409361 0.912372i \(-0.365752\pi\)
0.409361 + 0.912372i \(0.365752\pi\)
\(368\) 88.3654 4.60636
\(369\) 0 0
\(370\) 0 0
\(371\) −5.42509 −0.281657
\(372\) 0 0
\(373\) 28.6662 1.48428 0.742140 0.670244i \(-0.233811\pi\)
0.742140 + 0.670244i \(0.233811\pi\)
\(374\) −4.00947 −0.207325
\(375\) 0 0
\(376\) 57.5293 2.96685
\(377\) 8.01230 0.412654
\(378\) 0 0
\(379\) 14.0803 0.723254 0.361627 0.932323i \(-0.382221\pi\)
0.361627 + 0.932323i \(0.382221\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −9.23811 −0.472663
\(383\) 16.5445 0.845382 0.422691 0.906274i \(-0.361086\pi\)
0.422691 + 0.906274i \(0.361086\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −14.3630 −0.731056
\(387\) 0 0
\(388\) 33.0246 1.67657
\(389\) 21.4533 1.08773 0.543863 0.839174i \(-0.316961\pi\)
0.543863 + 0.839174i \(0.316961\pi\)
\(390\) 0 0
\(391\) −6.74252 −0.340984
\(392\) 125.690 6.34829
\(393\) 0 0
\(394\) −37.7466 −1.90165
\(395\) 0 0
\(396\) 0 0
\(397\) −32.8093 −1.64665 −0.823326 0.567568i \(-0.807884\pi\)
−0.823326 + 0.567568i \(0.807884\pi\)
\(398\) −54.1215 −2.71287
\(399\) 0 0
\(400\) 0 0
\(401\) −0.246062 −0.0122878 −0.00614388 0.999981i \(-0.501956\pi\)
−0.00614388 + 0.999981i \(0.501956\pi\)
\(402\) 0 0
\(403\) 18.4762 0.920366
\(404\) 22.2594 1.10744
\(405\) 0 0
\(406\) −16.3215 −0.810022
\(407\) −3.15260 −0.156269
\(408\) 0 0
\(409\) −3.77694 −0.186757 −0.0933787 0.995631i \(-0.529767\pi\)
−0.0933787 + 0.995631i \(0.529767\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 36.3318 1.78994
\(413\) 15.8422 0.779543
\(414\) 0 0
\(415\) 0 0
\(416\) 108.503 5.31980
\(417\) 0 0
\(418\) 0.725587 0.0354896
\(419\) 18.4069 0.899234 0.449617 0.893222i \(-0.351561\pi\)
0.449617 + 0.893222i \(0.351561\pi\)
\(420\) 0 0
\(421\) −14.5252 −0.707914 −0.353957 0.935262i \(-0.615164\pi\)
−0.353957 + 0.935262i \(0.615164\pi\)
\(422\) 11.8494 0.576822
\(423\) 0 0
\(424\) 10.2976 0.500096
\(425\) 0 0
\(426\) 0 0
\(427\) 46.8752 2.26845
\(428\) −0.612950 −0.0296280
\(429\) 0 0
\(430\) 0 0
\(431\) −37.0684 −1.78552 −0.892762 0.450529i \(-0.851235\pi\)
−0.892762 + 0.450529i \(0.851235\pi\)
\(432\) 0 0
\(433\) 16.7503 0.804966 0.402483 0.915428i \(-0.368147\pi\)
0.402483 + 0.915428i \(0.368147\pi\)
\(434\) −37.6371 −1.80664
\(435\) 0 0
\(436\) −36.5604 −1.75092
\(437\) 1.22018 0.0583693
\(438\) 0 0
\(439\) −17.4072 −0.830802 −0.415401 0.909638i \(-0.636359\pi\)
−0.415401 + 0.909638i \(0.636359\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −16.4510 −0.782494
\(443\) 33.9402 1.61255 0.806273 0.591543i \(-0.201481\pi\)
