Properties

Label 3825.2
Level 3825
Weight 2
Dimension 372858
Nonzero newspaces 72
Sturm bound 2073600
Trace bound 25

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 72 \)
Sturm bound: \(2073600\)
Trace bound: \(25\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(3825))\).

Total New Old
Modular forms 525568 378392 147176
Cusp forms 511233 372858 138375
Eisenstein series 14335 5534 8801

Trace form

\( 372858 q - 280 q^{2} - 368 q^{3} - 296 q^{4} - 342 q^{5} - 592 q^{6} - 300 q^{7} - 264 q^{8} - 352 q^{9} - 1002 q^{10} - 420 q^{11} - 304 q^{12} - 268 q^{13} - 220 q^{14} - 424 q^{15} - 428 q^{16} - 276 q^{17}+ \cdots - 272 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(3825))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3825.2.a \(\chi_{3825}(1, \cdot)\) 3825.2.a.a 1 1
3825.2.a.b 1
3825.2.a.c 1
3825.2.a.d 1
3825.2.a.e 1
3825.2.a.f 1
3825.2.a.g 1
3825.2.a.h 1
3825.2.a.i 1
3825.2.a.j 1
3825.2.a.k 1
3825.2.a.l 1
3825.2.a.m 1
3825.2.a.n 1
3825.2.a.o 1
3825.2.a.p 2
3825.2.a.q 2
3825.2.a.r 2
3825.2.a.s 2
3825.2.a.t 2
3825.2.a.u 2
3825.2.a.v 2
3825.2.a.w 2
3825.2.a.x 2
3825.2.a.y 2
3825.2.a.z 2
3825.2.a.ba 3
3825.2.a.bb 3
3825.2.a.bc 3
3825.2.a.bd 3
3825.2.a.be 3
3825.2.a.bf 3
3825.2.a.bg 3
3825.2.a.bh 4
3825.2.a.bi 4
3825.2.a.bj 4
3825.2.a.bk 5
3825.2.a.bl 5
3825.2.a.bm 5
3825.2.a.bn 5
3825.2.a.bo 5
3825.2.a.bp 5
3825.2.a.bq 5
3825.2.a.br 5
3825.2.a.bs 8
3825.2.a.bt 8
3825.2.b \(\chi_{3825}(2449, \cdot)\) n/a 120 1
3825.2.d \(\chi_{3825}(424, \cdot)\) n/a 132 1
3825.2.g \(\chi_{3825}(1801, \cdot)\) n/a 140 1
3825.2.i \(\chi_{3825}(1276, \cdot)\) n/a 608 2
3825.2.k \(\chi_{3825}(676, \cdot)\) n/a 280 2
3825.2.l \(\chi_{3825}(1007, \cdot)\) n/a 216 2
3825.2.n \(\chi_{3825}(1718, \cdot)\) n/a 192 2
3825.2.p \(\chi_{3825}(1682, \cdot)\) n/a 216 2
3825.2.s \(\chi_{3825}(557, \cdot)\) n/a 216 2
3825.2.t \(\chi_{3825}(3124, \cdot)\) n/a 264 2
3825.2.v \(\chi_{3825}(766, \cdot)\) n/a 800 4
3825.2.x \(\chi_{3825}(526, \cdot)\) n/a 672 2
3825.2.ba \(\chi_{3825}(1699, \cdot)\) n/a 640 2
3825.2.bc \(\chi_{3825}(1174, \cdot)\) n/a 576 2
3825.2.be \(\chi_{3825}(332, \cdot)\) n/a 432 4
3825.2.bf \(\chi_{3825}(451, \cdot)\) n/a 556 4
3825.2.bi \(\chi_{3825}(1324, \cdot)\) n/a 536 4
3825.2.bj \(\chi_{3825}(2168, \cdot)\) n/a 432 4
3825.2.bl \(\chi_{3825}(271, \cdot)\) n/a 888 4
3825.2.bp \(\chi_{3825}(154, \cdot)\) n/a 800 4
3825.2.br \(\chi_{3825}(1189, \cdot)\) n/a 896 4
3825.2.bt \(\chi_{3825}(574, \cdot)\) n/a 1280 4
3825.2.bu \(\chi_{3825}(293, \cdot)\) n/a 1280 4
3825.2.bw \(\chi_{3825}(407, \cdot)\) n/a 1280 4
3825.2.by \(\chi_{3825}(443, \cdot)\) n/a 1152 4
3825.2.cb \(\chi_{3825}(1118, \cdot)\) n/a 1280 4