0.806273 + 0.591543i \(0.201481\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −61.1551 −2.89578
\(447\) 0 0
\(448\) −99.9551 −4.72243
\(449\) −18.1461 −0.856369 −0.428184 0.903691i \(-0.640847\pi\)
−0.428184 + 0.903691i \(0.640847\pi\)
\(450\) 0 0
\(451\) −12.2441 −0.576553
\(452\) 46.8147 2.20198
\(453\) 0 0
\(454\) −55.7289 −2.61549
\(455\) 0 0
\(456\) 0 0
\(457\) −17.9694 −0.840574 −0.420287 0.907391i \(-0.638071\pi\)
−0.420287 + 0.907391i \(0.638071\pi\)
\(458\) −61.1564 −2.85765
\(459\) 0 0
\(460\) 0 0
\(461\) −12.8532 −0.598634 −0.299317 0.954154i \(-0.596759\pi\)
−0.299317 + 0.954154i \(0.596759\pi\)
\(462\) 0 0
\(463\) −7.39826 −0.343826 −0.171913 0.985112i \(-0.554995\pi\)
−0.171913 + 0.985112i \(0.554995\pi\)
\(464\) 17.1928 0.798154
\(465\) 0 0
\(466\) −32.5426 −1.50751
\(467\) 23.4159 1.08356 0.541780 0.840521i \(-0.317751\pi\)
0.541780 + 0.840521i \(0.317751\pi\)
\(468\) 0 0
\(469\) −58.5135 −2.70190
\(470\) 0 0
\(471\) 0 0
\(472\) −30.0708 −1.38412
\(473\) 3.46009 0.159095
\(474\) 0 0
\(475\) 0 0
\(476\) 24.2735 1.11257
\(477\) 0 0
\(478\) 64.9585 2.97113
\(479\) 33.6761 1.53870 0.769349 0.638828i \(-0.220581\pi\)
0.769349 + 0.638828i \(0.220581\pi\)
\(480\) 0 0
\(481\) −12.9353 −0.589797
\(482\) −50.0277 −2.27870
\(483\) 0 0
\(484\) −46.1616 −2.09826
\(485\) 0 0
\(486\) 0 0
\(487\) 33.2554 1.50695 0.753473 0.657479i \(-0.228377\pi\)
0.753473 + 0.657479i \(0.228377\pi\)
\(488\) −88.9759 −4.02775
\(489\) 0 0
\(490\) 0 0
\(491\) 35.2806 1.59219 0.796096 0.605170i \(-0.206895\pi\)
0.796096 + 0.605170i \(0.206895\pi\)
\(492\) 0 0
\(493\) −1.31185 −0.0590830
\(494\) 2.97711 0.133947
\(495\) 0 0
\(496\) 39.6462 1.78017
\(497\) −33.3167 −1.49446
\(498\) 0 0
\(499\) −13.7992 −0.617738 −0.308869 0.951105i \(-0.599950\pi\)
−0.308869 + 0.951105i \(0.599950\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 34.1212 1.52290
\(503\) 8.73772 0.389596 0.194798 0.980843i \(-0.437595\pi\)
0.194798 + 0.980843i \(0.437595\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 27.0339 1.20180
\(507\) 0 0
\(508\) −54.3553 −2.41163
\(509\) −5.64032 −0.250003 −0.125001 0.992157i \(-0.539894\pi\)
−0.125001 + 0.992157i \(0.539894\pi\)
\(510\) 0 0
\(511\) −43.0994 −1.90661
\(512\) 3.01385 0.133194
\(513\) 0 0
\(514\) 43.2317 1.90687
\(515\) 0 0
\(516\) 0 0
\(517\) 9.76725 0.429563
\(518\) 26.3498 1.15774
\(519\) 0 0
\(520\) 0 0
\(521\) 24.8619 1.08922 0.544609 0.838690i \(-0.316678\pi\)
0.544609 + 0.838690i \(0.316678\pi\)
\(522\) 0 0
\(523\) −21.4533 −0.938089 −0.469044 0.883175i \(-0.655402\pi\)
−0.469044 + 0.883175i \(0.655402\pi\)
\(524\) 76.4072 3.33786
\(525\) 0 0
\(526\) 1.29638 0.0565247
\(527\) −3.02511 −0.131776
\(528\) 0 0
\(529\) 22.4616 0.976591
\(530\) 0 0
\(531\) 0 0
\(532\) −4.39274 −0.190449
\(533\) −50.2382 −2.17606
\(534\) 0 0
\(535\) 0 0
\(536\) 111.067 4.79737
\(537\) 0 0
\(538\) −8.18244 −0.352770
\(539\) 21.3394 0.919155
\(540\) 0 0
\(541\) −8.95779 −0.385125 −0.192563 0.981285i \(-0.561680\pi\)
−0.192563 + 0.981285i \(0.561680\pi\)
\(542\) −41.0835 −1.76469
\(543\) 0 0
\(544\) −17.7652 −0.761678
\(545\) 0 0
\(546\) 0 0
\(547\) −11.2335 −0.480308 −0.240154 0.970735i \(-0.577198\pi\)
−0.240154 + 0.970735i \(0.577198\pi\)
\(548\) 59.8589 2.55705
\(549\) 0 0
\(550\) 0 0
\(551\) 0.237404 0.0101138
\(552\) 0 0
\(553\) 40.4683 1.72089
\(554\) −53.2192 −2.26107
\(555\) 0 0
\(556\) −28.8243 −1.22242
\(557\) 38.6187 1.63633 0.818164 0.574985i \(-0.194992\pi\)
0.818164 + 0.574985i \(0.194992\pi\)
\(558\) 0 0
\(559\) 14.1969 0.600465
\(560\) 0 0
\(561\) 0 0
\(562\) −71.2590 −3.00588
\(563\) −19.3186 −0.814180 −0.407090 0.913388i \(-0.633456\pi\)
−0.407090 + 0.913388i \(0.633456\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 3.47070 0.145884
\(567\) 0 0
\(568\) 63.2400 2.65349
\(569\) −21.0402 −0.882051 −0.441025 0.897495i \(-0.645385\pi\)
−0.441025 + 0.897495i \(0.645385\pi\)
\(570\) 0 0
\(571\) 15.9522 0.667580 0.333790 0.942647i \(-0.391672\pi\)
0.333790 + 0.942647i \(0.391672\pi\)
\(572\) 47.7767 1.99764
\(573\) 0 0
\(574\) 102.338 4.27150
\(575\) 0 0
\(576\) 0 0
\(577\) −10.0761 −0.419474 −0.209737 0.977758i \(-0.567261\pi\)
−0.209737 + 0.977758i \(0.567261\pi\)
\(578\) 2.69353 0.112036
\(579\) 0 0
\(580\) 0 0
\(581\) 60.1415 2.49509
\(582\) 0 0
\(583\) 1.74831 0.0724078
\(584\) 81.8089 3.38528
\(585\) 0 0
\(586\) −18.4851 −0.763613
\(587\) 29.6248 1.22275 0.611374 0.791342i \(-0.290617\pi\)
0.611374 + 0.791342i \(0.290617\pi\)
\(588\) 0 0
\(589\) 0.547450 0.0225573
\(590\) 0 0
\(591\) 0 0
\(592\) −27.7564 −1.14078
\(593\) 18.6199 0.764628 0.382314 0.924032i \(-0.375127\pi\)
0.382314 + 0.924032i \(0.375127\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −106.332 −4.35553
\(597\) 0 0
\(598\) 110.921 4.53591
\(599\) −44.2120 −1.80645 −0.903226 0.429165i \(-0.858808\pi\)
−0.903226 + 0.429165i \(0.858808\pi\)
\(600\) 0 0
\(601\) 31.0357 1.26597 0.632986 0.774163i \(-0.281829\pi\)
0.632986 + 0.774163i \(0.281829\pi\)
\(602\) −28.9199 −1.17869
\(603\) 0 0
\(604\) 38.0345 1.54760
\(605\) 0 0
\(606\) 0 0
\(607\) 35.1424 1.42639 0.713194 0.700967i \(-0.247248\pi\)