3825.2.cc \(\chi_{3825}(1951, \cdot)\) n/a 1344 4
3825.2.ce \(\chi_{3825}(256, \cdot)\) n/a 3840 8
3825.2.cg \(\chi_{3825}(343, \cdot)\) n/a 1064 8
3825.2.ch \(\chi_{3825}(224, \cdot)\) n/a 864 8
3825.2.cj \(\chi_{3825}(1151, \cdot)\) n/a 912 8
3825.2.cl \(\chi_{3825}(82, \cdot)\) n/a 1064 8
3825.2.co \(\chi_{3825}(64, \cdot)\) n/a 1792 8
3825.2.cq \(\chi_{3825}(98, \cdot)\) n/a 1440 8
3825.2.cr \(\chi_{3825}(152, \cdot)\) n/a 1440 8
3825.2.ct \(\chi_{3825}(188, \cdot)\) n/a 1280 8
3825.2.cv \(\chi_{3825}(548, \cdot)\) n/a 1440 8
3825.2.cx \(\chi_{3825}(361, \cdot)\) n/a 1776 8
3825.2.da \(\chi_{3825}(32, \cdot)\) n/a 2560 8
3825.2.db \(\chi_{3825}(49, \cdot)\) n/a 2560 8
3825.2.de \(\chi_{3825}(76, \cdot)\) n/a 2688 8
3825.2.df \(\chi_{3825}(1607, \cdot)\) n/a 2560 8
3825.2.dh \(\chi_{3825}(169, \cdot)\) n/a 4288 8
3825.2.dj \(\chi_{3825}(409, \cdot)\) n/a 3840 8
3825.2.dn \(\chi_{3825}(16, \cdot)\) n/a 4288 8
3825.2.do \(\chi_{3825}(8, \cdot)\) n/a 2880 16
3825.2.dq \(\chi_{3825}(19, \cdot)\) n/a 3552 16
3825.2.dt \(\chi_{3825}(406, \cdot)\) n/a 3584 16
3825.2.dv \(\chi_{3825}(53, \cdot)\) n/a 2880 16
3825.2.dx \(\chi_{3825}(193, \cdot)\) n/a 5120 16
3825.2.dz \(\chi_{3825}(176, \cdot)\) n/a 5376 16
3825.2.eb \(\chi_{3825}(74, \cdot)\) n/a 5120 16
3825.2.ec \(\chi_{3825}(7, \cdot)\) n/a 5120 16
3825.2.ef \(\chi_{3825}(106, \cdot)\) n/a 8576 16
3825.2.eh \(\chi_{3825}(38, \cdot)\) n/a 8576 16
3825.2.ei \(\chi_{3825}(137, \cdot)\) n/a 7680 16
3825.2.ek \(\chi_{3825}(203, \cdot)\) n/a 8576 16
3825.2.em \(\chi_{3825}(353, \cdot)\) n/a 8576 16
3825.2.eo \(\chi_{3825}(4, \cdot)\) n/a 8576 16
3825.2.er \(\chi_{3825}(28, \cdot)\) n/a 7136 32
3825.2.et \(\chi_{3825}(71, \cdot)\) n/a 5760 32
3825.2.ev \(\chi_{3825}(44, \cdot)\) n/a 5760 32
3825.2.ew \(\chi_{3825}(73, \cdot)\) n/a 7136 32
3825.2.ey \(\chi_{3825}(77, \cdot)\) n/a 17152 32
3825.2.fa \(\chi_{3825}(121, \cdot)\) n/a 17152 32
3825.2.fd \(\chi_{3825}(94, \cdot)\) n/a 17152 32
3825.2.ff \(\chi_{3825}(2, \cdot)\) n/a 17152 32
3825.2.fh \(\chi_{3825}(88, \cdot)\) n/a 34304 64
3825.2.fi \(\chi_{3825}(14, \cdot)\) n/a 34304 64
3825.2.fk \(\chi_{3825}(11, \cdot)\) n/a 34304 64
3825.2.fm \(\chi_{3825}(22, \cdot)\) n/a 34304 64

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(3825))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(3825)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(153))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(225))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(255))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(425))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(765))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1275))\)\(^{\oplus 2}\)