0.713194 + 0.700967i \(0.247248\pi\)
\(608\) 3.21495 0.130383
\(609\) 0 0
\(610\) 0 0
\(611\) 40.0754 1.62128
\(612\) 0 0
\(613\) 45.8296 1.85104 0.925520 0.378698i \(-0.123628\pi\)
0.925520 + 0.378698i \(0.123628\pi\)
\(614\) −51.3782 −2.07346
\(615\) 0 0
\(616\) −60.2838 −2.42891
\(617\) −19.3645 −0.779586 −0.389793 0.920902i \(-0.627453\pi\)
−0.389793 + 0.920902i \(0.627453\pi\)
\(618\) 0 0
\(619\) −24.1232 −0.969594 −0.484797 0.874627i \(-0.661107\pi\)
−0.484797 + 0.874627i \(0.661107\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 44.9506 1.80236
\(623\) 38.9482 1.56043
\(624\) 0 0
\(625\) 0 0
\(626\) −52.5798 −2.10151
\(627\) 0 0
\(628\) −39.4769 −1.57530
\(629\) 2.11789 0.0844458
\(630\) 0 0
\(631\) 42.5276 1.69300 0.846499 0.532390i \(-0.178706\pi\)
0.846499 + 0.532390i \(0.178706\pi\)
\(632\) −76.8147 −3.05553
\(633\) 0 0
\(634\) 75.4058 2.99475
\(635\) 0 0
\(636\) 0 0
\(637\) 87.5566 3.46912
\(638\) 5.25984 0.208239
\(639\) 0 0
\(640\) 0 0
\(641\) 31.3506 1.23828 0.619138 0.785282i \(-0.287482\pi\)
0.619138 + 0.785282i \(0.287482\pi\)
\(642\) 0 0
\(643\) −20.3035 −0.800692 −0.400346 0.916364i \(-0.631110\pi\)
−0.400346 + 0.916364i \(0.631110\pi\)
\(644\) −163.664 −6.44928
\(645\) 0 0
\(646\) −0.487443 −0.0191782
\(647\) 38.8373 1.52685 0.763425 0.645896i \(-0.223516\pi\)
0.763425 + 0.645896i \(0.223516\pi\)
\(648\) 0 0
\(649\) −5.10537 −0.200403
\(650\) 0 0
\(651\) 0 0
\(652\) −34.9161 −1.36742
\(653\) 34.5694 1.35281 0.676403 0.736532i \(-0.263538\pi\)
0.676403 + 0.736532i \(0.263538\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −107.801 −4.20892
\(657\) 0 0
\(658\) −81.6358 −3.18249
\(659\) 17.8777 0.696417 0.348208 0.937417i \(-0.386790\pi\)
0.348208 + 0.937417i \(0.386790\pi\)
\(660\) 0 0
\(661\) −10.7639 −0.418667 −0.209333 0.977844i \(-0.567129\pi\)
−0.209333 + 0.977844i \(0.567129\pi\)
\(662\) 1.21132 0.0470792
\(663\) 0 0
\(664\) −114.157 −4.43016
\(665\) 0 0
\(666\) 0 0
\(667\) 8.84521 0.342488
\(668\) −18.9951 −0.734942
\(669\) 0 0
\(670\) 0 0
\(671\) −15.1062 −0.583168
\(672\) 0 0
\(673\) 7.18958 0.277138 0.138569 0.990353i \(-0.455750\pi\)
0.138569 + 0.990353i \(0.455750\pi\)
\(674\) 37.6547 1.45040
\(675\) 0 0
\(676\) 127.714 4.91206
\(677\) 38.0770 1.46342 0.731709 0.681617i \(-0.238723\pi\)
0.731709 + 0.681617i \(0.238723\pi\)
\(678\) 0 0
\(679\) −29.0276 −1.11398
\(680\) 0 0
\(681\) 0 0
\(682\) 12.1291 0.464447
\(683\) 7.36273 0.281727 0.140864 0.990029i \(-0.455012\pi\)
0.140864 + 0.990029i \(0.455012\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −91.2668 −3.48458
\(687\) 0 0
\(688\) 30.4637 1.16142
\(689\) 7.17340 0.273285
\(690\) 0 0
\(691\) 40.5159 1.54130 0.770650 0.637259i \(-0.219932\pi\)
0.770650 + 0.637259i \(0.219932\pi\)
\(692\) −38.6283 −1.46843
\(693\) 0 0
\(694\) 50.7167 1.92518
\(695\) 0 0
\(696\) 0 0
\(697\) 8.22550 0.311563
\(698\) 2.80161 0.106043
\(699\) 0 0
\(700\) 0 0
\(701\) −16.5969 −0.626855 −0.313428 0.949612i \(-0.601477\pi\)
−0.313428 + 0.949612i \(0.601477\pi\)
\(702\) 0 0
\(703\) −0.383272 −0.0144554
\(704\) 32.2120 1.21403
\(705\) 0 0
\(706\) −56.8381 −2.13913
\(707\) −19.5653 −0.735829
\(708\) 0 0
\(709\) 23.7142 0.890604 0.445302 0.895381i \(-0.353096\pi\)
0.445302 + 0.895381i \(0.353096\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −73.9293 −2.77062
\(713\) 20.3969 0.763870
\(714\) 0 0
\(715\) 0 0
\(716\) −27.2617 −1.01882
\(717\) 0 0
\(718\) −15.6450 −0.583865
\(719\) −2.14873 −0.0801339 −0.0400670 0.999197i \(-0.512757\pi\)
−0.0400670 + 0.999197i \(0.512757\pi\)
\(720\) 0 0
\(721\) −31.9345 −1.18930
\(722\) −51.0888 −1.90133
\(723\) 0 0
\(724\) 3.64286 0.135386
\(725\) 0 0
\(726\) 0 0
\(727\) −21.5131 −0.797875 −0.398938 0.916978i \(-0.630621\pi\)
−0.398938 + 0.916978i \(0.630621\pi\)
\(728\) −247.347 −9.16729
\(729\) 0 0
\(730\) 0 0
\(731\) −2.32446 −0.0859733
\(732\) 0 0
\(733\) −37.4517 −1.38331 −0.691655 0.722228i \(-0.743118\pi\)
−0.691655 + 0.722228i \(0.743118\pi\)
\(734\) 42.2465 1.55935
\(735\) 0 0
\(736\) 119.782 4.41524
\(737\) 18.8568 0.694600
\(738\) 0 0
\(739\) −29.9540 −1.10188 −0.550938 0.834546i \(-0.685730\pi\)
−0.550938 + 0.834546i \(0.685730\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −14.6126 −0.536446
\(743\) 4.89399 0.179543 0.0897716 0.995962i \(-0.471386\pi\)
0.0897716 + 0.995962i \(0.471386\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 77.2132 2.82698
\(747\) 0 0
\(748\) −7.82248 −0.286018
\(749\) 0.538764 0.0196860
\(750\) 0 0
\(751\) 17.7060 0.646102 0.323051 0.946382i \(-0.395291\pi\)
0.323051 + 0.946382i \(0.395291\pi\)
\(752\) 85.9937 3.13587
\(753\) 0 0
\(754\) 21.5813 0.785946
\(755\) 0 0
\(756\) 0 0
\(757\) −49.1135 −1.78506 −0.892530 0.450988i \(-0.851072\pi\)
−0.892530 + 0.450988i \(0.851072\pi\)
\(758\) 37.9255 1.37752
\(759\) 0 0
\(760\) 0 0
\(761\) 9.03057 0.327358 0.163679 0.986514i \(-0.447664\pi\)
0.163679 + 0.986514i \(0.447664\pi\)
\(762\) 0 0
\(763\) 32.1355 1.16338
\(764\) −18.0236 −0.652070
\(765\) 0 0
\(766\) 44.5629 1.61012
\(767\) −20.9476 −0.756372
\(768\) 0 0
\(769\) −46.2896 −1.66924 −0.834622 0.550823i \(-0.814314\pi\)
−0.834622 + 0.550823i \(0.814314\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −28.0222 −1.00854
\(773\) −0.350175 −0.0125949 −0.00629746 0.999980i \(-0.502005\pi\)
−0.00629746 + 0.999980i \(0.502005\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 55.0986 1.97792
\(777\) 0 0
\(778\) 57.7851 2.07170
\(779\) −1.48856 −0.0533331
\(780\) 0 0
\(781\) 10.7368 0.384193
\(782\) −18.1612 −0.649441
\(783\) 0 0
\(784\) 187.879 6.70995
\(785\) 0 0
\(786\) 0 0
\(787\) −18.6914 −0.666278 −0.333139 0.942878i \(-0.608108\pi\)
−0.333139 + 0.942878i \(0.608108\pi\)
\(788\) −73.6439 −2.62345
\(789\) 0 0
\(790\) 0 0
\(791\) −41.1487 −1.46308
\(792\) 0 0
\(793\) −61.9814 −2.20102
\(794\) −88.3727 −3.13623
\(795\) 0 0
\(796\) −105.591 −3.74258
\(797\) −32.4669 −1.15004 −0.575018 0.818141i \(-0.695005\pi\)
−0.575018 + 0.818141i \(0.695005\pi\)
\(798\) 0 0
\(799\) −6.56155 −0.232131
\(800\) 0 0
\(801\) 0 0
\(802\) −0.662775 −0.0234034
\(803\) 13.8894 0.490147
\(804\) 0 0
\(805\) 0 0
\(806\) 49.7661 1.75294
\(807\) 0 0
\(808\) 37.1378 1.30650
\(809\) −7.30347 −0.256776 −0.128388 0.991724i \(-0.540980\pi\)
−0.128388 + 0.991724i \(0.540980\pi\)
\(810\) 0 0
\(811\) −3.42434 −0.120245 −0.0601225 0.998191i \(-0.519149\pi\)
−0.0601225 + 0.998191i \(0.519149\pi\)
\(812\) −31.8433 −1.11748
\(813\) 0 0
\(814\) −8.49161 −0.297631
\(815\) 0 0
\(816\) 0 0
\(817\) 0.420654 0.0147168
\(818\) −10.1733 −0.355700
\(819\) 0 0
\(820\) 0 0
\(821\) 40.2521 1.40481 0.702404 0.711778i \(-0.252110\pi\)
0.702404 + 0.711778i \(0.252110\pi\)
\(822\) 0 0
\(823\) −9.80674 −0.341841 −0.170921 0.985285i \(-0.554674\pi\)
−0.170921 + 0.985285i \(0.554674\pi\)
\(824\) 60.6163 2.11167
\(825\) 0 0
\(826\) 42.6713 1.48472
\(827\) 4.78549 0.166408 0.0832038 0.996533i \(-0.473485\pi\)
0.0832038 + 0.996533i \(0.473485\pi\)
\(828\) 0 0
\(829\) 38.5349 1.33837 0.669185 0.743096i \(-0.266643\pi\)
0.669185 + 0.743096i \(0.266643\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 132.167 4.58207
\(833\) −14.3357 −0.496701
\(834\) 0 0
\(835\) 0 0
\(836\) 1.41562 0.0489604
\(837\) 0 0
\(838\) 49.5793 1.71269
\(839\) 3.20700 0.110718 0.0553590 0.998467i \(-0.482370\pi\)
0.0553590 + 0.998467i \(0.482370\pi\)
\(840\) 0 0
\(841\) −27.2790 −0.940656
\(842\) −39.1239 −1.34830
\(843\) 0 0
\(844\) 23.1183 0.795765
\(845\) 0 0
\(846\) 0 0
\(847\) 40.5747 1.39416
\(848\) 15.3927 0.528586
\(849\) 0 0
\(850\) 0 0
\(851\) −14.2799 −0.489509
\(852\) 0 0
\(853\) −18.4995 −0.633412 −0.316706 0.948524i \(-0.602577\pi\)
−0.316706 + 0.948524i \(0.602577\pi\)
\(854\) 126.259 4.32051
\(855\) 0 0
\(856\) −1.02265 −0.0349535
\(857\) −7.84698 −0.268048 −0.134024 0.990978i \(-0.542790\pi\)
−0.134024 + 0.990978i \(0.542790\pi\)
\(858\) 0 0
\(859\) 28.9487 0.987718 0.493859 0.869542i \(-0.335586\pi\)
0.493859 + 0.869542i \(0.335586\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −99.8447 −3.40073
\(863\) 34.1900 1.16384 0.581921 0.813245i \(-0.302301\pi\)
0.581921 + 0.813245i \(0.302301\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 45.1172 1.53315
\(867\) 0 0
\(868\) −73.4300 −2.49238
\(869\) −13.0415 −0.442403
\(870\) 0 0
\(871\) 77.3703 2.62159
\(872\) −60.9978 −2.06565
\(873\) 0 0
\(874\) 3.28660 0.111171
\(875\) 0 0
\(876\) 0 0
\(877\) 2.93107 0.0989753 0.0494877 0.998775i \(-0.484241\pi\)
0.0494877 + 0.998775i \(0.484241\pi\)
\(878\) −46.8869 −1.58235
\(879\) 0 0
\(880\) 0 0
\(881\) −56.2657 −1.89564 −0.947820 0.318807i \(-0.896718\pi\)
−0.947820 + 0.318807i \(0.896718\pi\)
\(882\) 0 0
\(883\) 0.966565 0.0325275 0.0162638 0.999868i \(-0.494823\pi\)
0.0162638 + 0.999868i \(0.494823\pi\)
\(884\) −32.0960 −1.07950
\(885\) 0 0
\(886\) 91.4187 3.07127
\(887\) −41.0673 −1.37890 −0.689452 0.724331i \(-0.742149\pi\)
−0.689452 + 0.724331i \(0.742149\pi\)
\(888\) 0 0
\(889\) 47.7767 1.60238
\(890\) 0 0
\(891\) 0 0
\(892\) −119.314 −3.99492
\(893\) 1.18743 0.0397360
\(894\) 0 0
\(895\) 0 0
\(896\) −105.114 −3.51162
\(897\) 0 0
\(898\) −48.8771 −1.63105
\(899\) 3.96851 0.132357
\(900\) 0 0
\(901\) −1.17450 −0.0391283
\(902\) −32.9799 −1.09811
\(903\) 0 0
\(904\) 78.1062 2.59778
\(905\) 0 0
\(906\) 0 0
\(907\) −43.2302 −1.43543 −0.717717 0.696334i \(-0.754813\pi\)
−0.717717 + 0.696334i \(0.754813\pi\)
\(908\) −108.727 −3.60824
\(909\) 0 0
\(910\) 0 0
\(911\) 44.9471 1.48916 0.744581 0.667532i \(-0.232649\pi\)
0.744581 + 0.667532i \(0.232649\pi\)
\(912\) 0 0
\(913\) −19.3815 −0.641433
\(914\) −48.4011 −1.60097
\(915\) 0 0
\(916\) −119.316 −3.94232
\(917\) −67.1596 −2.21780
\(918\) 0 0
\(919\) 1.36957 0.0451781 0.0225890 0.999745i \(-0.492809\pi\)
0.0225890 + 0.999745i \(0.492809\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −34.6205 −1.14016
\(923\) 44.0536 1.45004
\(924\) 0 0
\(925\) 0 0
\(926\) −19.9274 −0.654855
\(927\) 0 0
\(928\) 23.3054 0.765038
\(929\) −2.67132 −0.0876431 −0.0438215 0.999039i \(-0.513953\pi\)
−0.0438215 + 0.999039i \(0.513953\pi\)
\(930\) 0 0
\(931\) 2.59430 0.0850248
\(932\) −63.4908 −2.07971
\(933\) 0 0
\(934\) 63.0714 2.06376
\(935\) 0 0
\(936\) 0 0
\(937\) −26.6015 −0.869034 −0.434517 0.900664i \(-0.643081\pi\)
−0.434517 + 0.900664i \(0.643081\pi\)
\(938\) −157.608 −5.14607
\(939\) 0 0
\(940\) 0 0
\(941\) 24.8072 0.808690 0.404345 0.914606i \(-0.367499\pi\)
0.404345 + 0.914606i \(0.367499\pi\)
\(942\) 0 0
\(943\) −55.4606 −1.80605
\(944\) −44.9492 −1.46297
\(945\) 0 0
\(946\) 9.31984 0.303014
\(947\) 39.6057 1.28701 0.643506 0.765441i \(-0.277479\pi\)
0.643506 + 0.765441i \(0.277479\pi\)
\(948\) 0 0
\(949\) 56.9888 1.84994
\(950\) 0 0
\(951\) 0 0
\(952\) 40.4982 1.31255
\(953\) −43.2247 −1.40019 −0.700093 0.714052i \(-0.746858\pi\)
−0.700093 + 0.714052i \(0.746858\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 126.734 4.09888
\(957\) 0 0
\(958\) 90.7073 2.93062
\(959\) −52.6142 −1.69900
\(960\) 0 0
\(961\) −21.8487 −0.704796
\(962\) −34.8414 −1.12333
\(963\) 0 0
\(964\) −97.6042 −3.14362
\(965\) 0 0
\(966\) 0 0
\(967\) 0.630476 0.0202748 0.0101374 0.999949i \(-0.496773\pi\)
0.0101374 + 0.999949i \(0.496773\pi\)
\(968\) −77.0166 −2.47541
\(969\) 0 0
\(970\) 0 0
\(971\) −62.1272 −1.99376 −0.996879 0.0789458i \(-0.974845\pi\)
−0.996879 + 0.0789458i \(0.974845\pi\)
\(972\) 0 0
\(973\) 25.3357 0.812225
\(974\) 89.5743 2.87015
\(975\) 0 0
\(976\) −132.999 −4.25721
\(977\) 43.0462 1.37717 0.688585 0.725156i \(-0.258232\pi\)
0.688585 + 0.725156i \(0.258232\pi\)
\(978\) 0 0
\(979\) −12.5516 −0.401151
\(980\) 0 0
\(981\) 0 0
\(982\) 95.0292 3.03250
\(983\) −26.5628 −0.847222 −0.423611 0.905844i \(-0.639238\pi\)
−0.423611 + 0.905844i \(0.639238\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −3.53351 −0.112530
\(987\) 0 0
\(988\) 5.80836 0.184789
\(989\) 15.6727 0.498364
\(990\) 0 0
\(991\) −35.8067 −1.13744 −0.568719 0.822532i \(-0.692561\pi\)
−0.568719 + 0.822532i \(0.692561\pi\)
\(992\) 53.7418 1.70631
\(993\) 0 0
\(994\) −89.7395 −2.84636
\(995\) 0 0
\(996\) 0 0
\(997\) 2.94417 0.0932428 0.0466214 0.998913i \(-0.485155\pi\)
0.0466214 + 0.998913i \(0.485155\pi\)
\(998\) −37.1685 −1.17655
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3825.2.a.bt.1.7 8
3.2 odd 2 3825.2.a.bs.1.1 8
5.2 odd 4 765.2.b.e.154.16 yes 16
5.3 odd 4 765.2.b.e.154.2 yes 16
5.4 even 2 3825.2.a.bs.1.2 8
15.2 even 4 765.2.b.e.154.1 16
15.8 even 4 765.2.b.e.154.15 yes 16
15.14 odd 2 inner 3825.2.a.bt.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
765.2.b.e.154.1 16 15.2 even 4
765.2.b.e.154.2 yes 16 5.3 odd 4
765.2.b.e.154.15 yes 16 15.8 even 4
765.2.b.e.154.16 yes 16 5.2 odd 4
3825.2.a.bs.1.1 8 3.2 odd 2
3825.2.a.bs.1.2 8 5.4 even 2
3825.2.a.bt.1.7 8 1.1 even 1 trivial
3825.2.a.bt.1.8 8 15.14 odd 2 inner